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Introduction
Mathematical model for metabolic pathways
The artificial and industrial uses of microorganisms for material 
production have a long history of more than a thousand years. 
Recently, genetic operations have been widely applied to improve 
production. Two generally considered approaches introduce 
enzymes that have higher activities from other organisms or spe-
cies and introduce enzymes to realize metabolic pathways that do 
not naturally occur in the microorganisms. The former method is 
popular because its operation is simpler and improvements are 
more predictable than with the latter method. Conventional gene 
modifications using ultraviolet or other radiation types are easy to 
achieve and have been widely applied in many industries. 
Nevertheless, the efficiency of such improvements is quite low 
because gene modifications occur accidentally and uncontrollably, 
and progress is made serendipitously. Therefore, gene introduc-
tion is currently used along with conventional methods.

Target genes for modification are chosen based on informa-
tion including the reaction rates of the respective reaction steps 
within the metabolic pathway and include the production 
materials and substrates of microorganisms, as well as changes 
in the reaction rates through changes in the concentrations of 
the metabolites that consist of the pathway. Bottleneck reaction 
steps and feedback loop inhibitions are suggested based on this 

information. The genes of enzymes used in such reactions are 
candidates for modification.

The rates of enzymic reactions are generally defined as the 
limit of changes in the compounds over time.1,2 Several formu-
lae are established for the types of enzymic reactions, such as 
inhibition schemes. The most popular is the Michaelis-Menten 
law3,4 for a simple one-to-one enzymic reaction without any 
inhibition or catalysis using an enzyme. The reaction rate is 
modeled based on the following reaction scheme:

S E ES P E+ → +  (1)

in which S  indicates the substrate of the reaction, E  signifies 
the enzyme, and P  denotes the product. A bidirectional arrow 
represents a reversible reaction. A 1-directional arrow signifies 
a 1-way reaction. The reaction rate is modeled as the following 
ordinary differential equation (ODE):

d P
dt

V S
K Sm

[ ] [ ]
[ ]

max=
+

 (2)

Therein, a pair of square brackets denotes the concentration 
of the compound, t  is the time, and Vmax  and Km  are param-
eters that define the kinetic characteristic of the enzyme. All 
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reaction steps in a metabolic pathway can be represented using 
the ODE above if all reactions are simple enzymic reactions 
and if the parameter values are defined. The pathway is then 
modeled as simultaneous ODEs or the ODE system. 
Consequently, simulations can be done of concentration 
changes of metabolites, stability analysis, steady-state estima-
tion, and bottleneck finding.5,6

Generally, finding the parameter values is difficult and expen-
sive because it requires enzyme isolation and measurements of 
the reaction rates in test tubes (in vitro measurements). Although 
the amount of enzyme information in the literature and public 
databases is growing,7 the values of the kinetic parameters have 
not been sufficiently published or accumulated. An enzyme gen-
erally has different parameter values for the various conditions 
and species of organisms. Moreover, the parameter values gener-
ally differ between in vitro and in vivo (in living cells) condi-
tions.8,9 For most industrial applications, a dynamical analysis of 
the pathways must be conducted without reaction scheme infor-
mation or kinetic parameter values.

Canonical ODE model
The ODE systems in canonical forms are applicable because 
they are independent of the molecular mechanism of the reac-
tion scheme. The S-system6 is one such canonical ODE model. 
For a reaction scheme with 2 reactions, the following is used:

X X X P X X Xl l l m1 2 1 2+ + + → → + + ++ + 

 (3)

where X1 , X 2 , and Xl  and P  denote the substrates and 
product of the first reaction, respectively, and P  and 
X Xl m+1,,  denote the substrate and products of the second 
reaction, respectively. The S-system form is represented as 
follows:

d P
dt

X Xj
g j

j

n

j
h j

j

n[ ] [ ] [ ]= −
= =
∏ ∏α β

1 1
 (4)

where X j  indicates the concentration of the metabolite j , g j  
signifies the kinetic parameter representing the influence of 
X j  to the increasing processes of P , h j  denotes the influence 
of X j  on the decreasing processes of P , and α  and β  are 
rate constants. The first term of the left-hand side of the equa-
tion represents the total rate of the increasing or composing 
processes of P . The second term is the total rate of the decreas-
ing or decomposing processes. In addition, l  and m  in the 
reaction (3) are the numbers of composing and decomposing 
processes of P , respectively. All l  and m  compounds are suf-
fixed sequentially in Equation (4).

The S-system above is a simplified form of the general mass 
action law,6 which can be presented as follows:

d P
dt

Xi
i

m

ij
gij

j

n[ ] [ ]=
= =
∑ ∏α

1 1

 (5)

Therein, the i  suffix denotes each composing and decom-
posing reaction of P . A simplification of the S-system sum-
marizes the composing reactions of P  into a term using α  
and the decomposing reactions into a β  term in Equation (4). 
The parameters g j  and h j  correspond to reaction orders in 
the mass action law, gij , respectively, and indicate dependen-
cies between the metabolites P  and X j . Consequently, they 
represent the network scheme of the reaction pathway. No 
direct dependence exists between P  and X j  when g j  and h j  
in Equation (4) are equal to 0. X j  suppresses the production 
of P  when g j  is negative.

The parameter values of g j , h j , α , and β  can be estimated 
using numerical optimization methods for finding the parame-
ter values by which the calculated time series of P  through a 
numerical integration of Equation (4) matches the observed 
time series of the concentration of P . The determined values of 
g j  and h j  might be considered as representing orders of each 

reaction between X j  and P . However, parameter optimization 
is an inverse problem10 because several sets of different parame-
ter values are generally found for the given observed time series 
data. Restrictions and limitations are effective for difficulties 
such as fixing some g j  to 0 based on biological knowledge.

Method for small sample
Numerical optimizations require a sufficient number of 
observed samples. Smaller needs are better because observa-
tions entail a certain amount of costs. A mathematical model 
with fewer parameters requires fewer samples. We propose a 
canonical ODE model for small samples through the simplifi-
cation of the second term of Equation (4), as shown below:

d P
dt

X Pj
g j h

j

n[ ] [ ] [ ]= −
=
∏α β

1

 (6)

By the mass action law, the decomposition rate of a com-
pound depends solely on its concentration in many biological 
processes, such as Michaelis-Menten–type reactions shown in 
Equation (2). We introduce this idea as an assumption in 
Equation (6). Although decomposition reactions are often 
modeled as linear ODE, such as

d P
dt

A P t[ ] exp( [ ] )= −

our model includes a nonlinear decomposition term because 
we suspect that a linear term might be too simple for the 
metabolite in a complex biological network system containing 
many unknown reactions. Our assumption is reasonable when 
regulation of the degradation processes by these unknown 
reactions is not significant.

The resulting time series of the model based on a numerical 
integration varies greatly through a change in the initial value. 
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Finding the best initial value is difficult because the observed 
initial value frequently has errors, particularly for small sample 
data sets. Therefore, we compare the model and data in differ-
ential spaces. The differential of the observed data can be cal-
culated through a numerical differentiation, and the parameter 
values can be evaluated by comparing the differential values 
with the values of Equation (6).

We evaluated the proposed method according to its applica-
tion to the phenyl lactate (PL) production pathway from glu-
cose using Escherichia coli. For a pathway that includes branches 
and feedback loops, we estimated the actually activated reac-
tion steps and activities of the feedback inhibitions suggesting 
strategies for an improvement in production.

Method
First, we build a pathway map based on information from the 
literature and different databases. We then choose some 
metabolites in the map as observation targets. A pathway map 
is reconstructed using only the target metabolites. The obser-
vations are measurements of the target metabolite concentra-
tion at sampling time points with equal intervals. A simplified 
S-system model is defined based on the reconstructed pathway 

map by fixing some g j  to 0 if the link to P  from X j  does not 
exist in the reconstructed pathway map.

Observed time series data on the concentration of metabo-
lites are numerically differentiated. Optimal values of g j , h , 
α , and β  are sought using a nonlinear numerical optimiza-
tion method such as a genetic algorithm10 or differential evolu-
tion11 to minimize the difference between differentials of the 
observed data through a numerical differentiation and those 
from Equation (6). The optimal g j  is considered, which repre-
sents the activity of the reaction from X j  to P . A creation of 
the formula in Equation (6) and an optimization of the param-
eters are conducted for each target metabolite. We choose the 
PL production metabolic pathway12–15 (Figure 1) as the appli-
cation target and 6 metabolites for the observation target. 
Then, we reconstruct the pathway using only the observation 
target metabolites (Figure 2). Six sampling time points are 
used. Changes in the concentration of the metabolites are 
observed in the log phase of the cell growth (Figure 3).

Pathway map construction and observation
The pathway from glucose to PL consists roughly of glycolysis 
and shikimic acid (SA) pathways. Phenyl lactate is produced 
from phenyl pyruvate (PP), PP is from phenylalanine (PA), and 
PA is from prephenic acid. In addition, prephenic acid is from 
chorismic acid in the SA pathway. Choosing phosphoenolpyru-
vate (PEP), erythrose 4-phosphate (E4P), SA, PA, PP, and PL 
as the observation targets, we then reconstruct the pathway for 
these 6 metabolites (Figure 2). The pathway includes a branch-
ing point and 2 feedback loops.

ODE models for the respective metabolite
Changes in concentration of metabolites in the reconstructed 
pathway are modeled mathematically using the following 
ODE models:

Figure 1. Main pathway of phenyl lactate metabolism of Escherichia coli. A dashed line indicates that the path consists of plural reactions. A solid 

1-directional line indicates a single enzymic reaction. A bidirectional line indicates 2 reactions: forward and backward processes catalyzed by the same or 

different enzymes. A double-lined circle indicates a target metabolite selected for observation.

Figure 2. Reconstructed pathway consisting of observation target 

metabolites.
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d SA
dt

PEP E P
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d PP
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Actually, production of PEP and E4P is not controlled by 
any other metabolites, and these compounds are independent 
variables in the ODE system above. Their respective dynam-
ics are not modeled. Parameter gPP SA,  in the ODE system 
represents the summarized actual activity of the reaction 
chain to PP that is produced from SA, consisting of several 
reaction steps. Here, ga b,  indicates that the rate of change in 
the concentration of a  is increased by b  when the sign of 
ga b,  is positive. A negative value of ga b,  means that b  sup-

presses the composition processes of a . A larger h  signifies 
a higher rate of decomposition or consumption of the metab-
olite. A negative h  means that the metabolite suppresses the 
decomposition itself. Therein, α  and β  are fixed rate coef-
ficients. For each metabolite, the activities of the respective 

reaction steps of the composition of the metabolite can be 
compared.

Time differential values of the metabolite concentration are 
calculable using the ODE system by determining all parameter 
values. We introduce the differential evolution algorithm11 to 
find the parameter values that minimize the differences 
between the differential of the concentration values calculated 
using the ODE system, as shown below:

E D Dct ot
t

T

= −
=
∑( )

1
 (8)

Therein, E  indicates the summarized differences, Dct  sig-
nifies the differentials calculated by the ODE system with the 
parameter values at time point t , and Dot  denotes the differ-
ential at time point t of the observed data. Here, Dot  is calcu-
lated using the quadratic interpolation of the observed data, 
and E  is minimized by searching the parameter values of g , 
h , α , and β  for each metabolite. The optimization algorithm 
introduces uniformly distributed random numbers for the ini-
tial values of the search parameters.

Result
Model interpretation
The ODE system with the determined parameter values is 
shown below (Figure 4):

Figure 3. Observed time series of concentrations of target metabolites at the 6 time points. SA, PP, PA, and PL indicate shikimic acid, phenyl pyruvate, 

phenylalanine, and PL, respectively.
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The ODE system suggests that the reaction chain to SA 
from PEP is more active than that from E4P. In addition, PP 
production is inhibited by feedback loops from both PA and PL.

There are 3 negative value parameters. Reaction steps that 
are represented by these parameters consist of only productive 
enzymic reactions in the literature.12,13 These negative param-
eters may suggest unknown regulatory pathways whose effects 
look substrate inhibitions.

Discussion
Numerical advantages of our model
The changes in metabolite concentration over time can be 
modeled using the Michaelis-Menten law, as shown below:
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For each metabolite, there are 8 parameters for SA, 10 for 
PP, 6 for PA, and 4 for PL because a model of the reaction step 
(single enzymic reaction) has 2 parameters. Changes of con-
centrations in time of SA and PP cannot be modeled using the 
6 sampling data in this study. There are a total of 16 parameters 
for the reconstructed pathway because some parameters are 
common (1 of the outgoing reactions of SA is an incoming 
reaction of PP). Some numerical optimization methods can 
search for the 16 parameters simultaneously. However, such a 

simultaneous nonlinear numerical optimization is not easy, and 
the difficulty increases significantly with an increase in the 
number of parameters (“curse of dimensionality”).

The form of the S-system model is reduction or simplifica-
tion of general mass action (GMA) law model shown as 
follows:

d SA
dt
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For each metabolite, there are 7 S-system parameters for SA, 
8 for PP, 5 for PA, and 4 for PL, or 18 in total because some of 
the parameters are the same. The number of parametes are 
reduced for SA, PP, and PA compared with Michaelis-Menten 
models; however, concentrations of SA and PP cannot be mod-
eled even when using the GMA. In our proposed model, the 
corresponding numbers are 5, 6, 5, and 4, or 20 in all, which is 
not a small number; however, it is not a problem that the total 
number of parameters is larger than in the S-system because no 
parameters are common to any 2 metabolites, and the parame-
ters of each metabolite are optimized independently of the other 
metabolites. Our model has fewer parameters for each metabo-
lite, which indicates that our model is more robust against errors 
than the S-system and Michaelis-Menten models.

The less number of model parameters means that the model 
needs a less number of data. Michaelis-Menten model consists 
of 2 parameters for each reaction, thus 2n  parameter values 
must be determined for a system that consists of n  compounds, 
whereas the simplified S-system contains n + 2 . This means 
that the simplified S-system model needs about a half quantity 
of data compared with a Michaelis-Menten model.

Figure 4. Estimated actual reaction activities on the reconstructed 

pathway. Numerical values shown in the figure are g j  in Equation (6), 

which represent incoming links for each metabolite. SA, PP, PA, and PL 

indicate shikimic acid, phenyl pyruvate, phenylalanine, and PL, 

respectively.
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Although the model and data do not match perfectly 
because the data generally include errors in the probabilistic 
distributions, the optimization precision of the parameters 
(model fitness to the data) shown in Figure 5 is apparently 
sufficient. In terms of biochemical engineering, the values of 
some parameters shown in Figure 4 are large as the reaction 
order. Perhaps because of fluxes of pathways other than the 
reconstructed pathway from which we omitted pathways 
other than the main reaction chain, glycolysis has many 
branches to other subsystems. However, the parameter values 
for PA (PA in Figure 4), PP, and PL might be more reliable 
because the reaction steps occurring naturally around these 
metabolites may be nearly the same as those of the recon-
structed pathway.

The parameter values of the α  term of a metabolite (of the 
incoming link of a metabolite in the pathway map) are directly 
comparable. Phenyl pyruvate has 3 parameters to compare, 2 of 
which are negative, and 1 of which is positive. Therefore, PP 
production, which is inhibited by SA and PL (the final prod-
uct), depends mainly on PA.

Two negative feedback loops exist: PP production is inhib-
ited by PL, and PA production is inhibited by PP. Although it 
can be readily imagined that the inhibition of the feedback 
reactions increases the production of PL, the main inhibitory 
effect on PP production is from the SA. Disrupting one or 

more genes of the reactions to PP from SA might improve the 
PL production.

Phenylalanine decreases gradually (Figure 3), but shows no 
natural decomposition, which is represented as A Btexp( )− , 
and might be caused by the incoming link from PP.

In conclusion, the results show that the reliability of the 
estimated parameter values might not be the best or even very 
high because the reconstructed pathway and the ODE system 
are simplified. These values suggest that the target genes can be 
modified for an industrial improvement in production using 
microorganisms. This case study presents several suggestions 
that may be useful when constrained to only a few samples or 
low observation costs.
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