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ABSTRACT: The green algal genus Ulva grows widely on all
continents and is used for several applications such as functional
foods, cosmeceuticals, nutraceuticals, and pharmaceuticals due to
its nutritional characteristics. However, to increase its shelf-life and
retain its bioactive components, it is necessary to apply some
conservation technology, such as drying. The aim of this work is to
describe the drying kinetic behavior of the green seaweed Ulva spp.
by applying three dehydration methods: convective drying (CD),
vacuum drying (VD), and solar drying (SD) by mathematical
modeling and determining the retention of mineral content by
atomic absorption spectroscopy and the antimicrobial potential
against four strains such as Staphylococcus aureus, Escherichia coli,
Saccharomyces cerevisiae, and Penicillium sp. by measurement of
inhibition zones and α-glucosidase activity inhibition, as reported by IC50 determination. A freeze-dried sample was used as the
control. The equilibrium moisture values calculated using the Guggenheim−Anderson−de Boer model were 0.0108, 0.0108, and
0.0290 g water/g d.m., for CD, VD and SD, respectively. The Midilli and Kucuk model showed robustness to fit all the experimental
data of drying kinetic modeling. Ulva spp. is an important source of potassium with a ratio of Na/K < 0.29. Inhibition halos were
observed in all samples against S. cerevisiae and Penicillium sp. with higher values than fluconazole action. An inhibitory effect on α-
glucosidase activity was observed in all samples, mainly in the freeze-dried sample. Finally, dried Ulva spp. is a rich source of macro-
and microminerals with antimicrobial activity and is a potential α-glucosidase inhibitor. Thus, it can be considered as a potential
functional ingredient for food manufacturing.

1. INTRODUCTION
Seaweeds are the largest unexploited, low-trophic, and
renewable global biomass resources,1 and the green seaweed
genus Ulva grows widely around all continents.2 Ulva spp.
seaweed is common along the Chilean coast,3 with a great
potential as feed for fish or mollusks,4 as a functional
ingredient,5 and also as human food.6 This seaweed contains
a wide range of relevant components, such as polysaccharides,
lipids, proteins, phenolic compounds, and pigments, and has
some functional activities.7,8 Due to its nutritional and
bioactive characteristics, it is used as functional foods,
cosmeceuticals, nutraceuticals, and pharmaceuticals.9

The mineral composition of green seaweeds has been
reported to contain mainly potassium (3.1−27 mg/g dry
weight), sodium (6.9−25.3 mg/g dry weight),10 and some
microminerals such as iron, zinc, copper, and manganese,
which is also observed for Ulva spp.,11 but their concentrations
could vary based on the geographical origin and harvest season.

Additionally, the fresh and lyophilized extracts from the
seaweed has been described to exhibit functional properties
such as anti-inflammatory activity,12 antiviral activity,13

antioxidant capacity,14 antimicrobial potential,15 and α-
glucosidase inhibition capacity,16 among others. The α-
glucosidase activity is very important because it is related to
type II diabetes and its inhibition may reduce carbohydrate
digestion and attenuate the blood glucose levels.17 These
special characteristics generate interest in commercial ex-
ploitation for the production of a functional ingredient for food
manufacturing.18 However, to increase its shelf-life and retain
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its nutritional characteristics, bioactive components, and
functional properties of the green seaweed, such as Ulva
spp., it is necessary to apply adequate conservation
technologies.

Drying is the oldest and most used industrial process to
preserve foods with a higher moisture content such as fruits
and vegetables, increasing their shelf-life by reducing the
moisture content of the food matrix, which prevents the
microbial growth.19 This process involves heat and mass
diffusion in a simultaneous process and leads to a decrease of
the food volume with a decrease in the storage requirements.
Thus, the use of a drying process reduces the postharvest
losses, provides ease in storage and transport, and ensures
product availability throughout the year.20

Different drying methods have been reported to analyze
their effect on nutritional constituents and bioactive
components either in red,21 brown,22 or green seaweeds.23

Nevertheless, a detailed description of desorption isotherms
and drying kinetics with mathematical modeling of the algae
dehydration process is not common to find in the literature,
especially for green seaweeds such as Ulva spp. The evaluation
of the desorption isotherm by mathematical models such as the
Guggenheim−Anderson−de Boer (GAB) model allows us to
establish a relationship between the equilibrium moisture
content and water activity at a constant temperature.24 The use
of mathematical models to describe the drying kinetic has
proven to be a useful tool for the design or improvement of
drying processes, allowing the prediction of water removal
rates and describing the drying performance of a specific
product.25 Therefore, an in-depth description of the drying
kinetic by mathematical modeling of the main drying methods
used in the algae industry, that is, convection drying and solar
drying (SD), is relevant for comparison with non-conventional
technologies such as vacuum drying (VD) and freeze-drying
(FD).

The aim of this work was to describe the behavior of the
drying kinetic of the green seaweed Ulva spp. by applying three
dehydration methods [convective drying (CD), SD, and VD]
by mathematical modeling and determining the retention of
the mineral content, antimicrobial activity, and potential α-
glucosidase activity inhibition or using FD as the control.

2. MATERIALS AND METHODS
2.1. Raw Material. The seaweed Ulva spp. was collected

on the coast of Guayacan, Coquimbo Region, Chile. It was
cleaned and maintained in a 1000 L raceway tank (Ocean
Teach S. A, Chile), where it received a constant flow of filtered
seawater at a rate of 0.15 m3/h. Upon arrival at the laboratory,
the seaweed was washed with distilled water and subjected to
visual inspection for the determination of size, homogeneous
color, and mechanical damage. The selected fresh seaweed was
dehydrated using four different drying techniques.
2.2. Drying Techniques. Ulva spp. was subjected to three

drying techniques: CD, VD, and SD and FD which was used as
a control. A convective dryer designed and built at the
Department of Food Engineering at University of La Serena
(La Serena, Chile) was used. Four hundred grams of the
sample was placed in the dryer chamber at a load density of
2.09 kg/m2. The hot air temperature was set at 70 °C with an
airflow rate of 2.0 m/s and a relative humidity between 50 and
60%. The VD was carried out using a vacuum oven (Memmert,
model VO 400, Schwabach, Germany), where 250 g of Ulva
spp. was distributed on a stainless-steel tray at a load density of

2.07 kg/m2 and placed inside the chamber of the vacuum dryer
at 70 °C, a relative humidity between 50 and 60%, and 15 kPa.
SD was carried out in a dryer designed and built at the same
department as that mentioned above. This solar dryer was built
with an integrated flat copper plate collector to absorb incident
solar radiation and a glass sheet as a transparent cover. A
thousand grams of the algae sample was spread on a stainless-
steel tray at a load density of 2.06 kg/m2, at a temperature of
approximately 50 °C, with a relative humidity between 30 and
40%, and 8 h of daylight. The FD was carried out in a freeze
dryer (VirTis Wizard 2.0, Advantage Plus, NY, USA). Five
hundred and forty grams of the algae samples was initially
frozen at −80 °C for 24 h and then quickly placed into the
freeze-dryer chamber programed to be at −50 °C and 0.027
kPa for 24 h.

All drying methods were carried out until a constant weight
was reached, except for FD where samples were kept in the
drying chamber for 24 h. Once the samples were dehydrated,
they were milled in a basic analytical grinder (IKA A-11, USA),
the powdered algae were sieved using a stainless-steel sieve #35
of 500 μm mesh (U.S. Standard Sieve Series, Dual
Manufacturing Co., USA), and then stored in sealed plastic
bags at 5 °C.
2.3. GAB Model Evaluation and Modeling of Drying

Kinetic. The desorption isotherm at 50 °C was obtained from
fresh green seaweed Ulva spp. using the method recommended
by ref 26. Saturated salt solutions of LiCl, CH3COOK, MgCl2,
KCO3, Mg (NO3)2, NaNO3, KI, NaCl, KCl, KNO3, and K2SO4
were prepared and placed in different hermetic glass recipients.
One gram of fresh seaweed was placed on a Petri dish and
transferred to each recipient. Besides, a small amount of
thymol was placed in each glass recipient to inhibit the
microbial growth in green seaweed samples. All recipients were
placed inside an oven (Memmert UF 110, Schwabach,
Germany) at 50 °C. The sample weight was measured weekly
using an analytical balance (±0.0001 g) (HR200, A&D
Company, Tokyo, Japan) until the equilibrium of the mass
was reached. Subsequently, water contents of equilibrated
samples were measured by the AOAC (934.06) method in
triplicate. The equilibrium moisture was calculated using the
GAB model presented in eq 1.

X
X C k a

1 k a 1 C 1 k a( ) ( ( ) )we
m w

w w
= · · ·

· · + · · (1)

where Xwe [g water/g d.m. (dried matter)] is the equilibrium
moisture, Xm (g water/g d.m.) represents the monolayer
moisture, aw is the water activity (dimensionless), and C and k
are the constants of the model.

The weight loss values of Ulva spp. samples dried by CD,
VD, and SD were recorded using a digital scale balance
(Radwag AS 220-R2, Torunska, Poland) until a constant
weight was reached, and the MR (moisture ratio, dimension-
less) was determined using eq 2.

X X
X X

MR wt we

w0 we
=

(2)

where Xwt (g water/g d.m.) is the moisture at time t, Xwe (g
water/g d.m.) is the equilibrium moisture content, and Xw0 (g
water/g d.m.) is the initial sample moisture.27

Eight mathematical models were used to describe the
moisture loss during the drying process through predicting the
MR at each drying technique. Table 1 shows eqs 3−10, which
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correspond to the mathematical models used to fit the
experimental data. All models were selected from Inyang et
al. (2018).28

The determination of each model parameter was carried out
through iterative methods implemented in the free program
RStudio using the dose−response analysis (drc) library29 and
the nonlinear least squares method using the brute force (nls2)
library.
2.4. Extraction Method. The different dried Ulva spp.

extracts were obtained using pure methanol and a mixture of
acetone/water (70:30, v/v) as reported by Garciá et al.
(2020).30 Dehydrated and powdered Ulva spp. samples were
mixed with an extracting solution in a ratio of 1:10 w/v in an
orbital shaker (Boeco, OS20, Germany) at room temperature
and 200 rpm for 24 h. The extractions were filtered, and the
filtrates were brought to dryness using a rotary evaporator
(Büchi R-210, Flawil, Switzerland) at 40 °C. Then, the dry
residues were resuspended in 10 mL of pure methanol or a
mixture of acetone/water (70:30, v/v). Each treatment was
performed in triplicate, and the products were stored at −80
°C until use.
2.5. Macro- and Microminerals. Macro- and micro-

minerals (Ca, Na, and K and Cu, Fe, Mn, and Zn, respectively)
were measured from crude ash after digestion with a mixture
composed of H2SO4, HNO3, and HClO4 using an atomic
absorption spectrophotometer (Shimadzu Instruments, Inc.,
SpectrAA-220, Kyoto, Japan). The mineral contents were
expressed as milligrams per 100 g of dried matter and grams
per 100 g of dried matter for micro- and macrominerals,
respectively. All analyses were performed in triplicate.
2.6. Antimicrobial Activity. The antimicrobial activity of

Ulva spp. extracts, reconstituted in methanol, was tested
against two bacteria, one yeast, and one fungus: Staphylococcus
aureus (ATCC 25923) (Gram-positive bacteria), Escherichia
coli (ATCC 25922) (Gram-negative bacteria), Saccharomyces
cerevisiae, and Penicillium sp., respectively. The four mentioned
strains were maintained in 20% glycerol at −80 °C in a
nutrient broth (Difco) at the Microbiology Laboratory,
Department of Food Engineering (Universidad de La Serena,
La Serena, Chile). Subsequently, the cultures were transferred
to solid or liquid media. Bacterial and fungal strains were
grown in 5 mL of Mueller Hinton broth (Merck KGaA, 64271
Darmstadt, Germany) under aerobic conditions for 48 h with
shaking at 120 rpm at 37 °C. Then, the mother cultures were
sub-cultured in tryptone soy broth (TSB, Merck KGaA,

Darmstadt, Germany), incubated for 12−24 h, and used as the
source of inoculums for each test. Subcultures were adjusted to
a standard turbidity of 0.5 McFarland.31

Successively, the antimicrobial activity was evaluated using
the agar diffusion method according to Kaymak et al. (2015)32

with some modifications. 100 μL of each strain was inoculated
on the surface of a Hinton Muller agar Petri plates, and sterile
paper discs (6 mm in diameter) were placed. Then, 10 μL of
the algae extract was impregnated on them. Ampicillin (10 μg/
disk) and fluconazole (25 μg/disk) were used as the positive
control and dimethyl sulfoxide (DMSO) as a negative control.
The inoculated agars were incubated at 37 °C for 24 h, and the
diameter of the inhibition zones was measured in millimeters.
2.7. α-Glucosidase Activity. The effect of Ulva spp.

extracts on the α-glucosidase activity was measured in a
concentration range of 0−1 mg/mL according to the
procedure reported by Lordan et al. (2013),33 with some
modifications. 50 μL of the diluted extract and 100 μL of a
solution of α-glucosidase from S. cerevisiae (Sigma G5003,
Merck KGaA, Darmstadt, Germany) corresponding to 0.5 U/
mL in 0.1 M sodium phosphate buffer (pH 6.9) were mixed in
a 96-well microplate and incubated at 20 °C for 10 min.
Subsequently, a phosphate buffer containing 50 μL of 4-
nitrophenyl α-D-glucopyranoside (Sigma N1377, Merck KGaA,
Darmstadt, Germany) was added to each well. The absorbance
at 405 nm at 20 °C was recorded every 30 s for a total time of
10 min using a multilabel plate reader (PerkinElmer, Victor3,
Turku, Finland). The α-glucosidase activity was determined as
a percentage across the slope of each curve, and an exponential
regression was used to fit the experimental data and determine
the IC50, defined as the concentration of the extract needed to
produce 50% inhibition of α-glucosidase (mg/mL).
2.8. Statistical Analysis. The quality fit of the GAB model

and drying kinetic mathematical models were estimated by the
coefficient of determination (R2), sum of squared errors (SSE),
and chi-square (χ2), described in eqs 11−13.

R 1
(Exp Cal )

(Exp Exp)
2 i 1

N
i i

2

i 1
N

i i
2= =

= (11)

1
N

SSE (Exp Cal )
i 1

N

i i
2=

= (12)

N z

(Exp Cal )2 i 1
N

i i
2

= =
(13)

where Expi is the experimental data, Cali is the calculated
values, and z is the model constant numbers.34

The results of macro-/microminerals, antimicrobial activity,
and α-glucosidase activity were expressed as the mean ±
standard deviation of triplicate measurements for each analysis.
The ANOVA test was performed using the free RStudio
software (V. 1.4.1717) with a probability level of 5% (p =
0.05), and the multiple range test (MRT) was applied to
identify homogeneous groups for all outcomes among drying
methods (CD, VD, SD, and FD).

3. RESULTS AND DISCUSSION
3.1. Desorption Isotherm Evaluation and Modeling of

the Drying Kinetics. A sigmoidal behavior was observed in
the experimental isotherm curve (Figure 1a), exhibiting an
asymptotic trend as water activity (aw) approaches. This

Table 1. Model Equations to Drying Kinetic Description

model name equation
equation
number

Newton k tMR exp( )= · (3) 3

Page k tMR exp( )n= · (4) 4

Modified Page k tMR exp( )n= [ · ] (5) 5

Henderson−Pabis n k tMR exp( )= • · (6) 6

logarithmic a k t cMR exp( )= • · + (7) 7

Weibull
t

MR exp=
Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ
i
k
jjjj

y
{
zzzz

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ (8)
8

Silva and Alii a t b tMR exp( )= · (9) 9

Midilli and Kucuk a k t btMR exp( )n= · · + (10) 10
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phenomenon has been previously described in different
dehydrated marine algae such as Mastocarpus stellatus (red
alga),35 Fucus vesiculosus seaweed (brown alga),36 Bifurcaria
bifurcata (brown alga),37 and Ulva spp. (green algae).23 This
behavior is also common in food products and is classified as a
type II isotherm,38 and it is in concordance to the desorption
isotherms reported for some fruits and vegetables,39 where it is
suggested that most of the water in the fresh food matrix exerts
a vapor pressure very close to that of pure water.40 Three zones

were clearly identified starting with a higher desorption area
(aw > 0.7), which is related to the available water for reactions
and microbial growth, followed by the multilayer zone (0.3 <
aw > 0.7), where water molecules are less firmly attached to the
food matrix, and finally the monolayer zone (aw < 0.3),
characterized by being constituted for more firmly bound water
molecules,40 giving it a property of unavailable and non-
freezable water.41

The GAB equation was used to determine the equilibrium
moisture from the experimental data modeling of the
desorption isotherm. This model has been reported to be
very useful in describing the desorption curve in some brown
seaweeds such as Sargassum muticum42 and Saccharina
latissima.43 The equilibrium moisture values calculated for
CD, VD, and SD were 0.0108, 0.0108, and 0.0290 g water/g
d.m, respectively. The quality fit of the GAB model was
evaluated by SSE = 8.26 × 10−3, χ2 = 0.0101, and R2 = 0.9646,
where the calculated values of model parameters were Xm =
0.0607 g water/g d.m., which is associated to the moisture
content of the monolayer, and the CGAB and kGAB show values
of 2.1428 and 0.9885, respectively. These mentioned GAB
model parameters are related to the interaction energy
between the water molecules at the individual sorption sites
by the molar sorption enthalpies of the monolayer.40

Figure 1b depicts the MR as a function of drying time. In the
three evaluated cases, a decreasing exponential curve was
observed. This behavior has been reported in different drying
methods44 and agricultural products.28

Differences in process times with a maximum of 350%
between SD and CD were observed. This is because SD
depends on uncontrollable climatic factors such as day
temperature and solar radiation, causing a delay in the
diffusion process of water from the food matrix to the
environment.

Eight mathematical models were used to describe the drying
kinetic behavior of CD, VD, and SD. The model parameters
are presented in Table 2.

Figure 1. (a) GAB model isotherm at 50 °C and (b) drying kinetic at
different dehydration techniques of Ulva spp. using the Midilli and
Kucuk model. CD: convective drying; VD: vacuum drying; and SD:
solar drying.

Table 2. Parameters of Mathematical Modelsa

drying techniques

model CD VD SD

Newton k 0.0424 ± 0.0059 0.0102 ± 0.0010 0.0060 ± 0.0003
Page k 0.0434 ± 0.0093 0.0071 ± 0.0001 0.0015 ± 0.0005

n 0.9953 ± 0.0456 1.0785 ± 0.0244 1.2701 ± 0.0685
Modified Page k 0.0425 ± 0.0060 0.0102 ± 0.0010 0.0058 ± 0.0003

n 0.9952 ± 0.0456 1.0785 ± 0.0244 1.2701 ± 0.0685
Henderson−Pabis k 0.0424 ± 0.0055 0.0104 ± 0.0011 0.0064 ± 0.0003

a 1.0009 ± 0.0196 1.0171 ± 0.0065 1.0607 ± 0.0142
Logarithmic k 0.0434 ± 0.0039 0.0097 ± 0.0014 0.0053 ± 0.0003

c 0.0090 ± 0.0173 −0.0286 ± 0.0128 −0.0751 ± 0.011
a 0.9958 ± 0.0143 1.0357 ± 0.0029 1.1104 ± 0.0226

Weibull β 23.831 ± 3.2232 98.581 ± 10.3310 171.068 ± 9.814
α 0.9953 ± 0.0457 1.0786 ± 0.0244 1.2700 ± 0.0684

Silva and Alii a 0.0424 ± 0.0062 0.0113 ± 0.0016 0.0082 ± 0.0006
b −0.0002 ± 0.0240 −0.0106 ± 0.0044 −0.0289 ± 0.006

Midilli and Kucuk a 1.0004 ± 0.0073 0.9919 ± 0.0047 0.9843 ± 0.0018
k 0.0411 ± 0.0135 0.0071 ± 0.0011 0.0013 ± 0.0005
n 1.0234 ± 0.0843 1.0738 ± 0.047 1.2966 ± 0.0852
b (×10−5) 11.3170 ± 24.187 −3.2297 ± 5.231 −0.3443 ± 1.767

aCD: convective drying; VD: vacuum drying; and SD: solar drying. The parameters units are as follows: the drying constant k (min−1), the constant
models n, b, c, α, and β (dimensionless), and the shape of the materials a (dimensionless).
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All models demonstrated a good agreement with the drying
experimental data. Therefore, according to the statistic
evaluations (Table 3), the Midilli and Kucuk model obtained
the best fit to all the experimental data (Figure 1b) with higher
R2 and lower values of SSE and χ2. According to our results
and the specialized literature, the Midilli and Kucuk model has
shown robustness to fit the experimental data of drying kinetic
modeling in various dehydration processes such as heat pump
drying, solar tunnel drying, open sun drying, and microwave
drying, among others.45−48 According to Midilli et al.
(2002),49 who described this model for the first time, where
the estimated parameters a and n are dimensionless constants,
b is given in per minute, and k is related to the drying velocity
(min−1), it was observed that the parameter k increased as the
process time decreased. Thus, the high k values support the
elevated moisture removal rates and indicate an enhancement
of the drying technology.50

3.2. Macro- and Microminerals. Table 4 shows the
macro- and microminerals that were determined in freeze-
dried, vacuum-dried, solar-dried, and convective-dried Ulva
spp. samples. Regarding microminerals, a higher concentration
of iron (Fe) was observed. This result is in concordance with
that reported for Ulva Spp.51 and other seaweed species such
as Codium spp., Halymenia floresia, and Saccorhiza polyschides,
where Fe is the main micromineral component.52 Besides, a
variation of Fe values between drying techniques was
registered, especially in FD and VD samples, where a great
retention of this element was observed. These results agree
with studies on the use of vacuum in algae drying.53

Cupper (Cu) was also found in an important amount,
especially in FD and VD samples, which statistically belong to
the same homogeneous group. The high concentrations of
microminerals in Ulva spp. could be explained by the

consumption and accumulation of nutritive elements in the
collection medium. The found values of manganese and zinc
were higher than some results reported in the specialized
literature related to Ulva spp. by Garciá et al. (2016)52 and
Biancarosa et al. (2018).54 The reason could be a seasonal and
geographical difference in the green seaweeds analyzed. In
addition, the use of drying methods allows a concentration of
solids present in the food matrix. According to the used
dehydration methodologies, VD allows a similar component
retention to the FD process for manganese and an even greater
retention for zinc.

Regarding Ulva spp. macromineral results, it is an important
source of potassium with a higher concentration detected of
this element in all dried samples evaluated, and similar values
were reported by Garciá et al. (2016)52 for the same species.
Sodium (Na) and calcium (Ca) were detected with similar
portions between them and with slight value variations among
the drying techniques applied. The ratio Na/K is very
important in the human health due to the sodium intake,
and the increase of the potassium intake might reduce
cardiovascular events and prevent the onset of hypertension.55

This is due to the fact that the increase in potassium
absorption in the gastrointestinal tract is accompanied by a
decrease in sodium absorption.56 The potassium/sodium ratio
recommended is 0.5 for an average diet.57 According to our
results, the Na/K ratios were 0.21, 0.15, 0.29, and 0.16 for
dehydrated Ulva spp. samples obtained by FD, VD, SD, and
CD, respectively. Thus, the incorporation of Ulva spp. in the
diet could be an interesting contribution to human health.
3.3. Antimicrobial Activity. The antimicrobial activity

was evaluated by the measurement of the inhibition zone on E.
coli, S. aureus, S. cerevisiae, and Penicillium sp. cell layers, after
the spreading in the culture medium of the extracts of Ulva

Table 3. Statistical Fit for Each Drying Kinetic Modela

drying techniques

CD VD SD

model/statistics R2 χ2 SSE R2 χ2 SSE R2 χ2 SSE

Newton 0.9971 0.000052 0.000049 0.9975 0.000221 0.000209 0.9839 0.001571 0.001489
Page 0.9974 0.000056 0.000049 0.9990 0.000072 0.000064 0.9983 0.000154 0.000138
Modified Page 0.9974 0.000056 0.000049 0.9990 0.000072 0.000064 0.9983 0.000154 0.000138
Henderson−Pabis 0.9973 0.000060 0.000049 0.9978 0.000191 0.000171 0.9836 0.001237 0.001106
Logarithmic 0.9955 0.000037 0.000030 0.9896 0.000084 0.000070 0.9938 0.000612 0.000516
Weibull 0.9974 0.000056 0.000049 0.9990 0.000072 0.000064 0.9983 0.000154 0.000138
Silva and Alii 0.9977 0.000055 0.000049 0.9986 0.000120 0.000108 0.9953 0.000473 0.000423
Midilli and Kucuk 0.9988 0.000029 0.000022 0.9994 0.000061 0.000048 0.9986 0.000148 0.000117

aCD: convective drying; VD: vacuum drying; and SD: solar drying.

Table 4. Content of Macro- and Microminerals in Ulva spp. with Different Drying Techniquesa

CD VD SD FD

Microminerals (mg/100 g d.m.)
copper (Cu) 26.9 ± 2.10b 30.40 ± 1.70a 21.9 ± 1.50c 34.4 ± 3.00a

iron (Fe) 273.7 ± 7.60 300.7 ± 5.50b 247.1 ± 13.90d 348.3 ± 5.01a

manganese (Mn) 36.20 ± 0.87a 33.97 ± 0.75a 5.67 ± 0.56b 5.36 ± 0.27b

zinc (Zn) 7.96 ± 2.71b 19.90 ± 2.78a 21.27 ± 7.17a 20.60 ± 6.50a

Macrominerals (g/100 g d.m.)
calcium (Ca) 10.85 ± 0.207b 12.00 ± 0.436a 9.965 ± 0.629c 10.34 ± 0.509c

sodium (Na) 9.01 ± 0.645c 7.53 ± 0.474d 15.19 ± 1.111a 11.48 ± 0.310b

potassium (K) 56.23 ± 0.409a 48.19 ± 1.197c 51.98 ± 3.427b 54.29 ± 2.186a

aValues in the same row with different superscript letters indicate significant differences (p < 0.05) among drying methods. CD: convective drying;
VD: vacuum drying; SD: solar drying; and FD: freeze-drying.
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spp. reconstituted on pure methanol. Table 5 shows the
dimension of the inhibition zone diameter (mm) for each
dried sample. Inhibition halos were observed in all samples
against S. cerevisiae and specially on Penicillium sp., where the
values registered for Ulva species were in accordance with the
results reported by Abdel-Khaliq et al. (2014).58 A great
inhibition zone in the extracts of the FD sample compared to
that in the fresh extract was observed, and all evaluated
samples showed a greater halo diameter than the positive
control (fluconazole). However, significant differences were
observed among the drying methods, with the FD process
followed by VD being the only ones that allow a major
retention of the antimicrobial activity on S. cerevisiae and
Penicillium sp. This result is an interesting finding, indicating
the potential of the extract of Ulva spp. as an antifungal.
Studies on Ulva lactuca (a green alga) extracts have shown to
affect fungal growth and their activity,59 generating an
important precedent that validates our results.

On the other hand, both E. coli and S. aureus bacteria have
been shown to be more resistant, with inhibition halos
observed in FD, VD, and fresh samples for E. coli and FD
samples for S. aureus. However, the found values are similar to
those reported in the specialized literature.60 The diameters of
halos were smaller than that of the positive control
(ampicillin), with an average difference of about 50%.
Nevertheless, the dried extracts had a better antimicrobial
effect than the fresh extract. Therefore, according to our
results, the drying applied methods improved the antimicrobial
action against the different evaluated strains probably through
bioactive component concentration.
3.4. Potential of α-Glucosidase Inhibition. The

reconstituted dried extracts on acetone/water solution in a
70:30 proportion were used at different concentrations to
evaluate the α-glucosidase activity. The ability to inhibit the
activity of this enzyme is an important system for regulating
glucose absorption and could have a positive effect in the
control of type II diabetes.61 Figure 2 shows the IC50 values,
where all samples presented an inhibitory effect on α-
glucosidase activity. The type of drying method conditioned
the effect of dried extracts of Ulva spp. on the ability to inhibit
the enzyme α-glucosidase, observing different homogeneous
groups. The FD method is the one that proved to be the most
effective since a concentration of 0.408 ± 0.017 mg/mL is
needed to reduce the enzymatic activity by half. Although the
samples dehydrated by VD, CD, and SD have an inhibitory
effect, a higher concentration is needed to decrease the α-
glucosidase activity, registering values of 0.507 ± 0.058, 0.508

± 0.02, and 0.597 ± 0.018 mg/mL, respectively. Previously
published results by our working group showed the presence of
phenols and flavonoids in Ulva spp.,23 which could be related
to their inhibitory capacity toward α-glucosidase activity.62

These findings indicate that the inhibition of α-glycosidase
by Ulva spp. extracts could generate interest in future studies
for a pharmacological approach in this alga toward a treatment
against diabetes.

4. CONCLUSIONS
The drying kinetics of Ulva spp. was evaluated considering
three conventional drying technologies. Subsequently, the
macro- and micromineral contents were determined, and the
antimicrobial effect of dried extracts was evaluated as well as
their ability to inhibit the enzymatic action of α-glucosidase,
and the freeze-dried Ulva spp. extract was used as the control.
According to the results, we present the following conclusions:

• The desorption isotherm curve of Ulva spp. was
classified as a type II isotherm and described in detail
by the GAB model, allowing the determination of the
equilibrium moisture, which varies between 0.0108 and
0.0290 g water/g d.m. depending on the drying
technique applied.

• The drying kinetic was predicted with the best fit using
the Midilli and Kucuk model in all the experiments
carried out, registering a typical decrease exponential
curve. The CD was the fastest drying process, and this

Table 5. Antimicrobial Activity of Fresh and Dried Ulva spp. by CD, VD, SD, and FD against Some Microorganismsa

inhibition zone (mm)

Ulva spp. E. coli S. aureus S. cerevisiae Penicillium sp.

fresh 6.00 ± 0.08d � 8.77 ± 0.85c 12.87 ± 0.59b

CD � � 10.66 ± 0.58b 11.25 ± 0.96bc

VD 7.15 ± 0.31c � 10.47 ± 0.50b 11.40 ± 1.81bc

SD � � 9.30 ± 0.01c 10.60 ± 1.05c

FD 8.98 ± 0.50b 7.55 ± 0.17b 11.97 ± 0.15a 15.87 ± 0.35a

negative controlb 0 0 0 0
positive controlc 16.05x ± 0.04a 15.32x ± 0.06a 8.96y ± 0.06c 9.95y ± 0.07c

aValues are expressed as mean ± standard deviation. Different letters in the same column indicate significant differences (p < 0.05) according to the
MRT. Standard deviation was calculated on three replicates. (�) no visible zone. bPositive control: ampicillin (10 μg/disk) or fluconazole (25 μg/
disk) for bacteria and fungi, respectively. cNegative control: DMSO. CD: convective drying; VD: vacuum drying; SD: solar drying; and FD: freeze-
drying.

Figure 2. IC50 (half-maximal inhibitory concentration) values of Ulva
spp. extracts dried by FD, SD, CD, and VD techniques. Bars with the
same lowercase letters are not significantly different (p < 0.05). Values
are averages (n = 3), and error bars are standard deviation. CD:
convective drying; VD: vacuum drying; SD: solar drying; and FD:
freeze-drying.
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was validated by a higher value of the k parameter of the
Midilli and Kucuk model.

• Ulva spp. showed a relevant content of macro- and
microminerals and specially presented a low ratio of Na/
K, being <0.29, which is important in diet for the
decrease of sodium absorption.

• The FD extract (drying method control) showed a great
antimicrobial activity, mainly on S. cerevisiae and
Penicillium sp., exhibiting a better antimicrobial effect
than that of the fresh extract. Therefore, the drying
process concentrated and preserved the components
that generated this activity. On the other hand, a
relevant α-glucosidase activity inhibition was obtained in
all evaluated extracts, and these findings could generate
interest in future studies for a pharmacological approach
for green seaweeds against diabetes.

• VD becomes important because it allows obtaining a
better retention of chemical components and biological
activities similar to that obtained using the control
method (FD). Therefore, it could be considered as a
non-conventional food drying alternative to the FD
process.

• Finally, the dried Ulva spp. is a rich source of macro- and
microminerals, having antimicrobial activity and α-
glucosidase inhibition activity and being a potential
functional ingredient for food manufacturing.
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