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Abstract

Malaria is a global health problem responsible for nearly one million deaths every year around 85% of which concern
children younger than five years old in Sub-Saharan Africa. In addition, around 300 million clinical cases are declared every
year. The level of infection, expressed as parasite density, is classically defined as the number of asexual parasites relative to
a microliter of blood. Microscopy of Giemsa-stained thick blood films is the gold standard for parasite enumeration. Parasite
density estimation methods usually involve threshold values; either the number of white blood cells counted or the number
of high power fields read. However, the statistical properties of parasite density estimators generated by these methods
have largely been overlooked. Here, we studied the statistical properties (mean error, coefficient of variation, false negative
rates) of parasite density estimators of commonly used threshold-based counting techniques depending on variable
threshold values. We also assessed the influence of the thresholds on the cost-effectiveness of parasite density estimation
methods. In addition, we gave more insights on the behavior of measurement errors according to varying threshold values,
and on what should be the optimal threshold values that minimize this variability.
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Introduction

Malaria is caused by one or a combination of four species of

Plasmodia: Plasmodium falciparum, P. vivax, P. malariae, and P. ovale. P.

falciparum is the Plasmodium species responsible for 85% of the

malaria cases and causes the most severe form of the disease. The

three other species are less common and less dangerous. The usual

and most reliable diagnosis of malaria is microscopic examination

of blood films [1–6]. Two sorts of blood films can be used, thin or

thick films, sampled from a finger prick. The thin smear is air-

dried for 10 minutes. After drying, it is fixed in methanol and

stained with Giemsa. Unlike the thin smear, the thick smear is

dried for 30 minutes, but not fixed with methanol. It is de-

hemoglobinized in water, and then stained with Giemsa [7]. Thin

films allow species identification, because the parasite’s appear-

ance is better preserved. Thick blood smears are most useful for

detecting the presence of parasites because they allow examining a

larger sample of blood [8,9]. Thick films are hence more sensitive

than thin films in case of low levels of infection and are therefore

used to detect infection, and to estimate parasite density (PD)

[1,10,11]. The level of infection, expressed as parasite density is

classically defined as the number of asexual forms of parasite

relative to a blood volume (e.g. microliter) or a percentage of white

blood cells (WBCs).

Parasite density estimation methods usually involve threshold-

based counting techniques [11–17]. Threshold definition and

values may vary from one method to another. In some cases,

parasites are counted in relation to the number of microscopic

high power fields (HPFs), defined as oil immersion microscopic

fields (|1,000), and in other cases parasites are counted according

to a fixed number of leukocytes (WBCs). In the first cases, the

methodology is: if less than n parasites are counted in the m first

HPFs, then do this, else do that. In the second ones, the m first

HPFs are replaced by ‘‘when ‘ leukocytes are counted’’, then do

this, else do that. Conversion to counts per microliter then depends

on the assumption that there is an average of 8,000 WBCs per

microliter of blood.

Epidemiological interpretations must rely on solid evidence,

hence the importance of reproducibility for parasite density data.

However, all the methods used to determine PD potentially induce

variability. To deal with this potential inaccurate estimation of PD,

research teams tend to analyze more slides and subjects. By taking

duplicate readings or larger sample sizes, we can statistically

improve our knowledge of the PD being measured. Then, we can

decrease the variability in microscope slide readings and improve

the accuracy and reproducibility of the measurements. However,

one of the problems the research teams have to deal with is that

during large scale studies the number of thick blood smears

performed can be greater than 10,000. Then, the repetition of the

microscope slide examination leads to an important cost overrun

in terms of both money and time. One may wonder whether such

practices have a significant interest for the final results. With low

parasitemias, it is probably worth the effort of reading more slides.

But in some situations it is not needed, for example, with large

parasitemias levels.
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To our knowledge, none of the studies of variability have dealt

with the sampling error generated by the threshold-based counting

techniques or evaluated the impact of the existing threshold values

in endpoint measurements. In addition, the accuracy and

consistency of these methods have largely been overlooked.

Furthermore, there is no general agreement on the optimal

method for estimating parasite density according to threshold

values. Further experimental evidence is needed to determine

which parasite counting technique is most accurate, reproducible,

and efficient. The aim of this paper was to explore the variability

of four frequently used threshold-based counting methods of

determination of PD. For each of these methods, we assessed the

consequences that a modification of the threshold can have on

variability.

Materials and Methods

Threshold-based counting techniques
PD estimates accuracy vary significantly depending on the

methodology from which they are derived. The estimation method

differs from one health care organisation to another. To

summarize, there are four basic types of threshold-based counting

techniques commonly used in epidemiological surveys.

Dowling & Shute (1966) [12] propose to count parasites in 200
consecutive HPFs in thick blood film [7,18]. They consider that

the volume of blood corresponding to 200 HPF of a thick film is

0:4 ml, and that examining 200 HPFs is the best compromise

between the need to reduce the risk of missing parasites and the

need to minimize the reading time. This method will be referred to

as Method A. Here, the number of HPFs read is the threshold

value. We investigate the influence of this number on the reliability

of the PD estimation.

Trape (1985) [11] proposes to count the total number of

parasites per 200 WBCs. The average value of 8,000 WBCs per ml

is accepted as reasonably accurate by The World Health Organization

(WHO) [17]. Then, the number of parasites counted is multiplied

by 40 to give the number of parasites per ml [9,19,20]. This

method will be referred to as Method B. In this method, only one

threshold value is specified, which is the number of leukocytes seen

‘. We are interested in how the value of ‘ affects measures of

variability.

According to the WHO recommendations [17], the number of

parasites should be counted on one tally counter and the number

of white blood cells should be counted on a second one. The

number of parasites and white blood cells counted depend on how

numerous the parasites are. The lower the number of parasites

counted, the higher the number of WBCs that should be counted.

Parasites are counted until 200 WBCs have been seen. If 100 or

more parasites are found, the number of parasites per 200 WBCs

is then recorded. Else, counting should be continued up to 500
WBCs. This method will be referred to as Method C. Three

parameters are specified : the required number of parasites p, the

required number of leukocytes in the first step ‘1, and the required

number of leukocytes in the second step ‘2. Modeling, estimating

and validating multidimensional distribution functions cast diffi-

cult problems, both conceptual and technical. For that reason, it is

more convenient to fix ‘2~500 and to study the method’s

performance by varying the two parameters p and ‘1. Hence, we

obtain the influence of adding an extra threshold value on the final

estimation.

Finally, the last method presented in this paper was used during

a research program conducted in the Tori Bossito area in Southern

Benin. In this program, the PD is determined by simultaneously

counting parasites and leukocytes. The counting stops when either

500 WBCs or 500 parasites are seen whichever comes first [15].

This method will be referred to as method D. Two parameters are

specified : the required number of parasites p and the required

number of leukocytes ‘. We analyze the performance of the

method with respect to effectiveness and efficiency for different

values of parameters p and ‘.
Unlike methods A and B, methods C and D are adaptative

methods. In these methods, counting stops when parasites are

found in sufficient number. Hence, their cost is reduced for high

parasitemias.

Measures of variability
The source and scale of measurement error depends on several

parameters, such as sample preparation, staining process, counting

technique, microscopist performance, etc. However, variation of

parasite density within a slide is expected even when prepared

from a homogeneous sample [21]. The sampling variability is a

source of interest when studying the efficiency of estimation

methods. It refers to the different values which a given function of

the data takes when it is computed for two or more samples drawn

from the same population. In this paper we are interested in the

sampling errors and biases induced by threshold-based counting

techniques and more particularly in the impact of threshold values

in endpoint measurements.

Let h be the parameter that denotes the real value of the PD per

microliter of blood and let ĥh be its estimate. Since ĥh is a random

variable, it can never been said with certainty that this estimate is

close to the true value of h. For that reason, we consider its

statistical properties, that is, its probability distribution P(ĥh), or

some restricted aspects thereof. Here, we focuss on variability

measures : mean error (ME), coefficient of variation (CV) and false

negative rate (FNR).

Mean error. In order to define the variability measures, we

need to introduce the concept of mathematical expectation. The

expected value of the estimator ĥh denoted as E(ĥh) is an average

taken over all possible values of ĥh. Suppose ĥh takes value s1 with

probability p1~P(ĥh~s1), value s2 with probability p2~P(ĥh~s2),

and so on, up to value sn with probability pn~P(ĥh~sn). Then the

expectation of ĥh is defined as

E(ĥh)~
X

k

skpk:

The sampling bias occurs when the true value (in the

population) differs from the observed value (in the study) due to

a flaw in the sample selection process. An estimator bias is the

difference between the estimator’s expected value E(ĥh) and the

true value of the estimated parameter h. Hence, in computing the

bias induced by different counting techniques, we used

bias~
P

k skpk{h. An estimator with zero bias is called unbiased.

Mean error is the bias expressed as a percentage of h, i.e.

ME~
bias(ĥh)

h
. It provides a measure of the magnitude of the bias

and allows comparing different methods.

Coefficient of variation. A measure of the sampling error is

the standard deviation which is the square root of its variance.

Standard deviation is a measure of dispersion from the mean, or

the expected value and it is commonly used to compute confidence

intervals in statistical inferences. The reported margin of error is

typically about twice the standard deviation (1.96), the radius of a

95 percent confidence interval. Sampling variability can also be

Statistical Properties of PD Estimates
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expressed relative to the estimate itself through the coefficient of

variation (CV), which is defined as the ratio of the standard

deviation s to the true value h. In computing the CV induced by

different estimation methods, we used

CV~

H
P
k

(sk{E(ĥh))2pk

h
:

Then, CV is expressed as a percentage of h.

False negative rate. The last measure of variability we study

is the false negative rate (FNR), also known as Type II error or b
error, which is the error of failing to reject a false null hypothesis.

The false negative rate indicates the probability of a counting

method to estimate PD as null when it is not, i.e. P(ĥh~0Dhw0).
Cost. In addition to the variability, we are also interested in

the cost-effectiveness of each method. We define the method’s cost

as the number of HPFs that has to be read to reach the threshold

value. Once it is reached, we stop the examination of the smear.

Depending on the method being used, the cost is based on the

number of parasites (or WBCs) required to stop the reading of the

thick blood smear. Let T denote the required number of HPFs to

stop the counting. We first compute P(T~t). Then, we express

the Method cost as E(T).

Methodology
The following methodology is used to compute the three

measures of variability (ME, CV and FNR) and to assess cost-

effectiveness of methods. Firstly, the exact distribution of ĥh is

computed through recursive formulas. Secondly, based on this

probability density function, measures of variability are derived.

Finally, cost-effectiveness is defined for each method as the

required number of HPFs that has to be read until the threshold is

reached. A C++ program is used to implement these recursive

formulas. The calculations are performed under two assumptions :

A1. The distribution of the thickness of the smear, and hence of

the parasites within the smear, is homogeneous.

A2. The distribution of the parasites in the HPFs is uniform, and

thus can be modeled through a Poisson distribution [21–23].

Notations. Let Xi be a random variable that represents the

number of parasites in the i-th HPF. Suppose that Xi are

independent and identically distributed (i.i.d.).

Under an assumption of uniformity, the number of parasites per

field can be modeled using Poisson distribution (assumption A2). If

the expected number of parasites per HPF is lp, then Xi*P(lp).
Thus E(Xi)~V (Xi)~lp.

Let Yi be a random variable that represents the number of

leukocytes in the i-th HPF. Suppose that Yi are independent and

identically distributed (i.i.d.). Leukocytes are supposed evenly

distributed over the thick smear. Therefore, the number of

leukocytes per field can be modeled using the Poisson distribution.

If the expected number of parasites per HPF is l‘, then Yi*P(l‘).
Thus, E(Yi)~V(Yi)~l‘.

N Let w denote the parasite density per WBC.

N Let St be the sum of parasites in t consecutive HPFs.

Then, St~
Pt

i~1 Xi*P(tlp).

N Let Rt be the sum of leukocytes in t consecutive HPFs.

Then, Rt~
Pt

i~1 Yi*P(tl‘).

N Let Up be the minimum number of HPFs required to obtain p

parasites.

Up can be expressed in terms of Xi as follows

Up~arg min
t
f
Xt

i~1

Xi§pg

Probability of Up is given by

P(Up~t)~P(St§p,St{1vp)

~
Xp{1

s~0

P(Xt§p{s):P(St{1~s)
ð1Þ

N Let V‘ be the minimum number of HPFs required to obtain ‘
leukocytes.

V‘ can be expressed in terms of Yi as follows

V‘~arg min
t
f
Xt

i~1

Yi§‘g

The probability mass function of V‘ is given by

P(V‘~t)~P(Rt§‘,Rt{1v‘)

~
X‘{1

r~0

P(Yt§‘{r):P(Rt{1~r)
ð2Þ

PD estimation. For method A, natural estimator of h is used

and the exacts formulas of ME, CV and FNR are given. However,

the estimation of h is not straightforward for the remaining

methods (B, C, D). Hence, recurrence formulas are used to derive

variability measures.

Let ĥhA be the estimator of h for Method A. Let n be the number

of HPF read. Since Xi*P(lp) and Xi are iid, we have

Sn*P(nlp). The number of parasite per field lp is then estimated

by blplp where blplp~
Sn

n
. Assuming the average amount of blood in

each field as 0:002 ml [12], the PD is estimated by ĥhA~ blplp|500.

Since E ĥhA

h i
~h, ĥhA is unbiased. Thus, the ME is null.

In order to evaluate the efficiency of this estimator, the variance

is to be compared against the Fisher Information I(h). The

variance of this unbiased estimator is bounded by the inverse of

the I(h); namely the Cramer-Rao Bound (CRB). We show that the

variance of the proposed estimation technique reaches the

Cramer-Rao lower bound. Hence, ĥhA is an efficient estimator of

h (the proof is given in Section 1 in File S1).

The coefficient of variation (CV) is defined as the ratio of the

standard deviation s to h, which is equal to
1

Hnlp

.

In practice, false negatives occur when diagnosing by mistake

PD as null after reading n HPFs, i.e. P(Sn~0), which gives

FNR~e{nlp .

Statistical Properties of PD Estimates
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For Method B, w is estimated by ŵwB~
SV‘

RV‘

. Then, h is estimated

by ĥhB~ŵwB|8,000.

To derive statistical properties of the PD estimate, we first need

to compute the probability of seeing k parasites (resp. r leukocytes)

in V‘ HPFs. These probabilities can be expressed as follows

P(SV‘
~k)~

X
t

P(St~k):P(V‘~t)

P(RV‘
~r)~

X
t

P(Rt~r):P(V‘~t)
ð3Þ

St and Rt are Poisson-distributed and the probability of V‘ is

computed according to Equation (2).

The probability density function of ŵwB is

P(ŵwB~s)~
X
k
r

~s

P(SV‘
~k):P(RV‘

~r)

Let p be the required number of parasites for Method C. Let

V‘1
be the minimum number of HPF required to obtain ‘1

leukocytes and V‘2
be the minimum number of HPF required to

obtain ‘2 leukocytes. Let U‘1,‘2
be the minimum number of HPFs

required to obtain p parasites. The probability mass function of

U‘1,‘2
is as follows

P(U‘1,‘2
~t)~P(V‘1

~t):P(SV‘1
§p)zP(V‘2

~t):P(SV‘1
vp)

Probabilities of V‘1
and V‘2

are computed according to

Equation (2).

Probability of SV‘1
is computed according to Equation (3).

Then, h is estimated as follows ĥhC~ŵwC|8,000, where

ŵwC~
SU‘1,‘2

RU‘1 ,‘2

.

The probability density function of ŵwC is

P(ŵwC~s)~
X
k
r

~s

P(SU‘1,‘2
~k):P(RU‘1,‘2

~r)

For Method D, U‘,p denotes the minimum number of HPF

required to obtain either ‘ leukocytes or p parasites, i.e.

U‘,p~min V‘,Up

� �
. The probability mass function of U‘,p is as

follows

P(U‘,p~t)~P(V‘~t):P(Upwt)zP(Up~t):P(V‘wt)

Probabilities of Up and V‘ are computed according to Equation

(1) and Equation (2).

Then, h is estimated by ĥhD~ŵwD|8,000, where ŵwD~
SU‘,p

RU‘,p

.

The probability density function of ŵwD is

P(ŵwD~s)~
X
k
r

~s

P(SU‘,p
~k):P(RU‘,p

~r)

Validation study. Simulations are used to study the accuracy

of our mathematical models, and to validate the theoretical results

derived from estimators’ probability functions. For the purpose of

simulations, we predefine a data-generating model of h. Given lp

and l‘, PD data are sequentially generated for each HPF. In that

way, random samples of h are generated under the Poisson

assumption. Then, we investigate properties of sample means,

variances and FNR. We use the statistical software package R to

perform 10,000 simulations. In each simulation step, we generate

1,000 random drawings of h and we save the sample ME, CV,

FNR and cost in a vector. In that way, we were able to investigate

the results of all simulation steps. We compare the simulated

results to the theoretical ones. Some results of our validation study

are given in Section 2 in File S1. Simulations are computationally

expensive. Then, it is burdensome to have to perform 10,000
simulations to estimate each PD value according to methods A, B,

C and D. Hence, computing the exact distribution of h is a most

useful alternative. Codes used for generating the data will be

provided to the reader upon request.

Colormaps. The recursive formulas described above are

used to compute the exact distribution of variables. Each

computation takes as input: l‘ the number of leukocytes per field,

lp the number of parasites per field and the threshold values

(number of HPFs, number of WBCs, number of parasites). The

outputs are ME, CV, FNR and cost values. This approach is

computationally expensive due to recursive formulas that precisely

compute probability of getting r WBCs (resp. k parasites)

according to each counting technique. These probabilities are

used to compute P(ĥh). Statistical properties of PD estimators are

then derived. These data sets are gridded into colormaps where

the values taken by a variable (ME, CV, FNR, cost) in a two-

dimensional table (X,Y) are represented as colors. Each rectangle

in this grid is a pixel (or a color sample). This program sets each

pixel to a color index according to its coordinates. Each pixel has

an X and Y position where the X coordinate is the parasite density

value and the Y coordinate is the threshold value. The X axis

spans the range of 0 to 20,000 parasite per ml (400 values). The Y

axis ranges from 0 to 500 (500 values). Hence, we used a resolution

of 400|500 pixels. Contour lines are overlaid over the colormaps.

A contour line connects points where the function has constant

value. Linear interpolation is used in generating contour data. A

higher resolution is needed to achieve a smoother mapping and to

avoid artifacts (jagged contours), which arise due to interpolation.

We believe that if data mappings are addressed simultaneously

in a single framework, the resulting approach will facilitate visual

comparisons of methods. At that point, we consider the problem of

scale. The methods use either different numbers of arguments or

different types of arguments. We got rid of this by expressing

variability measures for all methods as functions of parasity density

and WBCs count. To do so, we convert threshold values used in

each method into WBCs count. For Method A, we assume an

average of 8,000 WBCs per microliter of blood [17] and an

average of 0:002 microliter of blood in each field [12]. The

number of HPFs read n is then multiplied by l‘~16 WBCs to give

the number of WBCs counted in n HPFs. For Method B, the

thresold value is the number of WBCs counted ‘. For Method C,

we consider the case where ‘1~
p

2
and we fix ‘2~500. For

Method D, we consider equal numbers of parasites p and

leukocytes ‘ that have to be seen to stop the counting, hence

‘~p. Theses decisions are based on common use and can be

considered reasonable assumptions. Moreover, this two-dimen-

sional representation has the conceptual advantage of reducing the

Statistical Properties of PD Estimates
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number of arguments and ensures a common approach for

assessing methods performance.

Results

In the following, parasitemia was categorized as either low

(PDƒ100 parasites/ml), intermediate (100vPDv10,000 para-

sites/ml) or high (PD§10,000 parasites/ml).

Method C involves three threshold values, which leads to a

multidimensional problem. For this reason, we chose to express

the parasite count in the first step as the half of the leukocyte

count. We fixed the leukocyte count in the second step to 500
WBCs.

Impact of thresholds on variability measures
Mean error. The mean value of the Method A estimator

equals the true value of the PD. Therefore this estimator is called

an unbiased estimator. In addition to having the lowest variance

among unbiased estimators (so called Minimum Variance

Unbiased Estimator), this estimator also satisfies the Cramér-Rao

bound, which is an absolute lower bound on variance for statistics

of a variable and thus is an unbiased efficient estimator. Analytic

proofs are given in Section 1 in File S1.

As shown in Figure 1, the ME of Method B only depends on

threshold values. In Method B, parasites are counted until a fixed

number of WBCs are seen and the number of parasites seen is not

involved in the stopping rule of this counting process. Hence, the

ME is independent from the PD. The colormap of the ME shows

that the mean error decreases as threshold values increase. For

instance, counting parasites until 400 WBCs instead of 200 WBCs

decreases the bias by 0:5% of the parasite density. This can help

choose the threshold value that allows to decrease the bias to a

reasonable value.

For Method C, three parts can be distinguished. For

PDƒ4,000 parasites/ml, contour lines are increasing functions

of the PD and the thresholds. The darkest part on the map

represents a constant ME. Due to the limited number of parasites

in this area, counting is carried out until 500 WBCs are seen.

Hence, Method C has similar behavior to Method B for

WBCs~500. By counting up to 500 WBCs, the mean error is

fixed to 0:4%. For 1,000vPDv10,000 parasites/ml, ME values

are represented by a set of bell-shaped density curves with a peak

reached at PD~4,000 parasites/ml. 4,000 is half the standard

number of WBCs per ml. For Method C, the number of parasites

counted is half the number of leukocytes. For PDƒ4,000
parasites/ml, increasing the parasite density increases the leukocyte

count for a fixed ME value. If the microscopist wants to estimate

for constant ME a higher parasite density, he needs to count more

leukocytes. A higher threshold value is then required due to the

small number of parasites present in this area. For PDw4,000,

lower leukocyte counts are needed to maintain a constant ME

value. A steady state will be reached afterwards whereby the ME is

density independent. Due to the abundance of parasites, the ME

only depends on the WBCs count. This steady-state region starts at

PD~6,650 parasites/ml for ME~0:5%.

Note that the same ME level may be reached by more than one

threshold value (eg. two contour lines for ME~10%).

For PDƒ6,000 parasites/ml, the ME generated by Method D is

density independent (see Figure 1). In this interval, leukocytes are

more abundant than parasites. Hence, parasites are counted until

a predetermined number of leukocytes is reached. We notice that

increasing the leukocyte count will not significantly reduce the

bias. For instance, counting parasites until 400 WBCs are seen,

instead of 200, decreases the bias only by 0:5% of the parasite

density. For 6,000vPDv10,000 parasites/ml, contour lines reach

their minimum at PD~8,000 parasites/ml. In this area, the

number of leukocytes per field (l‘) and the number of parasites per

field (lp) are very close. Lower threshold values are needed to

maintain a constant ME. For high parasitemia, parasites are more

numerous than leukocytes. The ME is therefore density depen-

dent. If the microscopist wants to estimate for constant ME a

higher parasite density, he needs to count more parasites.

Coefficient of variation. The CV of Method A is the inverse

square root of lp times the number of fields (see Materials &

Methods). If the counting does not exceed 12 HPFs (i.e.

WBCsƒ200), CV values are higher than 9:94% of the real PD

for low and intermediate parasitemias (see Figure 2). Above 20,000
parasites/ml, CV values are less than 3%. Counting up to 31 HPFs

(i.e. WBCs&500) instead of 12 HPFs (i.e. WBCs&200), decreases

the CV by approximately 10% of the parasite density.

For Method B, CV values lie midway between 10% and 20% of

the PD for high parasitemias when WBCs§100 (see Figure 2).

Notice that increasing the number of WBCs counted will not

significantly decrease the CV for high parasitemias.

For Method C, the vertical lines indicate that the CV only

depends on PD for low parasitemias. Due to the small number of

parasites, CV levels are obtained by counting parasites until 500
WBCs are seen. Notice that CV values exactly match those

obtained by Method B with WBCs~500. Figure 2 shows bell-

shaped patterns for higher densities (for 1,000vPDv10,000
parasites/ml) with a peak reached at PD~4,000 parasites/ml.

Along the same line as Method B, a constant CV level may be

reached by more than one threshold value for PD§13,500
parasites/ml.

For Method D, the negative slope of the contour lines captures

the indirect relationship between the threshold and the densities

for PDv8,000 parasites/ml. For a fixed CV level, threshold values

decline with density. In this interval, the counting stops when the

fixed number of leukocytes (i.e: the threshold value) is obtained.

The minimum is reached at PD~8,000 parasites/ml. For

PDw8,000 parasites/ml, positively sloped CV curves reflect the

direct relationship between the threshold and the PD. In this area,

parasites are more abundant than leukocytes. Therefore, the

counting stops when the fixed number of parasites (i.e: the

threshold value) is reached. If the microscopist wants to estimate

with the same level of precision (i.e: for constant CV) a higher

parasite density, he needs to count more parasites. A higher

threshold value is then required.

False negative rates. For Method A, FNR decreases

exponentially with increasing number of fields (n) and increasing

number of parasites per field (lp) (see Materials & Methods). If the

counting does not exceed 20 HPFs (i.e. WBCsƒ320), the

probability of misdiagnosis is high for low parasitemia levels (see

Figure 3). For intermediate densities, this probability is less than

1% when the threshold is above 30 HPFs. For high parasitemias,

false negatives occur much less frequently (v0:001%). Despite

unbiasedness and efficiency, this estimator generates a high

number of false negatives when the problem is difficult (low

parasitemia).

Figure 3 shows that the FNRs of Method B vary from 5% to

80% for low parasitemia levels. For intermediate densities, this

probability is less than 5%. False negatives do not occur for high

parasitemia levels.

For Method C, the FNRs are threshold independent for

PDƒ200 parasites/ml and WBCsw20. The number of false

negatives arises from counting up to 500 WBCs. For

200vPDƒ2,000 parasites/ml and 10ƒWBCsƒ20, FNR values

varies from 0.001% to 0.5%. For PDƒ2,000 parasites/ml and

Statistical Properties of PD Estimates
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WBCsv10, FNR values are higher than 0.5%. False negatives do

not occur for high parasitemia levels (PD§10,000 parasites/ml).

For low parasitemias, we point out striking similarities between

the FNRs in Method D and the FNRs in Method B. Due to the

scarcity of parasites in this area, estimates are based on the

leukocyte count in Method D.

Cost-effectiveness. Method A does not adapt to the

variation of PD from one individual to another and costs a fixed

HPFs number for all PD values.

The cost of Method B is an increasing linear function of the

threshold values (see Figure 4). The cost here is independent from

PD. This can be explained by the homogeneous distribution of

Figure 1. Mean error colormap. The colormap is drawn given a two-dimensional array of ME values. To allow for direct point-to-point numerical
and visual comparison, we express the ME as a function of the parasite density (on the x-axis) and the WBC count (on the y-axis) in each of the four
methods. Parasite density values are generated starting with 0, at increments of 50, and ending with 20,000. Threshold values (WBCs) are generated
starting with 0, at increments of 1, and ending with 500. Then, each pixel is assigned a value that represents the ME-level. A color scale grading was
applied to show levels. 7 degree intervals are depicted using a red-to-yellow colorspace with increasing intensity. We contour the ME at 0.5, 0.75, 1,
1.5, 3 and 10. The gaps between each pair of neighboring contour lines is filled with a color.
doi:10.1371/journal.pone.0051987.g001
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leukocytes within the fields. Since we assumed a fixed number of

leukocytes per field (l‘), the number of fields needed will indeed be

independent of the PD.

For low parasitemia levels and WBCsw5, the darkest color in

the cost colormap of Method C indicates a constant cost of

approximately 31 HPFs, which corresponds to the number of

fields needed to reach 500 WBCs. For intermediate parasitemia

levels, the cost varies depending on both the threshold value and

how numerous the parasites are. The cost is independent from PD

for high parasitemia levels. The number of fields needed is the

ratio of WBCs to l‘.
Method D is highly adapted to parasitemia levels in terms of

cost. For PDƒ8,000 parasites/ml, the cost is density independent.

For PDw8,000 parasites/ml, the cost decreases with density for a

fixed threshold value. In this interval, parasites are more abundant

than leukocytes. A lower number of fields is then needed to reach a

predetermined threshold value.

Methods comparison for three parasitemia levels
To explore similarities and differences in method behaviors, we

look more closely at the statistical properties of PD estimates. We

choose three cut-offs for low (100 parasites/ml), intermediate

(1,000 parasites/ml) and high (10,000 parasites/ml) parasitemias.

As Method A was shown to be unbiased, it was excluded from

the ME analysis. As shown in Figure 5, Method B and Method D

seem to have similar behaviors in terms of ME for low and

intermediate parasitemias insofar as the two estimates are based on

the leukocyte count in this density interval. For high parasitemias,

Method B and Method C give the same results. The parasite count

in Method C does not influence the accuracy of the method as

long as parasites are numerous. For this reason, the two methods

basically behave the same way.

To understand how the threshold values influence the

variability of PD estimates, we plotted the CV according to

threshold values. Figure 5 shows that the CV is highly sensitive to

any variation of low thresholds (ƒ100). However, we see very few

variations of the CV as threshold values increase (w100). Both

Methods B and D generate very close CV values for low and

intermediate parasitemia levels. This result is expected since the

number of WBCs seen is greater than the parasite number in the

considered PD intervals. Hence, the two methods have the same

stopping rules. For high parasitemias, Method B and Method C

generate similar variability whereas Method A is significantly more

precise than the other methods (B, C, D). However, Method A

generates higher FNR for intermediate parasitemia than other

methods when the count does not exceed 20 HPFs. For high PD

Figure 2. Coefficient of variation colormap. The colormap is drawn given a two-dimensional array of CV values. To allow for direct point-to-
point numerical and visual comparison, we express the CV as a function of the parasite density (on the x-axis) and the WBC count (on the y-axis) in
each of the four methods. Parasite density values are generated starting with 0, at increments of 50, and ending with 20,000. Threshold values (WBCs)
are generated starting with 0, at increments of 1, and ending with 500. Then, each pixel is assigned a value that represents the CV-level. A color scale
grading was applied to show levels. 7 degree intervals are depicted using a red-to-yellow colorspace with increasing intensity. We contour the CV at
10, 15, 20, 25, 30 and 50. The gaps between each pair of neighboring contour lines is filled with a color.
doi:10.1371/journal.pone.0051987.g002
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levels, false negatives do not occur when the count exceeds 5

HPFs.

Figure 5 point out the high level of accuracy and precision

performance of Method C for low and intermediate parasitemias.

Thus, adding a supplementary stopping rule to the counting

process and taking into account the parasite counts have enhanced

the method performance, which raises questions regarding the

repercussions in terms of cost-effectiveness. As shown in Figure 5,

Method C is more expensive and time-consuming for low and

intermediate parasitemias and requires constant cost (31.5 HPFs).

As leukocytes are more present than parasites in the considered

PD intervals the counting will be carried out until 500 WBCs are

seen. Method A and B costs are density independent and increase

linearly with threshold values. Method D outperformed the three

other methods in terms of cost for high parasitemia levels.

Variability of measurements at equal cost-effectiveness
The duality between variability and cost illustrated in the

previous section prompted a more detailed analysis of method

performance differences at equal cost-effectiveness. In order to do

this, we represent the variability measures as a function of cost. As

shown in Figure 6, Methods B and D behave the same in terms of

ME and CV for low and intermediate PD levels. For Method C,

ME, CV and FNR are density independent for low and

intermediate parasitemias. For high PD levels, Methods B, C

and D present similar results for ME, CV and FNR. Method A has

the lowest CV values but generates higher FNR.

Methods comparison for standards threshold values
To identify both similarities and differences between the

commonly used threshold-based counting techniques, we estimate

ME, CV, FNR and cost as a percentage of PD according to three

parasitemia levels (low, intermediate, high) for commonly used

threshold values. We used 200 HPFs for Method A, 200 WBCs for

Method B, 100 parasites and 200 WBCs for Method C and 500

WBCs or 500 parasites for Method D.

Table 1 shows that Method A is the most efficient method in

terms of accuracy (ME) and precision (CV), but has an important

cost (200 HPF). Conversely, Method B is less accurate and precise

than Method A while much more cost-effective (12.5 HPFs).

Method C and Method D present similar properties for low and

intermediate parasitemia levels. In fact, Method C behaves as

Method D with a fixed leukocyte count (500 WBCs) due to the

scanty presence of parasites. Hence, the mean error is density

independent in these PD intervals. For high PD levels, Methods B

and C behave the same. Due to the abundance of parasites, the

Figure 3. False negative rates colormap. The colormap is drawn given a two-dimensional array of FNR values. To allow for direct point-to-point
numerical and visual comparison, we express the FNR as a function of the parasite density (on the x-axis) and the WBC count (on the y-axis) in each of
the four methods. Parasite density values are generated starting with 0, at increments of 50, and ending with 20,000. Threshold values (WBCs) are
generated starting with 0, at increments of 1, and ending with 500. Then, each pixel is assigned a value that represents the FNR-level. A color scale
grading was applied to show levels. 8 degree intervals are depicted using a red-to-yellow colorspace with increasing intensity. We contour the CV at
0.001, 0.5, 10, 20, 30, 50 and 80. The gaps between each pair of neighboring contour lines is filled with a color. A logarithmic scale is used on the x-
axis and a linear scale is used on the y-axis.
doi:10.1371/journal.pone.0051987.g003
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enumeration is stopped when 200 WBCs are seen in both counting

procedures. However, Method D is better suited to high

parasitemia levels in terms of accuracy and precision compared

to Methods B and C but results in up to a 2-fold increase in costs.

Discussion

To the best of our knowledge, this is the first study of threshold-

based counting technique performance using the theoretical

properties of PD estimators. We considered four commonly used

threshold-based counting techniques, and assessed the perfor-

Figure 4. Cost-effectiveness colormap. The colormap is drawn given a two-dimensional array of cost values. To allow for direct point-to-point
numerical and visual comparison, we express the cost as a function of the parasite density (on the x-axis) and the WBC count (on the y-axis) in each of
the four methods. Parasite density values are generated starting with 0, at increments of 50, and ending with 20,000. Threshold values (WBCs) are
generated starting with 0, at increments of 1, and ending with 500. Then, each pixel is assigned a value that represents the cost-level. A color scale
grading was applied to show levels. 7 degree intervals are depicted using a red-to-yellow colorspace with increasing intensity. We contour the cost at
5, 10, 15, 20, 25 and 30. The gaps between each pair of neighboring contour lines is filled with a color.
doi:10.1371/journal.pone.0051987.g004
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mances of these methods according to threshold values. These

thresholds may be fixed or variable. We showed that adaptative

methods are more efficient than the ones involving fixed threshold

values. To define the theoretical properties of the estimators we

hypothesized that the distribution of parasites within HPFs follows

a Poisson distribution. We demonstrated that Method A estimator

is unbiased and efficient. However, this estimator generates a high

number of false negatives, especially for low parasitemia levels

when the counting does not exceed few HPFs. Moreover, Method

A is time-consuming. We showed that the ME of Method B is

independent from PD, and only depends on the threshold value.

This helps to handle the amount of bias with an appropriate

choice of the WBC threshold value. We showed that adding a new

parameter to the stopping rules (the number of parasites seen)

implies more accuracy and precision without increasing the

method’s cost for low and intermediate parasitemias. Method B

and Method D have similar behaviors for low and intermediate

parasitemia levels while Method D is more accurate and precise in

Figure 5. Statistical properties of PD estimators cut-offs according to threshold values for three PD levels : low (100 parasites/ml),
intermediate (1,000 parasites/ml) and high (10,000 parasites/ml). Variability measures (ME, CV, FNR) and cost are expressed as functions of the
WBCs count (threshold) for the four methods (A, B, C, D). This graph gives the required number of WBCs for each method according to an expected
amount of variability or cost, and favours a direct comparison between methods in terms of WBCs count. A logarithmic scale is used on the x-axis for
FNR.
doi:10.1371/journal.pone.0051987.g005
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the considered PD intervals. For high parasitemia levels, Method

B and Method C have similar behaviors and are more accurate

and precise than Method D. However, for high parasitemias,

Method D outperformed the three other methods in terms of cost.

For each method, different threshold values may be fixed, which

raises questions regarding the accuracy and reproducibility of

these parasite counting techniques.

The importance of parasite density data reproducibility stems

from the need for epidemiological interpretations to be based on

solid evidence. However, variation of parasite density within a

slide is expected even when prepared from a homogeneous sample

[21]. The source and scale of measurement error (sample

preparation, staining process, counting technique, microscopist

performance) have been investigated. The notion of inter-rater

reliability is a source of concern in this context. It refers to a metric

for raters’ consistency that measures the degree of agreement

among raters. Many techniques were developed to measure inter-

rater reliability. Some reports deal with the variability in the

methods for detecting and counting parasites in thick smears.

They attempt to evaluate the inter-rater reliability of malaria

microscopy in epidemiological studies by looking at the variation

of results due to the microscopist’s reading. The variability of these

methods has been assessed using statistical approaches

[11,12,20,21,24–29]. These methods used several criteria to assess

the inter-rater reliability and to quantify the degree of agreement

between malaria slide density readings. For continuous data,

Analysis of Variance (ANOVA) is the method of choice. Bland &

Altman (1986) [24] plotted the differences in log-transformed data

versus average in mean counts. They expanded on this idea by

plotting the difference of each point, the mean difference, and the

confidence limits on the vertical axis against the average of the two

ratings on the horizontal axis. The resulting Bland & Altman plot

[24] demonstrates not only the overall degree of agreement, but

also whether the agreement is related to the underlying value of

the item. For instance, two raters might nearly agree in estimating

the size of small items, but disagree about larger ones. Alexander

et al. (2010) [21] assessed agreement between replicate slide

readings of malaria parasite density using as criterion the

repeatability, that is to say the value below which the absolute

difference between results may be expected to lie with a 95%

probability [30]. This metric is linked to Bland & Altman limits of

agreement [24]. It is half the distance between the upper and

lower limits of agreements. For nominal data, the kappa coefficient

Figure 6. Statistical properties of PD estimators cut-offs according to methods cost for three PD levels : low (100 parasites/ml),
intermediate (1,000 parasites/ml) and high (10,000 parasites/ml). Variability measures (ME, CV, FNR) are expressed as functions of the cost (the
number of HPFs needed to stop the counting) for the four methods (A, B, C, D). This graph gives the cost for each method according to an expected
amount of variability, and favours a direct comparison between methods in terms of cost. A logarithmic scale is used on the x-axis for FNR.
doi:10.1371/journal.pone.0051987.g006
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of Cohen [31] and its many variants and the Scott’s pi [32] are the

preferred statistics.

However, very few studies have examined the threshold-based

counting techniques or evaluated the impact of the sampling error

in endpoint measurements. In Nigeria, Dowling & Shute (1966)

[12] showed that only 43% of infections in adults were detected by

examining 200 fields, 61% by examining 600 fields and 70% by

examining 1000 fields. In the Garki Project, Molineaux &

Gramiccia (1980) [33] showed that the prevalence observed by

the examination of 400 compared to 200 fields was increased by

10% for P. falciparum, by 24% for P. malariae and by 21% for

P. ovale. Trape (1985) [11] compared the results of the examination

of 100 and 200 fields of the thick film in 245 schoolchildren aged 6

to 16 from Linzolo (Congo). He concluded that the systemic

examination of 200 oil immersion fields of the thick smear is the

best compromise between the need for precision and rapidity.

Prudhomme O’Meara et al. (2006) [34] showed empirically that

counting beyond 200 WBCs may not significantly improve

parasite density measurements.

In addition, the accuracy and consistency of these methods have

been generally overlooked. There is no general agreement on the

optimal method for estimating parasite density according to

threshold values. Further experimental evidence is needed to

determine which parasite counting technique is most accurate,

reproducible, and efficient. Ultimately, the question is: to which

extent would threshold values (specifically the number of WBCs

counted and HPFs seen) influence the variability in parasite

density estimates? However, there remains the issue of homoge-

neity. The distribution of the thickness of the smear and hence the

distribution of parasites within the smear is not completely

homogeneous [21]. Therefore, a proportion of the variability

may be explained by this homogeneity factor.

To understand how the thresholds involved in parasite

enumeration methods contribute to the magnitude of discrepan-

cies in density determination, we studied their impact in variability

measures generated by commonly used threshold-based counting

techniques. We showed that estimators perform quite differently

according to threshold values, and that an overall performance

measure probably hides a lot of complexity in the behavior of each

estimator. Another important aspect of this study is that we

observed how estimators perform at different parasitemia levels,

and how much the choice of threshold values may influence the

performance of estimators relative to each parasitemia level. In

summary, while all four estimators had some deficiencies, Method

D outperformed all the other estimators for accuracy, precision

measures and cost-effectiveness, and should therefore be seriously

considered in future studies of comparative performance of PD

estimators with field-collected data. In this paper, we explored the

duality between cost-effectiveness and precision implied by

estimation methods. An open question remains: To what extent

is it possible to reduce methods’ cost while staying accurate and

precise in estimation measures?

Accurate estimation of PD is an important endpoint in

epidemiological studies and clinical trials, both as a direct measure

of the level of infection in a population and when defining

parasitemia thresholds to diagnose malaria in case of fever

Table 1. Threshold-based counting techniques comparison for low (100 parasites/ml), intermediate (1,000 parasites/ml) and high
(10,000 parasites/ml) parasitemias.

Low parasitemia

h~100 parasites/ml

Method A B C D

ME (%h) 0.00 1.01 0.40 0.40

CV (%h) 15.81 64.20 40.68 40.68

FNR (%) 0.00 7.56 0.18 0.18

Cost 200 12.50 31.75 31.75

Intermediate parasitemia

h~1,000 parasites/ml

Method A B C D

ME (%h) 0.00 1.01 0.40 0.40

CV (%h) 5.00 23.53 14.85 14.85

FNR (%) 0.00 0.00 0.00 0.00

Cost 200 12.50 31.75 31.75

High parasitemia

h~10,000 parasites/ml

Method A B C D

ME (%h) 0.00 1.01 1.01 0.45

CV (%h) 1.58 14.03 14.03 9.31

FNR (%) 0.00 0.00 0.00 0.00

Cost 200 12.50 13 25.50

Measures of variability (ME, CV, FNR) and cost-effectiveness of methods are compared for fixed threshold values : 200 HPFs for Method A, 200 WBCs for Method B, 100
parasites and 200 WBCs for Method C, and 500 WBCs or 500 parasites for Method D.
doi:10.1371/journal.pone.0051987.t001
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episodes. Malaria PD estimates are also used to assess the

development of naturally acquired immunity [35] and in malaria

vaccine investigations [23,36,37]. Therefore, inaccurate estimation

of PD can lead to patient mismanagement and public health

misinformation [38].

However, two approaches must be distinguished. The first

approach concerns clinical malaria diagnosis and two problems

can be pointed out depending on whether the question concerns

an individual or a population. At the individual level, recent

studies have highlighted the massive problem of misdiagnosis in

malaria endemic countries [39–41]. From a clinical point of view

the question is to determine whether or not a person presenting

fever suffers from malaria or not and, in that sense, the main

problem is a false negative result. Here, if a measure is falsely

negative, the patient will be miscategorized and incorrectly

treated, and measurement errors can lead to poor patient

outcome. Nevertheless, although the level of infection is consid-

ered as a controversial sign of potential severity [42], treatment

and medical supervision must be immediately started even if the

PD is not accurately determined.

From an epidemiological point of view (e.g. to determine the

incidence or prevalence of clinical malaria in an area or in a

population under close medical surveillance) clinical malaria is

often considered as any case of fever or fever-related symptoms

(headache, vomiting, subjective sensation of fever) associated with

a P. falciparum parasite/leukocyte ratio higher than an age-

dependent pyrogenic threshold of PD previously identified in the

patient [43,44]. In this case, a feverish individual harboring a PD

under his age-specific threshold is not considered as a malaria case

and will be monitored by the medical team involved in the study.

In such a situation the accuracy of PD determination is obviously

of great importance, not only for the patient but also for the

outcomes and the conclusions of the study.

A second approach concerns the assessment of parasite density

in epidemiological studies, when PD is used as the variable of

interest, independently of clinical disease. For example, genetic

epidemiology studies often focused on a mean level of P. falciparum

infection during a follow-up period [43,45–47]. Great care must

also be taken in the analysis of parasite density estimates when

parasite density is related to other explanatory variables,

malariometric (e.g. parasite ratio, gametocyte ratio, mixed

infection) or not (age, environmental or behavioral factors,

medicine intake in clinical trials), when using statistical models

as logistic regression and linear mixed effect models. In these cases

as well as in population studies using a pyrogenic threshold to

define clinical malaria, inaccurate estimates of parasite density

might influence the parameters of associations between drug

efficacy and the incidence of clinical malaria episodes in field trials

[6], or between risk factors in epidemiological studies.

In further support of the arguments cited in this paper,

empirical validation of the theoretical results is needed through

a rereading experience conducted in the field. And toward a better

understanding of threshold effects, we are interested in the study of

the consequences of the quality of these estimators in models

classically used and starting from these measures (mixed effects

linear and logistic regression, generalized linear models, etc).

These aspects of the problem are now under consideration.
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