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INTRODUCTION

Computed tomography (CT) has undergone considerable 
technical advances over the past few decades, with 
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improvements in image quality, shorter scan times, and 
reduced radiation doses. Despite the potential risks of 
ionizing radiation in children, these technical advances 
have led to important clinical applications. Children have 
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a larger potential risk of stochastic effects from ionizing 
radiation because of their smaller body size, developing 
organs, and long life expectancy [1].

Among the many technological advances in CT scanning, 
reduction of image noise is essential for pediatric patients 
to allow scanning with a lower radiation dose. Iterative 
reconstruction (IR) has been proven to improve image 
quality while reducing radiation dose in both adult and 
pediatric patients [2-6]. IR changes the noise properties, 
giving a different visual impression compared to filtered 
back projection (FBP) images, with IR tending to 
aggressively reduce image noise in uniform image regions 
and less aggressively reduce noise in regions with many 
structural edges [7]. However, it has been reported that 
noise texture appears “smooth,” “blotchy,” “plastic-looking,” 
or simply “unnatural” [3].

Recently developed deep learning-based reconstruction 
(DLR) can suppress image noise while minimally changing 
the noise texture. In several phantom studies, DLR has 
reduced noise and improved spatial resolution compared 
with FBP and IR, whereas in patient studies, it has showed 
better image noise properties than hybrid IR [8-12]. 
Additionally, DLR shows improved edge sharpness compared 
with hybrid IR in coronary CT angiography (measured using 
the edge rise distance [ERD] method) [8,13]. However, the 
spatial resolution of DLR abdominopelvic CT images has not 
been assessed in recent studies, and only few studies have 
been conducted on the feasibility and effectiveness of DLR 
in pediatric body CT scans.

Thus, this study aimed to compare a DLR algorithm with 
the FBP and IR algorithms for pediatric abdominopelvic CT.

MATERIALS AND METHODS

This retrospective study was approved by our Institutional 
Review Board, which waived the requirement for informed 
consent (IRB No. 05-2021-079).

Study Population
A total of 336 pediatric post-contrast abdominopelvic CT 

scans were performed at our institution between May 2020 
and October 2020. Among them, 188 CT scans, which were 
performed using a CT scanner capable of DLR (Revolution 
CT; GE Healthcare), were considered for the present study. 
After excluding 68 CT scans without DLR, 120 consecutive 
CT examinations were included in this study (60 boys 
and 60 girls). The patients were categorized into three 

subgroups according to their water equivalent diameter 
(WED): group 1 (< 18 cm, n = 45), group 2 (18–23 cm, n = 
37), and group 3 (> 23 cm, n = 38) (Fig. 1). The WED was 
calculated using an automated dose management system 
(Radimetrics; Bayer Healthcare) [14]. Patient information, 
including age, sex, and body weight, was obtained from an 
electronic medical record or radiological database system. 
The patient characteristics are shown in Table 1.

CT Scanning Protocol
The detailed CT scanning protocol is described in 

Supplement.

Image Reconstruction
Raw projection data were reconstructed with FBP, 

adaptive statistical iterative reconstruction–V (ASiR-V; GE 
Healthcare) with blending factors of 50% and 100% (AV50 
and AV100, respectively), and TrueFidelity (GE Healthcare) 
with low-, medium-, and high-strength levels (TFL, TFM, and 
TFH, respectively). ASiR-V is a hybrid IR algorithm adapted 
from statistical modeling [3,6]. It can be blended with FBP 
in increments of 10%, with AV50 and AV100 being routinely 
used in our practice. TrueFidelity is a DLR algorithm that 
provides three reconstruction strength levels to control 
noise levels. Axial images were reconstructed with 2.5 mm 
thickness and 2.5 mm slice intervals, with a standard soft 

All pediatric post-contrast
abdominopelvic CT scans 

between May 2020 to October 2020
(n = 336)

Revolution CT scans
(n = 188)

Other vender platform
(n = 148)

Lack of DLR
(n = 68)

All
(n = 120)

DLR CT scans
(n = 120)

Group 1
WED < 18 cm

(n = 45)

Group 2
WED 18–23 cm

(n = 37)

Group 2
WED > 23 cm

(n = 38)

Fig. 1. Flow diagram of the study patients. DLR = deep learning-
based reconstruction, WED = water equivalent diameter
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tissue kernel applied for image reconstruction.

Quantitative Image Analysis
Noise power spectrum (NPS) and ERD were measured 

for quantitative image analysis. All measurements were 
performed by a single radiologist with three years of 
experience in radiologic imaging interpretation.

Noise magnitude, NPS peak, and NPS average spatial 
frequency were obtained using the imQuest open-source 
software package (https://deckard.duhs.duke.edu/~samei/
tg233.html). The noise magnitude is the square root of 
the integral of the two-dimensional NPS. The NPS peak 
has the highest value of the one-dimensional NPS which is 
the radial average of the two-dimensional NPS. The noise 
magnitude and NPS peak were used to compare noise 

amplitudes. The NPS average spatial frequency, which is the 
average frequency of the one-dimensional NPS, was used to 
compare the noise textures. For NPS measurements, three 
15 x 15 mm square regions of interest (ROIs) were placed 
in relatively homogeneous portions of liver segments 4, 7, 
and 8 on five sequential axial image slices (Fig. 2A). Each 
ROI was placed at the same location for each reconstruction 
image.

ERD, defined as the 10% to 90% distance of the edge 
response, is a metric used to measure spatial resolution [15] 
and was adopted as a measure of the spatial resolution of 
the axial CT images. To measure ERD, a 1 cm reference line 
was drawn along the lateral border of the left gluteus medius 
muscle, and 100 CT attenuation lines were automatically 
extracted perpendicular to the reference line (Fig. 3A). 

Table 1. Study Population Characteristics

Characteristic All
Group (WED Rrange)

Group 1 (< 18 cm) Group 2 (18–23 cm) Group 3 (> 23 cm)
Number of patients 120 45 37 38
WED, cm 20.6 ± 4.4 16.0 ± 1.3 20.7 ± 1.6 25.8 ± 2.4
Age, year 8.7 ± 5.2 3.2 ± 2.5 10.6 ± 2.3 13.6 ± 2.9
Male:female 60:60 23:22 20:17 17:21
Weight, kg 37.4 ± 21.2 16.6 ± 5.6 37.6 ± 10.0 61.9 ± 13.3
CTDIvol, mGy 2.9 ± 1.6 1.5 ± 0.5 3.1 ± 0.8 4.4 ± 1.4
SSDE, mGy 4.8 ± 1.9 3.0 ± 0.9 5.3 ± 1.0 6.3 ± 1.6
DLP, mGy∙cm 141.2 ± 97.5 54.1 ± 24.9 148.6 ± 46.2 237.1 ± 94.6

Data are mean ± standard deviation or patient number. CTDIvol = volume CT dose index, DLP = dose-length product, SSDE = size-specific 
dose estimates, WED = water equivalent diameter

Fig. 2. NPS measurement in a 7-year-old, 33.0 kg male patient (WED: 17.5 cm).
A. Three rectangular regions of interest placed over the liver parenchyma to calculate NPS on axial image. B. NPS in same patient. AV50 and 
AV100 = ASIR-V with a blending factor of 50% and 100%, respectively, FBP = filtered back projection, HU = Hounsfield unit, NPS = noise power 
spectrum, TFL, TFM and TFH = TrueFidelity with low, medium and high strength levels, respectively, WED = water equivalent diameter
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The attenuation values along each CT attenuation line 
were extracted, and the profile lines were plotted (Fig. 4). 
Finally, the ERD was measured on the averaged curve of 
the CT attenuation lines (Fig. 3B). ERD measurements were 
performed using MATLAB (version R2020b; MathWorks). The 
same 10% and 90% values of the edge response on the FBP 
images were applied for the ERD measurements on each 
reconstruction image.

Qualitative Visual Analysis
Qualitative visual assessments of 720 CT images (six 

reconstructed images from 120 patients) were performed 
using a dedicated PACS workstation. Axial images at the 
main portal vein level were selected by a radiologist with 
three years of experience in image interpretation, and 
these were provided to the reviewers in a randomized 
order. The CT images were analyzed independently by two 
board-certified pediatric radiologists with 20 and 10 years 
of experience in interpreting pediatric abdominopelvic CT 
images. Both reviewers were blinded to the reconstruction 
algorithms used. 

The reviewers were provided with a predesigned five-point 
scale assessment form for image noise, edge definition, 
and overall image quality (1 = very poor; 2 = suboptimal; 
3 = acceptable; 4 = above average; 5 = excellent). Image 
noise was defined as the degree of quantum mottle. Edge 
definition was defined as the degree of perceptual sharpness 
of the stomach and intrahepatic vessels. The overall 

image quality was defined according to a comprehensive 
assessment of image quality.

Detectability and conspicuity of abnormalities were 
assessed in cases with focal lesions less than 3 mm in 
diameter or acute appendicitis. Each reviewer independently 
evaluated lesion detectability and conspicuity (1 = poor 
lesion conspicuity, nondiagnostic; 2 = suboptimal lesion 
conspicuity without diagnostic limitation; 3 = good lesion 
conspicuity). 

Distortion artifacts, which may be present as diffuse 
checkered line-like artifacts in CT images [16], were 
assessed in 15 randomly selected patients in each WED 
group (45 patients). The degree of artifact was scored using 

Fig. 3. ERD measurement in a 15-year-old, 58.1 kg male patient (WED: 23.7 cm).
A. A hundred CT attenuation lines along the 1 cm length of boundary between the gluteus medius muscle and subcutaneous fat (only 10 CT 
attenuation lines are displayed on this image). B. Averaged curve of a hundred CT attenuation lines for ERD measurement, ERD values (FBP: 
2.146 mm, AV50: 2.176 mm, AV100: 2.180 mm, TFL: 1.947 mm, TFM: 1.966 mm, TFH: 1.987 mm). AV50 and AV100 = ASIR-V with a blending 
factor of 50% and 100%, respectively, ERD = edge rise distance, FBP = filtered back projection, HU = Hounsfield unit, TFL, TFM and TFH = 
TrueFidelity with low, medium and high strength levels, respectively, WED = water equivalent diameter
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a three-point scale (1 = artifact with limited diagnostic 
limitation; 2 = artifact without diagnostic limitation; 3 = no 
artifact). Beam-hardening artifacts were assessed using CT 
images containing catheters or tubes in the abdominopelvic 
cavity. 

Statistical Analysis 
A repeated-measures analysis of variance followed by 

the Bonferroni post-hoc test was used to compare NPS 
measurements and ERD between all reconstruction image 
sets. For qualitative analysis, the Friedman rank sum test 
followed by the Nemenyi-Wilcoxon-Wilcox all-pairs test 
was used to compare image noise, edge definition, overall 
quality, and distortion artifacts between all reconstruction 
methods. The qualitative visual analysis scores of the 
two reviewers were averaged for qualitative analysis. 
Furthermore, inter-rater agreement for the readers’ scores 
was calculated using a linear weighted (κ) statistic, with 
κ-values interpreted as follows: 0–0.2 (poor), 0.21–0.40 
(fair), 0.41–0.60 (moderate), 0.61–0.80 (good), and 
0.81–1.00 (excellent) [17]. Analyses were performed for 
all patients and individual WED groups. Statistical analyses 
were performed using R (version 4.1.2; R Foundation). 
Statistical significance was set at p < 0.05.

RESULTS

Quantitative NPS Measurement
Table 2 summarizes the NPS measurements of the noise 

magnitude, NPS peak, and NPS average spatial frequency 
of all reconstructed image sets, both separately for the 
three WED groups and for all patients. A higher blending 
factor in ASiR-V (AV100 > AV50 > FBP) and a higher 
strength in TrueFidelity (TFH > TFM > TFL > FBP) resulted 
in significantly lower noise magnitudes and NPS peaks 
in all WED groups (Fig. 5A, B). Noise magnitudes were 
significantly lower with AV100 than with TrueFidelity in all 
WED groups, while NPS peaks were significantly higher with 
AV100 than with TFM and TFH in all WED groups, except for 
group 1.

The NPS average spatial frequency significantly shifted 
towards lower frequencies with the use of higher blending 
factors in ASiR-V (AV100 > AV50 > FBP) and a higher 
strength in TrueFidelity (TFH > TFM > TFL > FBP) (Fig. 5C). 
The NPS average spatial frequencies were significantly 
higher for TrueFidelity than for ASiR-V in all WED groups.
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Quantitative ERD Measurement
ERD measurements are listed in Table 3. In all groups, 

ERD with TrueFidelity was significantly shorter than that 
with ASiR-V and FBP (Fig. 5D). Lower TrueFidelity strength 
resulted in a significantly shorter ERD in all groups (TFL < 
TFM < TFH). The ERDs of TrueFidelity for all patients were 
1.72 mm, 1.74 mm, and 1.77 mm for TFL, TFM, and TFH, 
respectively, which were 10.9%, 9.8%, and 8.3% lower than 
the 1.93 mm of FBP, whereas the ERD of AV100 was  
1.96 mm, which was 1.6% higher than that for FBP.

Qualitative Image Quality Parameters
The image noise, edge definition, and overall quality ratings 

for all images are summarized in Table 4. AV100 provided a 
better image noise assessment score than TrueFidelity, while 
TrueFidelity achieved a better edge definition than ASiR-V 
for all patients. For overall quality, TFH scored higher than 
ASiR-V in all patients. The inter-reader agreement between 
the two readers was good (κ = 0.65).

Evaluation of Lesion Detectability and Conspicuity
The results of the focal lesion assessments are 

Fig. 5. Bar graphs of (A) noise magnitude, (B) NPS peak, (C) NPS average spatial frequency, and (D) ERD for six different 
reconstruction images for all patients. AV50 and AV100 = ASIR-V with a blending factor of 50% and 100%, respectively, ERD = edge rise 
distance, FBP = filtered back projection, HU = Hounsfield unit, NPS = noise power spectrum, TFL, TFM and TFH = TrueFidelity with low, medium 
and high strength levels, respectively
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Table 3. Summary of Edge Rise Distance Measurement
Patients (WED Range) FBP AV50 AV100 TFL TFM TFH P*

All 1.93d ± 0.44 1.92d ± 0.45 1.96e ± 0.47 1.72a ± 0.41 1.74b ± 0.41 1.77c ± 0.42 < 0.001
Group 1 (< 18 cm) 1.65e ± 0.25 1.62d ± 0.25 1.64e ± 0.23 1.46a ± 0.24 1.47b ± 0.24 1.48c ± 0.24 < 0.001
Group 2 (18–23 cm) 1.95d ± 0.37 1.96d ± 0.37 2.00e ± 0.37 1.75a ± 0.33 1.76b ± 0.33 1.78c ± 0.33 < 0.001
Group 3 (> 23 cm) 2.24d ± 0.48 2.25d ± 0.48 2.31e ± 0.51 2.01a ± 0.44 2.05b ± 0.43 2.09c ± 0.43 < 0.001

Data are presented as mean ± standard deviation in mm. The same superscript represents the same group in the Bonferroni post hoc 
test (the alphabetical order [a-e] indicates ascending order). *p values were calculated with repeated measures ANOVA among the six 
groups. AV50 and AV100 = adaptive statistical iterative reconstruction–V with a blending factor of 50% and 100%, respectively, FBP = 
filtered back projection, TFL, TFM and TFH = TrueFidelity with low, medium and high strength levels, respectively, WED = water equivalent 
diameter
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Table 4. Summary of Qualitative Visual Analysis Scores
Patients (WED Range) Parameter FBP AV50 AV100 TFL TFM TFH P*

All Image noise 2.2 ± 0.3 2.9 ± 0.5 3.8 ± 0.6 2.7 ± 0.6 3.1 ± 0.7 3.5 ± 0.6 < 0.001
Edge definition 2.9 ± 0.5 2.8 ± 0.5 2.2 ± 0.4 3.1 ± 0.4 3.1 ± 0.5 3.2 ± 0.5 < 0.001
Overall quality 2.4 ± 0.5 3.0 ± 0.5 2.8 ± 0.5 2.9 ± 0.6 3.1 ± 0.6 3.4 ± 0.6 < 0.001

Group 1 (< 18 cm) Image noise 2.1 ± 0.2 2.6 ± 0.3 3.5 ± 0.4 2.3 ± 0.4 2.6 ± 0.5 3.2 ± 0.6 < 0.001
Edge definition 2.7 ± 0.5 2.5 ± 0.5 2.0 ± 0.3 2.8 ± 0.4 2.8 ± 0.4 3.0 ± 0.6 < 0.001
Overall quality 2.2 ± 0.4 2.7 ± 0.5 2.5 ± 0.5 2.4 ± 0.5 2.6 ± 0.5 3.1 ± 0.7 < 0.001

Group 2 (18–23 cm) Image noise 2.3 ± 0.3 3.1 ± 0.5 4.0 ± 0.6 2.9 ± 0.4 3.4 ± 0.4 3.5 ± 0.5 < 0.001
Edge definition 3.0 ± 0.4 3.0 ± 0.3 2.3 ± 0.4 3.2 ± 0.3 3.2 ± 0.4 3.3 ± 0.4 < 0.001
Overall quality 2.4 ± 0.4 3.1 ± 0.5 3.1 ± 0.3 3.1 ± 0.4 3.3 ± 0.4 3.5 ± 0.5 < 0.001

Group 3 (> 23 cm) Image noise 2.2 ± 0.4 3.2 ± 0.6 4.1 ± 0.7 3.0 ± 0.6 3.5 ± 0.6 3.8 ± 0.5 < 0.001
Edge definition 3.0 ± 0.4 3.0 ± 0.5 2.1 ± 0.3 3.3 ± 0.4 3.4 ± 0.5 3.4 ± 0.6 < 0.001
Overall quality 2.5 ± 0.5 3.1 ± 0.5 3.0 ± 0.3 3.2 ± 0.5 3.4 ± 0.6 3.5 ± 0.5 < 0.001

Data are the mean visual scores ± standard deviation. Nemenyi-Wilcoxon-Wilcox all-pairs test was used in the pairwise comparison of all 
groups. Pairwise comparison results are summarized in Supplementary Tables 2-13. Inter-reader agreement was calculated using a linear-
weighted (κ) statistic. The inter-reader agreement between the two readers was substantial (κ = 0.65). *p values were calculated with 
Friedman rank sum test among the six groups. AV50 and AV100 = adaptive statistical iterative reconstruction–V with a blending factor of 
50% and 100%, respectively, FBP = filtered back projection, TFL, TFM and TFH = TrueFidelity with low, medium and high strength levels, 
respectively, WED = water equivalent diameter

Fig. 6. Ten-year-old female patient (WED = 23.2 cm) with hemophagocytic lymphohistiocytosis and small enhancing lesion in 
hepatic segment VIII. 
A-F. The focal hepatic lesion (arrows) is detected on all images FBP (A), AV50 (B), AV100 (C), TFL (D), TFM (E), and TFH (F). Diffuse checkered 
line-like artifacts are also shown on all images (arrowheads). AV50 and AV100 = ASIR-V with a blending factor of 50% and 100%, respectively, 
FBP = filtered back projection, TFL, TFM and TFH = TrueFidelity with low, medium and high strength levels, respectively, WED = water equivalent 
diameter
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summarized in Supplementary Table 1. Five patients had 
focal lesions (renal angiomyolipoma, hepatic hemangioma, 
ovarian cyst, scrotal mass, and renal cyst) and six patients 
had perforated (n = 4) or unperforated (n = 2) acute 
appendicitis (Fig. 6). All lesions were discernible on all 
reconstructed images without any distortion. TFM (average 
score = 3) and TFH (average score = 3) scored higher than 
FBP (average score = 2.5) and AV100 (average score = 

2.4) in terms of lesion conspicuity, although inter-reader 
agreement was poor (κ = 0.38).

Evaluation of Artifacts
The results of the distortion artifact assessment are 

summarized in Table 5. There were no intergroup differences 
in artifact scores between FBP, AV50, TFL, TFM, and TFH; 
however, AV100 scored significantly higher than the 

Table 5. Summary of Distortion Artifact for Six Reconstruction Algorithms
Patients (WED Range) FBP AV50 AV100 TFL TFM TFH P*

All 2.13a ± 0.29 2.24a ± 0.33 2.94b ± 0.19 2.02a ± 0.10 2.00a ± 0.00 2.00a ± 0.00 < 0.001
Group 1 (< 18 cm) 2.27a ± 0.37 2.3a, b ± 0.37 2.9b ± 0.27 2.07a ± 0.18 2.00a ± 0.00 2.00a ± 0.00 < 0.001
Group 2 (18–23 cm) 2.10a ± 0.28 2.27a ± 0.37 3.00b ± 0.00 2.00a ± 0.00 2.00a ± 0.00 2.00a ± 0.00 < 0.001
Group 3 (> 23 cm) 2.03a ± 0.13 2.17a ± 0.24 2.93b ± 0.18 2.00a ± 0.00 2.00a ± 0.00 2.00a ± 0.00 < 0.001

Data are the mean visual scores ± standard deviation. Nemenyi-Wilcoxon-Wilcox all-pairs test was used in the pairwise comparison of 
all groups. The same superscript represents the same group in the Nemenyi-Wilcoxon-Wilcox all-pairs test (the alphabetical order [a, b] 
indicates ascending order). Inter-reader agreement was calculated using a linear-weighted (κ) statistic. The inter-reader agreement 
between the two readers was good (κ = 0.74). *p values were calculated with Friedman rank sum test among the six groups. AV50 
and AV100 = adaptive statistical iterative reconstruction–V with a blending factor of 50% and 100%, respectively. FBP = filtered back 
projection, TFL, TFM and TFH = TrueFidelity with low, medium and high strength levels, respectively, WED = water equivalent diameter

Fig. 7. Ten-year-old female patient (WED = 20.9 cm) with renal angiomyolipoma (not shown). 
A-F. FBP (A), AV50 (B), TFL (D), TFM (E), and TFH (F) show diffuse checkered line-like artifacts (arrowheads). These artifacts are not apparent 
in AV100 (C). AV50 and AV100 = ASIR-V with a blending factor of 50% and 100%, respectively, FBP = filtered back projection, TFL, TFM and  
TFH = TrueFidelity with low, medium and high strength levels, respectively, WED = water equivalent diameter
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other reconstruction sets in all the WED groups. Although 
distortion artifacts were noted in most of the TrueFidelity 
reconstructions (135 cases for reader 1 and 133 cases for 
reader 2), they were also observed with FBP (37 cases for 
reader 1, 41 cases for reader 2), AV50 (28 cases for reader 
1, 40 cases for reader 2), and AV100 (2 cases for reader 1 
and 3 cases for reader 2) (Figs. 6, 7). None of the cases 
showed distortion artifacts that were reported to affect 
the diagnostic value. The inter-reader agreement was good 
(κ = 0.74). Beam-hardening artifacts were observed in the 
images of six patients, and all cases were scored as grade 2 
by both readers.

DISCUSSION 

This study compared a DLR algorithm with FBP 
and IR algorithms for the reconstruction of pediatric 
abdominopelvic CT. In summary, we found that DLR resulted 
in improved noise characteristics and spatial resolution 
compared with FBP and IR. The TFH algorithm showed 
a lower NPS peak than that of the AV100 algorithm for 
all patients; however, AV100 showed the best noise 
magnitude reduction, followed by TFH. When the average 
spatial frequency was measured, AV100 provided a high-
frequency shift towards lower frequencies in comparison 
with FBP, whereas TrueFidelity did not show a distinctive 
shift in any of the WED groups. In other words, AV100 
suppressed the high-frequency components of NPS more 
than TrueFidelity did. These results are consistent with 
the fact that the higher the blending factor of ASiR-V, the 
smoother the image texture observed because the high-
frequency component in the frequency domain describes 
sharp edges in the spatial domain [18]. In comparison, 
TrueFidelity showed a trivial left shift in the NPS average 
spatial frequency, a relatively preserved NPS pattern, and 
a comparable noise magnitude reduction as ASiR-V. These 
findings suggest that TrueFidelity provides relatively 
uniform noise reduction in the frequency domain, and as a 
result, provides superior image sharpness while maintaining 
comparable image noise suppression as ASiR-V.

In the ERD measurement, TrueFidelity resulted in a 
significantly shorter ERD than FBP, with an 8.3%–10.9% 
reduction for all patients, whereas ASiR-V and FBP showed 
similar ERD. This implies that TrueFidelity provides better 
spatial resolution than ASiR-V. ERD, which is inversely 
proportional to the modulation transfer function (MTF), 
reflects spatial resolution, and has been employed to 

measure margin sharpness in several studies [8,13,19,20]. 
Although both the high blending factor ASiR-V and high-
strength TrueFidelity resulted in a high image noise score 
for all patients, TFH showed better edge definition and 
overall quality scores than FBP and ASiR-V.

Our results support previously published studies using 
the same vendor platform [9,11,16,21-23]. In phantom 
studies, TrueFidelity reduced noise without changing the 
noise texture and improved spatial resolution [22,23]. In 
patient studies, TrueFidelity showed reduced image noise 
and qualitatively better spatial resolution and image quality 
scores than ASiR-V [9,11,21]. A recent study assessed 
the image sharpness of TrueFidelity using blur metrics 
and showed that TrueFidelity resulted in improved image 
sharpness compared with ASiR-V in the imaging of adult 
patients [11]. Moreover, DLR offered better image quality 
than IR in phantom and patient studies, even on different 
platforms [8,10,12,13,24]. Brady et al. [10] showed that 
DLR is beneficial in pediatric body CT because it can improve 
the image quality, allowing a reduced radiation dose. They 
analyzed the object detectability by calculating the task 
transfer function on phantom images and measuring the 
NPS on patient images. Using ERD measurement, Tatsugami 
et al. [13] and Hong et al. [8] demonstrated that edges 
were sharper on DLR images than on hybrid IR images. 

Diffuse line-like “checkered pattern” artifacts in chest CT 
images of adult populations were assessed in a recent study 
[16], and it was found that distortion artifacts were more 
frequent with the DLR algorithm; however, they seemed to 
have a negligible effect on diagnostic image quality. In our 
study, distortion artifacts were detected in most DLR images 
and were also observed in the FBP and ASiR-V images. We 
hypothesize that the distortion artifacts were due to the 
characteristics of the CT scanner hardware or reconstruction 
algorithm, rather than the DLR itself. Further studies are 
required to address this issue.

This study had several limitations. First, phantom 
studies were not evaluated to measure the MTF for spatial 
resolution assessment. Although the MTF in patient studies 
may be derived from the correlation between phantom and 
patient studies, the primary objective of this study was to 
measure the noise characteristics and spatial resolution 
of the patient images. Second, the ERD was measured 
only at the muscle and fat interfaces. Because the system 
resolution depends on the object contrast and background 
noise level, ERD can also be affected by these factors [25]. 
However, MTF values at different interfaces were similar 
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in previous studies [22,23]. Therefore, one interface was 
selected to simplify the ERD measurement process. Third, 
quantitative analysis by a single radiologist could be 
subject to bias, especially in the selection of measurement 
locations. To reduce selection bias, the same anatomical 
locations were used for the NPS and ERD measurements. 
Fourth, potential dose reduction using DLR could not be 
estimated because low-dose CT scans were not included in 
this study. Finally, the patients’ age, weight, and body size 
were heterogeneous. Because the radiation dose received 
by a patient depends on both the patient size and scanner 
output, the concept of WED was adopted to obtain accurate 
information for patients of varied sizes. This study revealed 
that DLR has the potential to improve spatial resolution 
while providing denoising performance similar to that of 
other commonly used algorithms, even in low-WED groups 
with a low radiation dose. 

In conclusion, our study revealed that for contrast-
enhanced pediatric abdominopelvic CT, DLR may provide 
improved noise characteristics and spatial resolution 
compared with hybrid IR. Additionally, DLR showed better 
overall quality and edge definition than the hybrid IR. 
Further studies are needed to investigate the performance 
of DLR in various clinical applications, particularly with 
respect to different dose levels, body parts, and acquisition 
techniques.
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