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Abstract: Methods for the pairwise comparison of 2D and 3D molecular structures are established
approaches in virtual screening. In this work, we explored three strategies for maximizing the virtual
screening performance of these methods: (i) the merging of hit lists obtained from multi-compound
screening using a single screening method, (ii) the merging of the hit lists obtained from 2D and 3D
screening by parallel selection, and (iii) the combination of both of these strategies in an integrated
approach. We found that any of these strategies led to a boost in virtual screening performance,
with the clearest advantages observed for the integrated approach. On test sets for virtual screening,
covering 50 pharmaceutically relevant proteins, the integrated approach, using sets of five query
molecules, yielded, on average, an area under the receiver operating characteristic curve (AUC) of
0.84, an early enrichment among the top 1% of ranked compounds (EF1%) of 53.82 and a scaffold
recovery rate among the top 1% of ranked compounds (SRR1%) of 0.50. In comparison, the 2D and
3D methods on their own (when using a single query molecule) yielded AUC values of 0.68 and 0.54,
EF1% values of 19.96 and 17.52, and SRR1% values of 0.20 and 0.17, respectively. In conclusion, based
on these results, the integration of 2D and 3D methods, via a (balanced) parallel selection strategy, is
recommended, and, in particular, when combined with multi-query screening.

Keywords: virtual screening; virtual screening strategies; shape-based virtual screening; similarity-
based virtual screening; molecular fingerprints; benchmarking

1. Introduction

Compounds which are structurally similar are likely to have similar physicochemical
and biological properties. A wide range of methods in cheminformatics are successfully
exploiting this Similar Property Principle [1,2] for the identification of bioactive compounds
(virtual screening [3,4]), the assessment of a compound’s bioactivity profile (target pre-
diction [5]), the optimization of biological and physicochemical properties (quantitative
structure–activity relationship, QSAR modeling [6,7] and quantitative structure–property
relationship, QSPR modeling [8]), and toxicity prediction (e.g., read-across approaches [9]),
among many other applications.

In the context of virtual screening, examples of popular approaches include 2D meth-
ods, ranking the compounds of a screening database according to the similarity of their
molecular fingerprints (e.g., ECFP fingerprints and derivatives thereof) and those of a
compound of interest, and 3D methods, comparing pairs of compounds based on the
similarity of their molecular shapes (often, chemical properties projected onto these shape
representations are also considered in the similarity assessment).
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In recent years, a large number of studies have been published that seek to identify
the best method and technical setup for similarity-based virtual screening. For example,
Krüger et al. [10] compared the virtual screening performance of 2D fingerprint-based and
feature tree-based methods with that of ROCS, a 3D screening engine that analyzes the
aligned molecular shapes (and chemical features, often referred to as “color”) of small
molecules (and also with that of a variety of docking approaches). They investigated
these methods by the example of angiotensin-converting enzyme (ACE), cyclooxygenase 2
(COX2), thrombin and human immunodeficiency virus 1 (HIV-1) protease. For each of the
four targets, the researchers compiled a set of 50 known active compounds and 950 pre-
sumed inactive compounds from the MDL Drug Data Report (MDDR) [11]. They found that
in three out of four cases, the 3D screening method ROCS yielded substantially higher early
enrichment factors (i.e., among the top 1% of the ranked molecules) than the 2D screening
methods and docking. These findings were in contrast to those of Venkatraman et al. [12],
who reported that methods based on 2D molecular fingerprints in general outperform 3D
shape-based methods. The observations of Venkatraman et al. were based on tests of five
2D fingerprint-based methods, including the Daylight Fingerprints [13], MACCS keys [14],
and MOLPRINT 2D fingerprints [15], as well as five 3D shape-based screening engines
(i.e., ESHAPE3D [16], PARAFIT [17], ROCS, SHAEP [18] and USR [19]) on the Directory
of Useful Decoys (DUD) [20]. In this setup, the fingerprint-based methods obtained area
under the receiver operating characteristic curve (AUC) values between 0.70 (MOLPRINT
2D fingerprint) and 0.76 (Daylight fingerprint and others), and the 3D shape-based method
obtained AUC values between 0.44 (ESHAPE3D) and 0.70 (ROCS; considering molecular
shape and chemical properties). The authors postulate that the inferior performance of the
3D methods is related to the fact that only a single conformation was used to represent each
query molecule. However, an earlier study indicates that the use of multiple conformations
to represent a query molecule may not substantially improve the performance of 3D meth-
ods (as long as the single query conformation is of good quality and consistent with the
conformer ensembles generated for each of the molecules in the screening set) [21]. It is
important to note that the DUD (and many other benchmark data sets) contains significant
biases which have been shown to skew the results of performance tests [20,22–25].

Hu et al. [26] compared the virtual screening performance of 14 2D fingerprints (in-
cluding MDL Keys, atom pair-based fingerprints and various types of ECFP, ECFC, FCFP
and FCFC fingerprints) and four 3D screening methods implemented in Phase [27] on the
DUD_LIB_VS_1.0 [28], a subset of the DUD that is designed for ligand-based virtual screen-
ing. They found that 2D fingerprints (e.g., ECFP_2) yielded, on average, slightly better
performance than the 3D shape-based methods implemented in Phase (e.g., shape_ele) in
terms of mean AUC (AUC of 0.85 for ECFP_2 compared to 0.83 for shape_ele) and early
enrichment (the receiver operating characteristics enrichment (ROCE) value at 0.5% of the
rank-ordered hit list was 103.74 for ECFP_2 in comparison to 95.9 for shape_ele).

While there is no virtual screening method in existence that consistently outperforms
the others, an established key strategy for maximizing the success rates in virtual screening
is the fusion of results obtained with different methods and queries [29–31]. Shang et al. [32],
for example, combined a method based on 2D molecular fingerprints (FP2, which is a
Daylight-type path-based fingerprint, or MACCS keys) with a 3D shape-based approach
(WEGA [33]) using a hybrid score that is the square root of the product of the individual
scores. On 40 selected targets of the DUD-E data set utilized as benchmark data set in their
work, the integrated approach (with the hybrid score) yielded an average EF1% value of
22.98 while the average EF1% values for the 2D and the 3D approaches were 20.79 and
16.64, respectively.

Pavadai et al. [34] searched an in-house database of steroid-type natural products for
compounds with anti-plasmodial activity. They used fusidic acid, an established antibiotic
and known anti-plasmodial compound, as query for similarity searches with different 2D
molecular fingerprints (e.g., FCFP_2, ECFC_4 and FCFC_4) and 3D shape-based methods
(e.g., shape-based screening with Phase). From the hit lists obtained with the individual
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screening methods, the authors selected a total of 27 compounds for testing in an anti-
plasmodial assay with Plasmodium falciparum. Among these 27 compounds, four were
found to exhibit activity, with IC50 values between 1 and 4 µM.

Today, substantial information on the performance of 2D and 3D similarity methods
in virtual screening is available. Studies have shown that the combination of 2D and 3D
methods can yield better results. However, the scope of these studies is limited to a few
targets. No systematic analysis of the capacity of different strategies to create synergy from
the combination of 2D and 3D methods has been reported, as of yet.

In this work, we systematically explored the capacity of a variety of strategies to maxi-
mize the virtual screening success rates of similarity-based approaches. More specifically,
we explored one of the most popular 2D molecular representations, Morgan fingerprints,
and a leading 3D screening engine comparing the shape (and chemistry) of aligned molec-
ular structures, ROCS. The methods and strategies were tested on bioactivity data sets
compiled for 50 prominent therapeutic targets (Table 1): 23 enzymes, 21 membrane recep-
tors, three ion channel receptors, two transcription receptors and one transporter receptor.
This list of 50 targets was elaborated previously, by Heikamp and Bajorath, as part of a
large-scale benchmarking study of similarity-based approaches for virtual screening [35].
For our study, we collected bioactive compounds for these 50 targets from the ChEMBL
database. In order to obtain realistic data sets for virtual screening, we joined, individu-
ally for each target, the confirmed bioactive and confirmed inactive compounds from the
ChEMBL database (excluding any compounds used for testing the screening methods)
with one and the same set of 94,685 presumed inactive compounds, selected by random
sampling from the Enamine HTS Collection [36] (one of the leading libraries of purchasable
screening compounds). We note that a small fraction of the presumed inactive compounds
from the Enamine HTS Collection (usually in the range of 0.1%) would in fact show activity
on the target when tested in vitro. This fact should be taken into account when interpreting
the results presented in this work.

The virtual screening experiments were performed using, for each of the 50 investi-
gated targets, 30 randomly selected, active compounds as queries (which were removed
from the screening data sets). For the purpose of 3D virtual screening, these query
molecules were represented by a single, low-energy 3D conformation whereas the molecules
of the individual screening data sets were represented by ensembles of a maximum of
200 conformers.

We start this report with the assessment of the performance of the 2D fingerprint-
based approach and the 3D molecular shape-based method when used on their own, hence,
defining the baseline performance of the methods. We then evaluate the capacity of three
different strategies to improve virtual screening performance (Figure 1):

• Strategy 1: the merging of hit lists obtained from screening with a set of query molecules
• Strategy 2: the merging of the hit lists obtained from 2D and 3D screening, and
• Strategy 3: the combination of Strategy 1 and Strategy 2.
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Table 1. Composition of the Prepared Data Set for Virtual Screening.

ChEMBL ID Target Name No. Active Compounds 1 No. Confirmed Inactive
Compounds 1

CHEMBL1792 Somatostatin receptor 5 387 6
CHEMBL1844 Macrophage colony stimulating factor receptor 662 5
CHEMBL1862 Tyrosine-protein kinase ABL 901 115
CHEMBL1889 Vasopressin V1a receptor 515 28
CHEMBL1946 Melatonin receptor 1B 452 0
CHEMBL1952 Thymidylate synthase 165 54
CHEMBL1957 Insulin-like growth factor I receptor 1767 92
CHEMBL1974 Tyrosine-protein kinase receptor FLT3 1139 56
CHEMBL1983 Serotonin 1d (5-HT1d) receptor 475 3
CHEMBL1991 Inhibitor of nuclear factor κ B kinase β subunit 893 134
CHEMBL2034 Glucocorticoid receptor 1216 40
CHEMBL2049 Oxytocin receptor 378 36
CHEMBL208 Progesterone receptor 859 26
CHEMBL210 β2-adrenergic receptor 633 202

CHEMBL2276 c-Jun N-terminal kinase I 753 44
CHEMBL230 Cyclooxygenase-2 1108 407

CHEMBL2337 Glycine transporter 1 462 32
CHEMBL234 Dopamine receptor D3 2556 20

CHEMBL2373 C5a anaphylatoxin chemotactic receptor 74 23
CHEMBL2414 C-C chemokine receptor type 4 254 28
CHEMBL2434 Interleukin-8 receptor B 614 15
CHEMBL245 Muscarinic acetylcholine receptor M3 963 60
CHEMBL254 Phosphodiesterase 4A 369 20

CHEMBL2568 Liver glycogen phosphorylase 283 36
CHEMBL267 Tyrosine-protein kinase SRC 829 120
CHEMBL286 Renin 1028 44
CHEMBL288 Phosphodiesterase 4D 475 93

CHEMBL2954 Cathepsin S 1202 74
CHEMBL3242 Carbonic anhydrase XII 2109 57
CHEMBL3397 Cytochrome P450 2C9 1763 1159
CHEMBL3764 Urotensin II receptor 248 0
CHEMBL3772 Metabotropic glutamate receptor 1 582 30
CHEMBL3785 Nicotinic acid receptor 1 259 13
CHEMBL3837 Cathepsin L 947 395
CHEMBL4015 C-C chemokine receptor type 2 960 65
CHEMBL4072 Cathepsin B 573 295
CHEMBL4234 Estradiol 17-β-dehydrogenase 3 133 2
CHEMBL4296 Sodium channel protein type IX α subunit 1852 106
CHEMBL4306 Voltage-gated potassium channel subunit Kv1.5 431 43
CHEMBL4333 Sphingosine 1-phosphate receptor Edg-1 1627 118
CHEMBL4561 Neuropeptide Y receptor type 5 577 1
CHEMBL4616 Ghrelin receptor 906 17
CHEMBL4618 Leukotriene A4 hydrolase 230 42
CHEMBL4722 Serine/threonine-protein kinase Aurora-A 1247 145
CHEMBL4777 Neuropeptide Y receptor type 1 271 136
CHEMBL4792 Orexin receptor 2 1150 0
CHEMBL4805 P2X purinoceptor 7 1456 12
CHEMBL4822 β-secretase 1 2559 299
CHEMBL5071 G protein-coupled receptor 44 1799 53
CHEMBL5145 Serine/threonine-protein kinase B-raf 1579 166

1 To this number of confirmed inactive compounds, 94,685 presumed inactive compounds were added (these
94,685 compounds resulted from a random sample of 100,000 presumed inactive compounds that were extracted
from the Enamine HTS Collection and preprocessed according to the protocol reported in Section 3.1).
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Figure 1. Overview of the investigated virtual screening approaches and strategies. The red boxes
highlight the compounds selected by the individual hit selection strategies.

2. Results

The performance of the 2D fingerprint-based approach and the 3D molecular shape-
based approach, in combination with different strategies aiming to improve virtual screen-
ing performance, was investigated from three perspectives:

1. Overall virtual screening performance. The overall virtual screening performance re-
flects the ability of a method to discriminate active from inactive compounds. We
quantified the overall screening performance using the AUC as metric.
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2. Early enrichment. Early enrichment describes the ability of a method to rank active
compounds early in the hit list. We quantified early enrichment using enrichment
factors calculated for the k% top-ranked molecules, where k = 1, 3, 5 or 10.

3. Scaffold recovery rate. The scaffold recovery rate (SRR) describes the ability of a
method to identify active compounds of diverse molecular structures. The SRR was
calculated as the proportion of Murcko scaffolds [37] of known active compounds
that were ranked early in the hit list (i.e., among the k% top-ranked molecules, where
k = 1, 3, 5 or 10).

2.1. Baseline Performance of the 2D and 3D Virtual Screening Methods

Averaged across the 50 investigated targets, the 2D approach showed a better screening
performance than the 3D approach (Figure 2A and Table 2): The average AUC (to which
each target is contributing a single AUC value that itself is an averaged AUC across the
30 screening runs with different molecule queries) obtained by the 2D approach was 0.68,
whereas for the 3D approach the average AUC was just 0.54 (the difference in the average
AUC obtained by the two methods was statistically significant, as confirmed by the paired
Wilcoxon signed-rank test; p-value 2.31 × 10−9). However, even a mean AUC of 0.68 was
an indication of only mediocre virtual screening performance.
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Figure 2. Violin plots showing the distributions of (A) AUC, (B) EF1% and (C) SRR1% values
obtained by the different approaches across the 50 investigated targets, with “2D single query”
representing the baseline performance of the 2D fingerprint-based screening method, “3D single
query” representing the baseline performance of the 3D shape-based method, “2D five queries”
representing the performance of the 2D method using five query molecules (Strategy 1), “3D five
queries” representing the performance of the 3D method using five query molecules (Strategy 1),
“parallel selection” representing the performance of the 2D and 3D approach when combined using
the balanced, parallel selection method (Strategy 2), and “integrated approach” representing the
combination of Strategy 1 and Strategy 2 (a combined hit list was generated by selecting an equal
number of hits from the 2D and 3D methods which were each run with sets of five query molecules).
The dashed lines mark the quartiles of the distributions.
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Table 2. Performance of the Investigated Virtual Screening Approaches and Strategies.

Method Mean
AUC 1

Mean
Stdev

2
EF1% Stdev

EF1% EF10% Stdev
EF10%

SRR
1%

Stdev
SRR1%

SRR
10%

Stdev
SRR10%

2D single query 0.68 0.10 19.96 10.87 3.69 1.43 0.20 0.10 0.38 0.14
3D single query 0.54 0.13 17.52 10.54 2.87 1.38 0.17 0.10 0.29 0.13
2D five queries 0.82 0.05 44.59 8.48 6.23 0.88 0.42 0.08 0.61 0.08
3D five queries 0.69 0.07 39.48 8.39 5.20 0.93 0.36 0.08 0.50 0.09

Balanced, parallel selection 0.70 0.10 28.16 11.14 4.44 1.35 0.27 0.10 0.45 0.13
Integrated approach 0.84 0.04 53.82 6.57 6.97 0.69 0.50 0.07 0.67 0.07

1 AUC averaged across all targets, where each target is represented by a single AUC value that itself is an average
obtained from 30 screening runs with different query molecules. 2 Standard deviation was averaged across the
50 target-specific standard deviations (where the standard deviations for the individual targets were derived from
30 screening runs with different query molecules).

For the individual targets, the AUC values (which are averages across the 30 query
molecules of a target) ranged from 0.47 (for the neuropeptide Y receptor type 1) to 0.88 (for
the β2-adrenergic receptor) for the 2D approach, and from 0.36 (cytochrome P450 2C9) to
0.78 (leukotriene A4 hydrolase) for the 3D approach. For information on the AUC values
obtained for the individual targets the reader is referred to Table S1.

With respect to the early enrichment, the 2D approach also fared, on average, better
than the 3D approach (Figure 2B and Table 2). The EF1%, averaged across the 50 targets,
was 19.96 for the 2D approach compared to 17.52 for the 3D approach (p-value 4.34 × 10−4).
Thereby, the EF1% obtained by the 2D method ranged from 3.86 (cytochrome P450 2C9)
to 43.84 (β2-adrenergic receptor), and that of the 3D method from 3.08 (cytochrome P450
2C9) to 39.00 (melatonin receptor 1B; the enrichment factors for the individual target are
provided in Table S2).

Likewise, the averaged EF10% values were 3.69 for the 2D similarity method and
2.87 for the 3D similarity method (p-value 4.73 × 10−8). For the 2D method, EF10% values
ranged from 1.23 (cytochrome P450 2C9) to 7.33 (β2-adrenergic receptor), whereas for the
3D method they ranged from 0.83 (cytochrome P450 2C9) to 5.89 (melatonin receptor 1B).
The prevalence of cytochrome P450 2C9 as a challenging target was not surprising, given
the broad range of substrates this enzyme can transform (cytochrome P450 2C9 is the only
cytochrome P450 enzyme among the 50 investigated targets).

Looking more closely at the individual targets, the 2D method yielded better EF1%
values than the 3D method for 37 out of the 50 proteins (Table S2). The biggest advantage
of the 2D approach over the 3D approach was observed for the β2-adrenergic receptor data
set (EF1% 43.84 vs. 22.13). Among the cases in which the 3D approach outperformed the
2D approach, the maximum difference in early enrichment performance was observed for
the orexin receptor 2 (EF1% 19.99 vs. 16.29).

Unsurprisingly, the observations of superior EF1% and EF10% performance of the
2D approach were consistent with the trends observed for EF3% and EF5% (Table S3). It
is worth mentioning though that the EFs obtained by one and the same virtual screening
method differed, in part, substantially across the individual targets and even across the
individual query molecules for the same target (Tables S2, S4 and S5). This observation
corroborated the importance of the query molecule to virtual screening success.

With respect to SRRs, the observed trends were consistent with those observed for
AUC and EF: The 2D method retrieved, on average, across the 50 targets, 20% of the known
bioactive molecular scaffolds among the top 1% of the ranked molecules (i.e., SRR1% = 0.20).
In comparison, the 3D method recovered only 17% on average (SRR1% = 0.17; p-value
2.25 × 10−4; Figure 2C). For the 2D method, the SRR1% varied between 0.03 (cytochrome
P450 2C9) and 0.42 (β2-adrenergic receptor), whereas for the 3D method, the rates ranged
from 0.02 (cytochrome P450 2C9) to 0.37 (melatonin receptor 1B). For the top 10% of the
ranked molecules, the average SRR was 0.38 for the 2D method and 0.29 for the 3D method
(p-value 1.62 × 10−8). Additional information on SRRs is provided in Tables S3–S6.
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Looking at the individual targets, for 34 out of 50 targets the SRR1% was better for the
2D method than for the 3D method (Table S6). The biggest advantage of the 2D method
over the 3D method was observed for the β2-adrenergic receptor (SRR1% 0.42 vs. 0.23).
Among the minority of cases in which the 3D approach achieved superior SRR1% values,
the largest difference was observed for the sphingosine 1-phosphate receptor Edg-1 (SRR1%
0.23 vs. 0.17).

Based on the observations discussed above, we concluded that the baseline virtual
screening performance of the 2D approach was at least as good as that of the computation-
ally more expensive 3D approach. We learned that the trends observed for the individual
metrics were consistent across the different rank-cutoffs explored (i.e., top 1%, top 3%, top
5% and top 10%). Moreover, no major differences between average values and median
values of the performance metrics were observed (Tables S3 and S7). For these reasons,
further discussions focused on averages and the top 1% of the hit list.

2.2. Exploration of Strategies for Maximizing the Success Rates of Similarity-Based Methods for
Virtual Screening
2.2.1. Strategy 1: Use of Multiple Compounds as Queries

A promising strategy for maximizing the success rates of similarity-based methods for
virtual screening is the use of multiple query molecules, rather than just a single one. In this
scenario, a rank-ordered list of compounds (hit list) is obtained for each query. The lists can
then be merged into a single list in different ways. In the context of virtual screening, “MAX
fusion” is likely the best strategy for merging hit lists [30,38–40]. MAX fusion assigns, to
each compound in the hit list, the best score obtained for that compound with any of the
query molecules.

Considering the fact that in a real-world scenario the number of known bioactive
compounds for a target of interest is usually scarce, we explored multi-query screening
with one, two, three, four and five query molecules per target (note that if a single query
molecule is used, the method is identical to the baseline method). The sets of query
molecules were assembled by random selection using a defined seed that ensured that
the smaller query sets were always a subset of the set composed of five queries (the five
queries were removed from the screening data sets prior to the conduction of the screening
experiments). Importantly, the sets of query molecules used for screening with the 2D
approach and the 3D approach were identical, hence, enabling the direct comparison of the
two methods. The process of query selection and virtual screening was repeated 30 times
(with unique random seeds between 0 and 29) to allow the assessment of the variance in the
experiment. In total 300 virtual screens were conducted for each of the 50 targets, resulting
from the use of five different sets of query molecules (composed of one, two, three, four
and five query molecules) during each of the 30 repetitions, with two virtual screening
methods (2D and 3D).

Averaged across the 50 targets, both the 2D method and the 3D method showed clear
gains in AUC values, EF values and SRRs (Table S8): For the 2D approach, the mean AUC
across 50 targets improved gradually from 0.68 in single-query mode (which is identical
to the baseline approach) to 0.82 when using a set of five query molecules (Table 2 and
Figure 3A). For the 3D approach, the mean AUC increased from 0.54 to 0.69, respectively.
For the individual targets, the AUC values (using five query molecules) ranged from 0.52
(cytochrome P450 2C9) to 0.97 (melatonin receptor 1B) for the 2D approach, and from 0.39
(cytochrome P450 2C9) to 0.92 (nicotinic acid receptor 1) for the 3D approach (performance
on the individual targets reported in Tables S9 and S10).
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Figure 3. Violin plots showing the distributions of (A) AUC, (B) EF1% and (C) SRR1% values obtained
by the 2D fingerprint-based method and the 3D shape-based method over the 50 investigated targets,
with different sizes of the query sets. The dashed lines mark the quartiles of the distribution.

As observed for the AUC values, the EF1% and SRR1% both also increased with either
approach as more query molecules were used. For the 2D approach, the averaged EF1%
increased from 19.96 in single-query mode to 44.59 when using sets of five molecule queries
(Figure 3B; additional data provided in Table S8). For the 3D approach, the averaged EF1%
increased from 17.52 to 39.48, respectively. For the individual targets, the EF1% values with
five molecule queries ranged from 9.89 (cytochrome P450 2C9) to 82.24 (C5a anaphylatoxin
chemotactic receptor) with the 2D approach, and from 9.50 (carbonic anhydrase XII) to
76.58 (nicotinic acid receptor 1) with the 3D approach.

The 2D approach obtained an SRR1% of 0.20 when using a single query molecule while
the same approach obtained an SRR1% of 0.42 when using sets of five query molecules
(Figure 3C and Table S8). Likewise, the 3D approach, using a single query molecule,
obtained an SRR1% of 0.17 whereas the same approach using sets of five query molecules
obtained an SRR1% of 0.36. When five query molecules were used for the individual targets,
the SRR1% values ranged from 0.07 (cytochrome P450 2C9) to 0.80 (C5a anaphylatoxin
chemotactic receptor) for the 2D approach, and from 0.06 (cytochrome P450 2C9) to 0.79
(nicotinic acid receptor 1) for the 3D approach.

The early EF and SRR values of both the 2D and the 3D approach increased consistently
as more query molecules were added to the screen (Table 2), and the variance in perfor-
mance decreased. The reader is referred to Tables S11–S18 for data on the performance of
the two approaches on the individual targets.

Averaged across the 50 investigated targets, the 2D approach outperformed the 3D
approach in most cases with respect to the overall performance (AUC), early enrichment
and early recovery rates, regardless of the number of query molecules used for screening
(all p-values < 0.05). Only for a minority of targets (10% to 28% of the investigated targets;
Table 3), did the 3D approach outperform the 2D method (Tables S9–S18).

Table 3. Number of Targets on which the 2D Method Outperformed the 3D Method.

Query Set Size
No. Targets on Which the 2D Approach Outperformed the 3D

Approach with Respect to the

EF1% SRR1%

1 37 34
2 36 37
3 39 39
4 38 39
5 39 40
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2.2.2. Strategy 2: Parallel Selection of Compounds Ranked at Top Positions by the 2D
and/or the 3D Virtual Screening Approach

When comparing the results obtained with the 2D fingerprint-based method and the
3D shape-based method, we found that the overlap between the active compounds in the
top ranks was low (Figure 4). When looking at Murcko scaffolds, we found that 14% of the
scaffolds of the active compounds ranked with the 2D approach among the top 1% ranks
(average across the 50 investigated targets) were missed by the 3D approach. Likewise,
on average, 12% of the scaffolds underlying the actives ranked among the top 1% of the
ranked molecules with the 3D approach were missed by the 2D approach (Table 4). Only
5% of the scaffolds of known actives were ranked, on average, by both methods among the
top 1% of the ranked molecules.
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Figure 4. Parallel coordinate plot visualizing the differences in the ranks assigned to the known active
compounds by the 2D approach (left) and the 3D approach (right). The plot shows the 100 top-ranked,
active compounds reported by either method. From the plot, it is obvious that many of the active
compounds that were rightly ranked at top positions by the 2D approach were missed by the 3D
approach (in the top-ranked positions) and vice versa. The color spectrum applied to the lines
visualizes the ranks assigned to the known active compounds by the 2D approach (dark blue: top
ranks; yellow: lowest ranks).

Table 4. Scaffold Recovery Rates for the Top 1% and Top 10% Ranks, averaged across the 50 Targets.

SRR 2D Approach 3D Approach

Proportion of Scaffolds of Active Compounds
Identified Exclusively by the

Proportion of Scaffolds of Active Compounds
Identified by

2D Approach 3D Approach Both Approaches at Least one of the
Two Approaches

SRR1% 0.20 0.17 0.14 0.12 0.05 0.31
SRR10% 0.38 0.29 0.24 0.15 0.14 0.53

Taken together, the observations described above indicate that a well-designed combi-
nation of the 2D approach and the 3D approach might well yield better performance, in
particular, with respect to the recovery of (structurally diverse) bioactive compounds. The
first strategy that we explored in this regard was parallel selection. In parallel selection, an
empty hit list is created and filled by sequential, iterative transfer of the hits obtained by
the 2D and the 3D approach.

In the case of balanced, parallel selection, equal numbers of hits were selected from
both approaches. Any duplicates were removed (i.e., replaced by the next, unique hit
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molecule). In the case of imbalanced, parallel selection, distinct numbers of hits were
transferred from the individual hit lists. For example, when applying a ratio of 9:1 during
parallel selection, the empty hit list would be filled with 90% of the compounds resulting
from the 2D screen and 10% of the compounds resulting from the 3D screen. Any dupli-
cates were removed and the procedure was repeated until all the slots of the new hit list
were filled.

Starting from a (combined) hit list that was, at the beginning, composed exclusively
of the hits obtained with the 3D approach, Figure 5A and Table S19 show how the early
enrichment factors evolved as the hits were increasingly replaced by compounds assigned
top ranks by the 2D approach. The graphs show that, in most cases, the best early enrich-
ment rates were obtained when balanced weighing of the 2D and the 3D approach was
applied (in other words, in cases where identical numbers of compounds were selected
from the two rank-ordered hit lists; see also Table S19). Consistent observations were made
also for the SRRs (Figure 5B and Table S19).
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Figure 5. Development of the (A) EF1% and (B) SRR1% as the proportion of hits selected from the
2D approach was increased. The values on the left side of the two plots reflect the performance
of the baseline 3D approach (as no hits from the 2D approach were included in the combined hit
list) and the values on the right side show the performance of the baseline 2D approach (as no hits,
obtained with the 3D approach, were included in the combined hit list). In the center of the graphs,
the performance of the balanced, parallel selection approach is shown. In most cases, the balanced
selection was the most favorable setup with respect to all performance measures considered. The
median curve is shown as a black line; the envelope of the 50% central region and the maximum
non-outlying envelope are visualized in gray, and the outlier curves are shown as colored lines.

With respect to global screening performance, the mean AUC (averaged across the
50 targets) obtained with the balanced, parallel selection approach (applying equal weights
to the 2D and the 3D approach) was higher (0.70) than that obtained with the baseline 2D
method (0.68; p-value 4.03 × 10−5) and the baseline 3D method (0.54; p-value 7.49 × 10−10).
Regarding the performance of the methods on the individual targets, the AUC for the
parallel approach ranged from 0.45 (cytochrome P450 2C9) to 0.92 (melatonin receptor 1B;
see Table S1 for performance data for the individual targets).

With respect to early enrichment, the balanced, parallel selection approach fared
substantially better (EF1% 28.16) than the baseline 2D approach (EF1% 19.96; p-value of
8.53 × 10−10) and the baseline 3D approach (EF1% = 17.52; p-value of 7.56 × 10−10). For the
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individual targets, the EF1% ranged from 5.53 (cytochrome P450 2C9) to 56.52 (somatostatin
receptor 5; see Table S2).

Balanced, parallel selection identified, on average, 27% of the scaffolds of the active
compounds among the top 1% of the ranked compounds, whereas the baseline 2D method
identified just 20% (p-value 9.85 × 10−10) and the baseline 3D method identified only 17%
(p-value 7.47 × 10−10). The SRR1% for the individual targets ranged from 0.04 (cytochrome
P450 2C9) to 0.55 (C5a anaphylatoxin chemotactic receptor; Table S6).

2.2.3. Strategy 3: Integration of Multi-Query Screening and Balanced, Parallel Selection

The findings described in the previous sections suggest that the integration of multi-
query screening (Strategy 1) with balanced, parallel selection (Strategy 2) could further
increase virtual screening success rates. Therefore, we explored Strategy 3, in which the
final hit list was generated by selecting an equal number of top-ranked compounds from
the rank-ordered lists of compounds obtained from multi-query screening (with the 2D
approach and the 3D approach), using MAX fusion.

As reported in Figure 6A and Table S20, the integrated approach did indeed yield
better results. The mean AUC (i.e., the average across the 50 investigated targets) for the
integrated approach increased from 0.70 when using a single query molecule (in this case,
the integrated approach is identical to the balanced, parallel selection mode) to 0.84 when
using sets of five query molecules. The AUC values were significantly higher than the
AUC values obtained by the corresponding multi-query 2D approach (AUC 0.82 when
using sets of five query molecules; p-value 2.82 × 10−6) and multi-query 3D approach
(AUC 0.69 when using sets of five query molecules; p-value = 1.09 × 10−9). The overall
performance of the individual targets varied from 0.50 (cytochrome P450 2C9) to 0.99
(melatonin receptor 1B; see Table S1). The target-specific values are reported in Table S21.
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With respect to early enrichment, the integrated method also outperformed all other
setups (Figure 6B). When using sets of five query molecules, the mean EF1% obtained by
the integrated approach was 53.82 compared to 44.59 for the second-best setup, which
is the multi-query 2D approach using sets of five query molecules (p-value 9.07 × 10−10;
Table S2). Among the 50 investigated targets, the integrated approach (using sets of five
query molecules) obtained higher EF1% values for 48 and 50 targets compared to the
multi-query 2D approach (using sets of five query molecules) and the baseline 2D approach
(using a single query molecule). The EF1% for the individual targets ranged from 13.94
(cytochrome P450 2C9) to 89.90 (c5a anaphylatoxin chemotactic receptor). The target-
specific values are reported in Tables S2, S22 and S23).
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For the mean SRR1%, the trends were consistent with the previous observations
(Figure 6C). With sets of five query molecules, the SRR1% of the integrated approach was
0.50, which was significantly higher than 0.42 (p-value 2.50 × 10−9), the value obtained
for the second-best setup, which was again the multi-query 2D approach using sets of
five query molecules. Across the 50 investigated targets, the SRR1% of the integrated
approach (using sets of five query molecules) was higher for 46 and 50 targets, compared
to the multi-query 2D approach (using sets of five query molecules) and the baseline 2D
approach. The SRR1% for each target was in the range of 0.09 (cytochrome P450 2C9)
to 0.88 (c5a anaphylatoxin chemotactic receptor). Target-specific values are reported in
Tables S6, S24 and S25.

When comparing the integrated approach with the multi-query 3D screening approach
(Strategy 1), all 50 targets (100% of the targets) performed at least equally well in terms of
the EF1% (target-specific information is provided in Tables S2 and S22) and SRR1% of the
ranking list (Tables S6 and S24).

3. Materials and Methods
3.1. Data Sets and Data Processing

The full set of bioactivity records for the 50 protein targets (Table 1), investigated
by Heikamp and Bajorath in their study of the performance of similarity-based methods
utilizing fingerprints [35], was retrieved from the ChEMBL database version 27 [41,42]
via its web interface [43]. The bioactivity records were processed with a data preparation
protocol published by some of us previously [44]. In brief, this protocol ensures that
only high-quality bioactivity and chemical information is used, and it includes a labeling
procedure that labels any compound with a “standard_value” (i.e., bioactivity value) of
less than 10,000 nanomolar in ‘Kd’, ‘AC50’, ‘IC50’, ‘Ki’, ‘EC50’ or ‘Potency’ as active and
any compound with a standard_value greater than 20,000 as inactive.

The rates of active compounds in the ChEMBL-derived bioactivity data sets are sub-
stantially higher than those found in typical screening libraries. To simulate virtual screen-
ing in a scenario that resembles real-world applications more closely, the inactive com-
pounds were supplemented with 100,000 presumed inactive compounds sourced from
the Enamine HTS Collection (data accessed: July 2020) by random selection (unless stated
otherwise, all random sampling procedures in this study utilized a random seed of 2506).

All compounds (including those from the ChEMBL database, as well as the 100,000 com-
pounds from the Enamine subset) were filtered, based on molecular weight (any com-
pounds with a molecular weight outside the range of 250 to 1500 Da were discarded) and
element types (any compounds composed of atoms other than H, B, C, N, O, F, Si, P, S, Cl, Se,
Br, and I were discarded). The salt filter implemented in RDKit [45] was applied to remove
the minor components of the salts. In addition, any active compounds without a complete
definition of the stereochemical configuration of tetrahedral atoms were discarded. This
step was performed to ensure the full definition of any compounds potentially used as
queries in 3D virtual screening.

For each of the 50 assembled target data sets, 30 active compounds were selected
randomly to serve as queries for virtual screening. In preparation for 3D virtual screening,
for all query molecules, a single, low-energy 3D conformation was generated with OMEGA
(all settings kept default, except for “-maxconfs” set to “1”) [46,47]. For all confirmed and
for all presumed inactive compounds, ensembles of a maximum of 200 conformers were
calculated with OMEGA (all settings default, except for the flipper option, which was
enabled to enumerate all possible stereochemical configurations for compounds with up to
six undefined stereocenters; for any compound with more than six undefined stereocenters,
64 isomers were picked randomly from a larger set of stereoisomers). The composition of
the prepared data set is reported in Table 1.
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3.2. Virtual Screening

Virtual screening based on 2D molecular similarity was performed with the RDKit
using Morgan fingerprints (radius = 2; number of bits = 1024). The 3D virtual screening was
performed with ROCS [48,49] using default settings, with the TanimotoCombo score [48]
used for the ranking of pairs of compounds. The TanimotoCombo score ranges from
0 to 2, with higher values indicating a higher degree of molecular similarity. There are
two components to this score that each contributes a value between 0 and 1: The Shape
Tanimoto score, which quantifies the similarity of molecules with respect to their molecular
shape, and the Color Tanimoto score, which quantifies the similarity of molecules with
respect to their pharmacophoric properties.

4. Conclusions

In this work, we first benchmarked the virtual screening performance of 2D similarity-
based approaches, represented by an approach utilizing Morgan2 fingerprints, and 3D
similarity-based approaches, represented by the screening engine ROCS (which takes
chemical features into account) on data sets covering 50 pharmaceutically relevant proteins.
We then explored three strategies for maximizing the virtual screening performance of
these approaches:

• Strategy 1: Screening with one method using multiple query molecules and merging
of the hit lists using MAX fusion

• Strategy 2: Screening with both methods and merging of the hit lists by parallel
selection, and

• Strategy 3: Combination of strategies (1) and (2).

The performance of individual methods and strategies was quantified and compared
with respect to the overall ranking performance (AUC), early enrichment (EF1% to EF10%)
and the early recovery of the molecular scaffolds (SRR1% to SRR10%).

As a first important observation, we found that, in general, the 2D approach out-
performed the computationally more expensive 3D approach in virtual screening. While
the AUC values (averaged across the 50 investigated targets) obtained by the baseline 2D
approach and the baseline 3D approach were only moderate (0.68 and 0.54, respectively),
early enrichment was high (EF1% 19.96 and 17.52, respectively). Among the top 1% of
the ranked molecules, the 2D method recovered 20% of the scaffolds of known active
compounds whereas the 3D method recovered 17%.

As a second important observation, we found that virtual screening success rates
improved consistently as more query molecules were used (Strategy 1). While the baseline
2D method, using a single query molecule, obtained an average AUC of 0.68, EF1% of
19.96 and SRR1% of 0.20, the 2D method, using a set of five query molecules, obtained an
average AUC of 0.82, EF1% of 44.59 and SRR1% of 0.42. Therefore, the use of multiple
query molecules for screening is clearly recommended (the more the merrier).

A third key observation is that the overlap between the active scaffolds ranked early
in the hit lists (top 1%) obtained with the 2D method and the 3D method was as low as
5%. Given the fact that early enrichment was good but the overlap of active compounds
among the top ranks was low, it is reasonable to expect that the merging of the hit lists
obtained with the 2D method and the 3D method by (balanced) parallel selection (Strat-
egy 2) would improve virtual screening performance. This was indeed the case: balanced,
parallel selection yielded an average AUC of 0.70, EF1% of 28.16 and SRR1% of 0.27, while
the 2D method yielded (as mentioned above) an average AUC of 0.68, EF1% of 19.96 and
SRR1% of 0.20. By merging multi-query screening (Strategy 1) and (balanced), parallel se-
lection (Strategy 2), further improvement of virtual screening was achieved: this integrated
approach (Strategy 3) yielded an average AUC of 0.84, EF1% of 53.82 and SRR1% of 0.50.

In summary, this study found that, when considering only performance, virtual
screening methods based on 3D molecular shape representations seem to have no edge
over rapid methods based on 2D molecular fingerprints. That said, a number of features
of (some) 3D methods can prove extremely valuable in virtual screening, such as the
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capacity to produce intuitive alignments for visual inspection and the option to customize
molecular shape and pharmacophoric features. However, the main point to make here is
not on the advantages and disadvantages of the 2D and 3D methods for similarity-based
screening, but on the boost in virtual screening performance that is yielded consistently by
the combination of both methods. Based on the results obtained in this work, we give a
clear recommendation for the integration of 2D and 3D methods, by use of a (balanced)
parallel selection strategy, ideally combined with multi-query screening.

Supplementary Materials: The following supporting information can be downloaded at: https:
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