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Abstract
An approach to Magnetic Resonance (MR) image reconstruction from undersampled data

is proposed. Undersampling artifacts are removed using an iterative thresholding algorithm

applied to nonlinearly transformed image block arrays. Each block array is transformed

using kernel principal component analysis where the contribution of each image block to the

transform depends in a nonlinear fashion on the distance to other image blocks. Elimination

of undersampling artifacts is achieved by conventional principal component analysis in the

nonlinear transform domain, projection onto the main components and back-mapping into

the image domain. Iterative image reconstruction is performed by interleaving the proposed

undersampling artifact removal step and gradient updates enforcing consistency with

acquired k-space data. The algorithm is evaluated using retrospectively undersampled MR

cardiac cine data and compared to k-t SPARSE-SENSE, block matching with spatial Fou-

rier filtering and k-t ℓ1-SPIRiT reconstruction. Evaluation of image quality and root-mean-

squared-error (RMSE) reveal improved image reconstruction for up to 8-fold undersampled

data with the proposed approach relative to k-t SPARSE-SENSE, block matching with spa-

tial Fourier filtering and k-t ℓ1-SPIRiT. In conclusion, block matching and kernel methods

can be used for effective removal of undersampling artifacts in MR image reconstruction

and outperform methods using standard compressed sensing and ℓ1-regularized parallel

imaging methods.

Introduction
Undersampling of k-space acquisition allows for accelerated MR exams. Partial Fourier meth-
ods and parallel imaging exploit redundancy in k-space such as Hermitian symmetry [1] or dif-
ferences in spatial sensitivity maps of multiple receive coils [2–4] to restore missing k-space
profiles. In contrast, reconstruction techniques exploiting redundancy in the image domain
depend on the information content in the image data. By exploiting transform properties of
correlated image data, undersampling artifacts are removed by filtering in a transform domain.
For example, in k-tmethods [5–7], undersampling artifacts are removed by adaptive filtering
of the data in the spatiotemporal frequency domain.
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In compressed sensing (CS), incoherent undersampling of k-space is used to introduce
noise-like image artifacts which are subsequently suppressed by nonlinear image denoising in a
sparse domain while enforcing data consistency with the acquired k-space data [8]. Several
sparse linear transformations have been proposed for image reconstruction including Wavelets
or image gradients for spatial denoising [8,9], temporal Fourier transform (FT) [10–12], tem-
poral gradients [13], time-frame reordering [14], low-rank or principal component transfor-
mations along time [12,15–17] and combinations thereof [18]. In addition, data-dependent
transformations can be included and optimized during reconstruction by dictionary learning
[19,20] and blind CS [21,22]. Sparse representations of image patches can also be exploited
along spatial [23] and temporal [12,24,25] directions.

Nonlinear transforms for MR image reconstruction have also been used for nonlinear
GRAPPA [26] where the nonlinearity in the bias between ground truth and noisy GRAPPA
coefficients is modeled with a polynomial kernel and transformation into a higher dimensional
feature space. For dynamic imaging, CS reconstruction in a feature space with linear and qua-
dratic terms motivated by a second degree polynomial kernel allowed for higher undersampling
factors for ASL perfusion data sets [27]. Further work included kernels with radial basis func-
tions [28] and self-learned nonlinear dictionaries [29] for enhanced sparsity in time domain.

In the present work, suppression of incoherent undersampling artifacts by linear projection
of nonlinearly transformed image block arrays is proposed. In each iteration, the current image
estimate is subdivided into overlapping blocks. Each block is grouped with matching blocks
from the image based on a preceding clustering analysis. The block array is transformed
according to nonlinear Gaussian weights assigned to each block where the mapping is implic-
itly calculated based on kernel PCA with a Gaussian kernel. Denoising in the nonlinear domain
is achieved by projection onto the most significant principal components followed by a back-
mapping into the image domain. MR image reconstruction is performed by iteratively inter-
leaved gradient updates for consistency with the acquired k-space data and denoising in the
kernel feature space. The efficacy of the reconstruction is evaluated on two-dimensional cine
data of the heart.

Theory
Image reconstruction by denoising of matching image blocks. CS image reconstruction

relies on iterative image denoising while ensuring consistency with the acquired k-space data.
Early implementations employed algorithms with explicit or implicit assumptions on the
underlying image such as being piece-wise constant for total variation based denoising or being
smooth with a small set of discontinuities in Wavelet based image reconstruction algorithms
[8]. Advanced techniques employ overcomplete dictionaries [19,20] or data-dependent trans-
forms based on image patches to preserve image details and reduce smoothing artifacts by
exploiting redundancy in substructures of image blocks [30]. To denoise a reference image
block x, image blocks are sorted according to a similarity measure, e.g. based on the Euclidean
distance (Fig 1a). By choosing an upper cut-off criterion, all similar image blocks are stacked
and transformed in stack direction using a sparse transform, for example using the FT or a sin-
gular value decomposition. Each image block contributes equally to the transform and the
upper cut-off only allows for a limited number of blocks to be used. If there are only a few
image blocks with high similarity, the transform domain sparsity is deteriorated. Adding more
blocks with lower similarity leads to denoising artifacts and smoothing.

These limitations can be mitigated using nonlinear transforms where data-dependent trans-
forms can be composed of all available image blocks. Employing kernel principal component
analysis (PCA) with a Gaussian kernel, for example, the contribution of each image block to
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the transform depends on the mutual distances in a nonlinear way. Image blocks with high
similarity relative to x contribute more to the transform and blocks with lower similarity con-
tribute less, but there is no need for an upper cut-off (Fig 1b). An introduction to kernel PCA is
given in the next paragraph.

Kernel PCA. Kernel PCA [31] is a nonlinear extension to PCA where a linear analysis is
performed in a high-dimensional nonlinear feature space. It comprises of a three step process
including (1) nonlinear data mapping into feature space where data is linearly separable
(Fig 2a), (2) a conventional linear PCA to project data onto the first n eigenvectors, and (3)
back-mapping of data points from feature space to input space by numerical inversion of the
implicit transformation (Fig 2b).

In this work, multi-dimensional image blocks are stacked to vectors composing the kernel
PCA input space χ. The nonlinear mapping F:χ!F from input space χ to the high-dimen-
sional feature space F is not calculated explicitly. Instead, kernel PCA reformulates standard
PCA in feature space to operate on scalar products of function values F(x)HF(y). The dot
products are evaluated directly in input space by means of Mercer’s theorem, which states that

Fig 1. a)Grouping of similar sub-blocks obtained from an image allows for enhanced sparsity. A reference image block x is denoised by stacking it along
with similar image blocks xi into a multi-dimensional array and performing collaborative filtering in a transform domain. An upper cut-off criterion for the
maximum distance between reference block x and adjacent blocks determines howmany image blocks are used for the transform; all image blocks
contribute equally (linear regime). b)Nonlinear methods can be used for transforms where image blocks contribute depending on a nonlinear function, e.g. a
Gaussian function.

doi:10.1371/journal.pone.0153736.g001
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any positive semi-definite, symmetric, and continuous kernel function k:χ×χ!R can be writ-
ten as an inner product k(xi,xj) = F(xi)

HF(yj)

Kernel PCA can then be performed by solving the kernel eigenvalue problemMla ¼ ~Ka,
whereM is the number of data vectors (image blocks xi) in the input space and λ the eigenvalue

to the eigenvector α. ~K is given by centering [32] the kernel matrix kij = k(xi,xj) defined by all
entries in the input space χ = {xi}. The projection of a centered feature space vector~ðxÞ onto

the n’th principal component is given by bn ¼
XM

i

an;i~kðx;xiÞ [33] where αn,i is the n’th com-

ponent of the eigenvector αi. The projection onto a subspace of principal components spanned

by the first q eigenvectors can be written as PqFðxÞ ¼
Xq

n

bn

XM

i¼1

an;i~ðxiÞ þ�¼
XM

i¼1

gi~ðxiÞ þ�

where�is the mean of the mapped data and gi ¼
Xq

n

bnan;i.

For large numbers of data vectors in the input space and high-dimensional kernel map-
pings, the nonlinear mapping F has typically no analytical inverse function [34]. Approximate

Fig 2. a) Kernel PCA deduces an implicit transformationΦ from input space X (green circles) into a high-dimensional feature space where linear algorithms
can be employed to separate image data from artifacts (red circles). b)Denoising is performed by projecting the test vector x onto the first q principal
components by Pq. Backmapping of the projected data is done by finding a so-called pre-image z in image space which minimizes the Euclidean distance
betweenΦ(z) and PqΦ(x).

doi:10.1371/journal.pone.0153736.g002
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solutions can be found by mapping an estimate z in the input space to the feature space and
update it by optimizing a cost function for the best fit to the projected test value PqF(x). In this
study, an iterative pre-image algorithm [33] is used which minimizes the Euclidean distance in
feature space ||F(z)−PqF(x)||2 with a fixed-point iteration scheme. For any kernel of the form
k(x,y) = k(||x−y||2) as given for Gaussian kernels, the iteration steps can be written as

ztþ1 ¼

XM

i¼1

gikðzt;xiÞxi

XM

i¼1

gikðzt;xiÞ
ð1Þ

Linear versus nonlinear regime with Gaussian kernels. Throughout this paper, a Gauss-

ian kernel kðxi;xjÞ ¼ expð�0:5kxi � xjk22=s2Þ is used. To account for the dependency of the
Euclidean distance ||xi−yj||2 on the square root of the number of pixels per vector, the kernel

function can be written as kðxi;xjÞ ¼ expð�0:5kxi � xjk2

2=ðN � sp
2ÞÞ where sp ¼ s=

ffiffiffiffi
N

p
and

σp is the average distance per pixel [33]. The kernel width σ controls the degree of nonlinearity
of the mapping and indicates how well the test data match the input space data χ = {xi} [35]. In
the linear limit of a very large σ, the kernel matrix kij = k(xi,xj) comprises only of ones and all
data contribute equally to the transform just as for linear transforms. In the nonlinear limit of
overfitting where σ�||xi−xj||2,8xi,xj2χ, the kernel matrix approaches the identity matrix with
the canonical basis vectors as eigenvectors. In this case, the test vector x is mapped to the vector
in the input space {xi} with minimal Euclidean distance. Accordingly, the kernel width should
match the scale of the structure which should be denoised [36].

Kernel PCA input space and back-mapping to an image. In the present work, the tempo-
ral mean of the dynamic data set is removed prior to kernel PCA computations to increase the
similarity between image blocks. The current image estimate is subdivided into overlapping
image blocks which are stacked to vectors xi. To reduce computational complexity and allow for
tailored parameters, the blocks are grouped intoN clusters using a similarity cluster analysis [37].
A kernel PCA input space is generated for each input cluster using a maximum number ofM ran-
domly selected input space vectors from the cluster. The dimension of the input space is given by
the number of voxels per block (Fig 3). AnM xM kernel matrix is then populated with the
selected image blocks using a Gaussian kernel function and a PCA of the kernel matrix is per-
formed. Each image block from the subdivision is finally projected onto the first few principal
components in the features space spanned by theM image blocks from the input space and subse-
quently mapped back to the input space using the fixed-point iteration scheme of Eq (1). The fil-
tered image blocks are multiplied with a normalized 3D Gaussian shape function and then added
together according to the voxel locations to form the next estimate of the dynamic data set.

Projected MR reconstruction for nonlinear transform domains. MR reconstruction
inverts a linear encoding equation

d ¼ Em ð2Þ

where d are the acquired k-space data, E the encoding matrix including Fourier sampling and
weighting with receive coil sensitivities, andm the image to be reconstructed. Image recon-
struction is motivated by iterative thresholding algorithms [38,39] and consists of iteratively
interleaved steps of gradient updates from the acquired k-space data and nonlinear denoising.
The basic update rule is given by

mkþ1 ¼ PkPCAðmk �EHðEmk � dÞÞ ð3Þ
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where PkPCA represents the kernel PCA denoising for each image block andmk the current
image estimate.

Algorithm 1: Pseudo-code implementation of iterative reconstruction with block-based
kernel PCA denoising for dynamic data sets.

Fig 3. Workflow for image reconstruction with nonlinear kernel PCA. Each iteration consists of two steps: (1) a gradient update ensures consistency
with the acquired k-space data, and (2) kernel PCA denoising of image blocks.

doi:10.1371/journal.pone.0153736.g003
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Initialization:
Choose parameters: image block size w = (wx,wy,wt), number of similarity

clusters N, size of kernel matrix (M x M).
1) Get initial image m0 by performing 10 iterations with k-t SPARSE-SENSE

[40].
2) Remove temporal mean.
3) Divide image into overlapping blocks with width w.
4) Perform a k-means cluster analysis to group image blocks into N clusters

and remember the cluster centers and the cluster of each image block.
For each k = 0,1,2, . . . repeat until converged or maximum number of itera-

tions reached.
1) Perform gradient update enforcing data consistency

~mkþ1 ¼ mk �EHðEmk � dÞ.
2) Image block denoising:mkþ1 ¼ PkPCAð ~mkþ1Þ

(a) Remove temporal mean.
(b) Divide image into overlapping blocks with width w.
(c) Refine k-means cluster analysis with an additional iteration.
(d) For each cluster, randomly select a maximum number of M image blocks

to build a kernel matrix. Perform kernel PCA denoising for each
image block xi in the cluster.

(e) Compose denoised image by multiplying each block with a normalized
3D Gaussian shape function and summing up image block values corre-
sponding to each image voxel.

(f) Add temporal mean from step (a).
3) k = k + 1.

Methods
Data acquisition. Six fully sampled two-dimensional cine data set in short axis view of the

heart were acquired on a 3.0 T scanner (Ingenia, Philips Healthcare, The Netherlands) with a
28-channel coil array. The scan parameters of the balanced SSFP sequence included a field-of-
view of 270x270 mm2, 8 mm slice thickness, TR/TE of 3.8/1.84 ms, voxel size of 1.4x1.4 mm2,
45° flip angle, 192x190 acquisition matrix, and 23–28 heart phases. Noise samples were
acquired prior to the scans to calculate the noise covariance matrix. All data were acquired in
healthy subjects after written consent was obtained according to institutional and ethics guide-
lines. The study protocol was approved by the ethics committee of the canton of Zurich.

Data preparation. All k-space data sets were pre-whitened with the noise covariance
matrix [41] and normalized to a mean signal strength of 1 in the region-of-interest (ROI)
around the heart. k-space data were compressed to 12 virtual coils [42] and normalized coil
sensitivity maps were obtained with ESPIRiT [43]. Retrospective undersampling was per-
formed in phase encoding direction using Cartesian pseudo-random undersampling [8].
Undersampling factors were 5, 6.5 and 8.

Data reconstruction. The cine 2D data sets were reconstructed with k-t SPARSE-SENSE
[40], k-t ℓ1-SPIRiT [44], block matching with Fourier filtering similar to LOST [23] and the
proposed algorithm.

The k-t SPARSE-SENSE algorithm minimizes

jjd� Emjj22 þ ljjF tmjj1 ð4Þ

with d and E as defined in Eq (2), and Ft being the temporal FT. The regularization parameter
λ was chosen to minimize the RMSE in the ROI of an exemplary data set.

In the k-t ℓ1-SPIRiT reconstruction of the cine 2D data, the term

kd�ESmSk22 þ l1kðG� IÞmSk2

2 þ l2kF tm
Sk1 ð5Þ
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was minimized with the Fourier sampling matrix ES, the multi-coil imagemS, the coil-wise
temporal FT Ft, and G being the image domain representation of the 7x7 kx-ky SPIRiT [42]
interpolation kernel derived from a 30x20 temporally averaged center of k-space. Eqs (4) and
(5) were minimized using an iterative soft-thresholding [39] and a projection onto convex sets
algorithm [45], respectively, both leaving the acquired data unchanged. The final imagem was
composed by Roemer combination of the multi-coil imagesmS. Thresholds for the soft-thresh-
olding operations were chosen based on minimum RMSE in the region-of-interest of an exem-
plary data set.

Reconstruction with block matching and Fourier filtering involved the same parameters
and clustering algorithm as for the proposed algorithm. The kernel PCA filtering was replaced
with soft thresholding in a Fourier domain similar to LOST. The number of blocks per cluster
was restricted to a maximum of 24 to reduce smoothing artifacts.

For the proposed algorithm, each iteration consisted of a data consistency and a kernel PCA
denoising step comprising of 600 clusters (N) of image blocks, a maximum number of 120
blocks (M) to generate the kernel matrix per cluster and a block size of 5 pixels in each spatial
dimension while using all time frames along the time dimension. The kernel width of the pro-
posed kernel PCA filtering approach was fixed to the median of the mutual distances between
the 25 closest image blocks within each cluster to achieve linear filtering between the most sim-
ilar blocks and increasingly less contribution for blocks with lower similarity. The number of
retained principal components was determined per image block cluster based on a two-compo-
nent model for the cumulated energy in the principal components [36], with a maximum num-
ber of 20 retained principal components. Computation time for the clustering refinement was
between 1s and 5s, for kernel PCA artifact removal 5s–15s per iteration on current computer
hardware with 8 cores.

Results
Results for one exemplary cine data set comparing k-t SPARSE-SENSE, k-t ℓ1-SPIRiT with a
temporal FT sparsifier, block matching with Fourier filtering, and the proposed kernel PCA
reconstruction relative to the fully sampled reference are shown in Fig 4 for 5-fold undersam-
pling. Image quality is compared for systolic and diastolic still frames as well as using temporal
profile plots. The proposed algorithm shows less smoothing artifacts especially in the time
dimension. RMSE values relative to the reference were determined in the 3D ROI as indicated.
Fig 5 compares the different reconstructions for 6.5 and 8-fold undersampling. More image
reconstruction results are shown in Fig 6. Mean and standard deviation of the RMSE for all six
data sets and the four reconstruction algorithms are visualized in Fig 7. Reconstruction based
on kernel PCA is found to exhibit the lowest RMSE.

Discussion
In this work, an algorithm for image reconstruction from undersampled MR data exploiting
block-matching and nonlinear kernel PCA has been proposed and implemented. Images were
reconstructed iteratively by interleaved gradient updates using the acquired k-space data and
shrinkage of nonlinearly transformed image block arrays. Undersampling artifacts in two-
dimensional cardiac cine MR data were reduced and results compared favorably relative to
those obtained with other CS-based reconstruction methods.

Compared to linear transforms of image block arrays, the contribution of each image block
to the transform with the proposed kernel PCA approach is given by a nonlinear function. The
transform is implicitly calculated by kernel PCA and the artifact removal is performed by pro-
jection onto the main principal components in the nonlinear transform domain. Gaussian
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kernels employ the Euclidean distance as dissimilarity measure. Better results may be achieved
using dissimilarity measures which are more suitable for MR images, if the kernel function ful-
fils Mercer’s condition.

The kernel width determines how each image block in the kernel PCA input space contrib-
utes to the transform. By choosing the median of the mutual distances of the most similar
image blocks as kernel width σ, image blocks with high similarity are filtered linearly, while
image blocks which are above the cut-off distance for linear filtering contribute less. The maxi-
mum number of retained principal components is calculated per cluster and based on a two-
component model.

PCA in feature space is based on a ℓ2 penalty function which is sensitive to outliers. Espe-
cially for high reduction factors, large and correlated undersampling artifacts can already dif-
ferentiate the first few principal components from the desired ones. Pre-filtering of data and
employing statistically robust linear feature selection in feature space [46] could further

Fig 4. Systolic and diastolic reference data and reconstruction results for 2D dynamic data with a reduction factor of 5. Temporal profile plots are
taken along the indicated line. RMSE values for the shown 3D subvolume covering the heart over time are quoted. The figures on the right show the full field
of view of the data set as well as the sampling pattern.

doi:10.1371/journal.pone.0153736.g004
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improve artifact removal and simplify the selection of kernel width and number of principal
components.

Iterative thresholding algorithms have computationally economic iteration steps but require
more iterations until convergence than gradient descent ℓ1 minimization [47]. An adaption of
approximate message passing [47] can reduce the maximum number of iterations and reduce
reconstruction times. Further improvements in reconstruction speed can be achieved by corre-
lating multiple image blocks at once and employing iterative kernel PCA schemes such as the
kernel Hebbian algorithm [48], which also scales linearly with the sample size. The use of
many computer nodes in parallel, as for example available on graphics cards, could further
reduce reconstruction times. The convergence rate of the reconstruction could be increased by
modifying the gradient updates with prior knowledge or gradient directions from previous iter-
ation steps [47,49].

Conclusion
Image reconstruction from undersampled data exploiting nonlinear transform domains and
kernel methods is feasible and outperforms conventional k-t SPARSE-SENSE, block matching

Fig 5. Reference and reconstruction results for 2D dynamic data with reduction factors of 6.5 and 8. RMSEs for the shown 3D subvolume covering the
heart over time are indicated.

doi:10.1371/journal.pone.0153736.g005
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Fig 6. Signal-intensity profiles through the left ventricle for reduction factors 5, 6.5 and 8. RMSEs for a
3D subvolume covering the heart over time are indicated.

doi:10.1371/journal.pone.0153736.g006

Fig 7. Mean and standard deviation of the RMSE relative to the fully sampled reference for all 2D cine
data sets (# of volunteers = 6) in a 3D ROI around the heart as indicated in the upper right corner.

doi:10.1371/journal.pone.0153736.g007
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with Fourier filtering and k-t ℓ1-SPIRiT reconstruction. The method holds considerable poten-
tial to allow for higher acceleration factors relative to CS for a range of MR applications includ-
ing cardiovascular imaging.
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