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Abstract: Various systematic phases such as inflammation, tissue proliferation, and phases of remod-
eling characterize the process of wound healing. The natural matrix system is suggested to maintain
and escalate these phases, and for that, microfibers were fabricated employing naturally occurring
polymers (biopolymers) such as sodium alginate, gelatin and xanthan gum, and reinforcing material
such as nanoclay was selected. The fabrication of fibers was executed with the aid of extrusion-
gelation method. Rifampicin, an antibiotic, has been incorporated into a biopolymeric solution. RF1,
RF2, RF3, RF4 and RF5 were coded as various formulation batches of microfibers. The microfibers
were further characterized by different techniques such as SEM, DSC, XRD, and FTIR. Mechanical
properties and physical evaluations such as entrapment efficiency, water uptake and in vitro release
were also carried out to explain the comparative understanding of the formulation developed. The
antimicrobial activity and whole blood clotting of fabricated fibers were additionally executed, hence
they showed significant results, having excellent antimicrobial properties; they could be prominent
carriers for wound healing applications.

Keywords: biopolymers; microfibers; rifampicin; alginate; gelatin; nancoclay; xanthan

1. Introduction

The pervaded pathogens are abolished from an impaired or disrupted tissue site for ef-
ficacious repairing [1]. To evade infection and escalate the wound healing cycle, the wound
site or damaged tissue site is protected, aided by sterile dressing material [2]. The three
cascades such as inflammation, proliferation and tissue remodeling complete the wound
healing process [3]. The topical application of an anti-microbial drug seems to be efficacious
for healing or tissue repairing [4]. Rifampicin is an antibiotic drug particularly used against
Gram-positive and Gram-negative bacteria and has exemplary antibacterial properties [5].
It is a liposoluble antibiotic, so penetration into most tissues is adequate. Rifampin is an
antibiotic that inhibits DNA-dependent RNA polymerase activity in susceptible cells [6]. It
is a suitable antibiotic to be encapsulated in microfibers for antimicrobial activity and it
could be utilized for wound healing applications as well [7]. For drug delivery applications,
fibrous structures, including microfibers and nanofibers, are deemed acceptable carri-
ers [8,9]. The microfibers are reported as an attractive option because of their flexible and
soft nature. The versatile composition of fibers comprising biopolymers and reinforcing
material may serve as a wound dressing material. Wound exudates are also absorbed easily
by the microfibers [10]. In the present research, biocomposite biopolymeric microfibers
were fabricated using alginate, gelatin, xanthan gum, and nanoclay. The microfibers
were prepared employing the ionotropic gelation method, and xanthan gum [11,12] and
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nanoclay [13,14] were additionally used to enhance the mechanical strength of the fibers.
Furthermore, physicochemical, physico-mechanical, and morphological analyses were
also executed. Within the polymeric matrix, microfibers displayed an intricate molecular
interaction profile, providing an irregular drug release mechanism.

2. Materials and Methods
2.1. Materials

Sodium alginate, gelatin, calcium chloride and rifampicin were the reagents used.
Rifampicin was obtained from Banson Pharmaceuticals as a gift sample. All the ingredients
such as sodium alginate (CAS number—9005-38-3); xanthan gum (CAS number—11138-
66-2); gelatin (CAS number—9000-70-8); nanoclay (CAS number—1332–58-7) and calcium
chloride (CAS number—10035-04-8) were acquired from Sigma Aldrich, St. Louis, MO,
USA. In the present research analysis, all analytical grade solvents, reagents and chemicals
were employed.

2.2. Preparation of Rifampicin Loaded Biocomposite Microfibers

For the development of rifampicin biocomposite microfibers, the ionotropic gelation
method was employed, as shown in Figure 1. In brief, as shown in Table 1, initially, the
polymeric solution containing sodium alginate:gelatin solutions was prepared in weight
ratios (5:5). To enhance the mechanical strength, xanthan gum and nanoclay were also
added. The biopolymers (alginate and gelatin) were solubilized together by stirring
at 500 rpm for 30 min, and an aqueous biopolymeric solution was prepared in which
xanthan gum and nano clay were incorporated. For complete solubilization of gelatin, the
biopolymeric dispersions were heated to 50 ◦C. First, rifampicin (50 mg) was dissolved in
5 mL of acetone and gradually incorporated into the aforementioned polymeric solution.
This polymeric mixture (rifampicin + alginate + gelatin + xanthan gum + nanoclay) was
then extruded into a beaker containing 1% calcium chloride (using a 22 gauge needle). The
microfibers led to ionic cross-linking and were further washed with the help of water and
dried (air or oven), as illustrated in Figure 1 [15–17].
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Figure 1. Fabrication method of rifampicin loaded biocomposite microfibers.

Table 1. Formulation composition of rifampicin biocomposite microfibers.

Formulation
Batches

Sodium Alginate
(%)

Gelatin
(%)

Xanthan Gum
(%)

Nanoclay
(%) Rifampicin (mg)

RF1 2 - - - 50
RF2 2 2 - - 50
RF3 2 2 0.5 - 50
RF4 2 2 - 0.5 50
RF5 2 2 0.5 0.5 50
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2.3. Characterization of Rifampicin Loaded Biocomposite Microfibers

The morphological characteristics of rifampicin loaded biocomposite microfibers were
assessed using entrapment efficacy, SEM analysis, and physicochemical analysis through
FTIR and XRD. The physical properties were also executed as epitomized water uptake
properties, mechanical characteristics, in vitro release and antimicrobial properties.

2.3.1. Entrapment Efficiency

The cumulative amount of drug (rifampicin) which was entrapped in microfibers was
calculated and weighed in ternion, employing the sample (length 10 cm). To extract the
maximum drug from formulated microfibers, the sample was submerged in a solution
(mixture of phosphate buffer pH 7.4 and ethanolic solvent in the ratio of 50:50 v/v) for over
24 h. In the presence of the hydro alcoholic solvent, the microfibers were crushed in the
mortar and pestle; this solution was further strained and analyzed, aiding UV-Vis analysis
(Perkin Elmer Lambda35) at 337 nm. Afterwards, a standard curve was plotted in ethanol
using standard rifampicin solutions.

2.3.2. Morphological Analysis

In order to study morphological characteristics, the biocomposite microfibers were
adhered, aided by double sided adhesive tape, and placed carefully on a metallic stub. The
developed fibers were sequentially plated with gold, and under various magnifications
(250× and 500×) and at accelerating voltages (15 Kv), the surface of the fibers was visu-
alized. The aforementioned scanning microscopy was performed on FEI Nova Nanolab
600 SEM, and to modify the samples acquired for clarity, brightness and contrast, Paint.net
(graphic editor) was used.

2.3.3. XRD

The X-ray diffractometry was carried out to investigate the crystallinity of rifampicin,
rifampicin loaded fibers. Study was carried out using an X-ray diffractometer (Miniflex
2, Rigaku, Japan), which is a high potential and developed technique fundamentally
having scattered intensity of an X-ray beam, which is hitting the sample as a function
of incident and scattered angle, polarization and wavelength or energy. The flexibility
and non-destructive operational protocols of the technique exhibit chemical composition,
but this technique also shows the crystallographic structure of the raw samples. The
microfibers were crushed in powder form and scanned from 0◦ to 80◦ diffraction angle (2Θ)
range under the following measurement conditions: source, nickel filtered Cu-K radiation;
voltage 35 kV; current 25 mA; scan speed 0.05 min−1.

2.3.4. DSC

Thermal analysis was carried out employing differential scanning calorimetry with
liquid nitrogen. The analysis was performed under purge of dry nitrogen gas. High purity
indium was used to calibrate the heat flow and heat capacity of the instrument. Sample
films of weight (2.5–5 mg) were placed in an aluminum cell and were firmly crimped with
the lid to provide an adequate seal. The sample was heated at ambient temperature from
50 to 300 ◦C at a preprogrammed heating rate of 10 ◦C min−1.

2.3.5. FTIR Studies

The spectroscopic analysis of biocomposite microfibers was performed to determine
inter molecular interactions in between the drug, constituent biopolymers and reinforcing
material employing (IFS66/S, Alpha Bruker, Leipzig, Germany). This study was carried
out in the region of 4000–650 cm−1 wave number in the reflectance mode.

2.3.6. Water Uptake

The water uptake property of the biocomposite microfiber polymeric matrix was
studied and calculated at pH 7.4 phosphate buffer saline. The formulated microfibers
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were weighed (the initial weight) and then submerged for 24 h in the aforementioned PBS
(10 mL) prior to being deliberately removed, aided by a tweezer or plucker. With the help
of filter paper, water present on the surface was gradually soaked up and the wet weight
referred to as final weight was acquired.

% Water uptake was determined using the following equation:

Water uptake =

[
Initial weight− Final weight

Initial weight

]
× 100

2.3.7. Mechanical Properties

The mechanical characteristics of biocomposite microfibers were evaluated, aided
by a uniaxial tensile machine. The tensile machine (Instron5943, Canton, MA, USA) was
held and loaded with a cell size of 10N with specified cross head speed (5 mm/min). The
biocomposite microfiber samples were sliced into a specified length of 5 cm and, further,
this extension test was conducted at room temperature. The following equations were then
used to calculate tensile strength and elongation at break.

Tensile strength =
Breaking force (N)

cross− sec tional area of sample (mm2)

Elongation to break =
Increase in length at breaking point (mm)

original length (mm)
× 100

2.3.8. In Vitro Drug Release Studies

The drug release pattern of biocomposite microfibers was executed at 37 ◦C for
72 h in phosphate-buffered saline (PBS; pH 7.4). The microfibers (5 mg rifampicin) were
poured into PBS (50 mL) in a sealed container and mounted on an orbital shaker machine.
Thereafter, aliquots of 3 mLwere extracted at fixed time intervals such as 0.5, 1, 2, 4, 8, 12,
24, 48 and 72 h. All the samples were subsequently replaced with fresh PBS to perpetuate
volume. The sample microfibers were removed and then analyzed at 337 nm. To analyze
the drug release mechanism, the data profile was countered into varied models such as
zero order, first order, Higuchi matrix, Hixson–Crowell, and Korsmeyer–Peppas release
data models—kinetic experiments were then carried out.

Zero order—Q = Q0 + k0 t
First order—ln Q = ln Q0 + k1 t

Higuchi model—Q = kHt
1
2

Hixson–Crowell model—Q
1
3
0 −Q

1
3
R = ks t

Korsmeyer–Peppas model—Q/QT = kkp tn

Depict:

Q = total amount of drug release at time t;
Q0 = initial amount of drug;
QR = amount of remaining drug at time t;
QT = cumulative amount of drug release;
k0, k1, kH, ks and kkp = kinetic constants for all respective models such as zero order, first
order, Higuchi, Hixson–Crowell and Korsmeyer–Peppas models;
n = release exponent.

2.3.9. Whole Blood Clotting

The fibers were placed into polypropylene tubes and the aforementioned tubes were
pre-warmed to 37 ◦C. Citrated whole blood (0.2 mL) was then slowly dispersed onto the
fibers and then 0.2 M of CaCl2 solution (20 µL) added to start coagulation. The tubes
containing blood samples were incubated at 37 ◦C + 30 rpm for 10 min. After 10 min, red
blood cells that are free and are not trapped in the clot were hemolyzed with 25 mL of
water and the absorbance of the resulting hemoglobin solution was measured at 540 nm.
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2.3.10. Antimicrobial Studies

The agar disc method was employed in order to assess the antimicrobial activity
of the formulated biocomposite fibers. The two bacterial strains such as Staphylococcus
aureus (Gram-positive bacterium) and Escherichia coli (Gram-negative bacterium), primarily
present in the wound bed, were used in this process. The solution for agar was developed
using the technique using Hi-Media. Briefly, 28 g of agar powder was dispersed in 1000 mL
of filtered water. The solution was heated to boil so that the medium was fully dissolved
and further sterilized by autoclaving at 121 ◦C for 15 min. Cooling of up to 40–50 ◦C was
allowed, and by pouring 20 mL of liquid agar media, the agar plates were prepared. The
bacterial culture suspension of S. aureus and E. coli was inoculated in large Petri dishes to
initiate rapid growth of microorganisms. To become solidified, Petri plates were retained
and a 6 mm pit was created, plying a sterilized borer. The drug-containing control group
(rifampicin) and rifampicin fiber (RF5) were mounted in an agar plate pit and incubated
for 24 h at 37 ◦C, with a deliberate inhibition zone.

3. Results and Discussion

The entrapment efficiency of rifampicin loaded microfibers was found to be 91.14
± 3.23% for RF1 and 96.34 ± 1.76% for RF5 microfibers, as seen in Figure 5 and Table 2.
Contrastingly, the entrapment efficiency was improved with an inclusion of gelatin in
microfibers, which could be attributed to partial inter molecular interactions between the
drug (rifampicin) and gelatin. RF3′s entrapping efficiency was 95 ± 2.31%, which may be
attributed to xanthan gum incorporation. The microfibers’ (RF5) entrapment efficiency
was found to be the highest because of the addition of xanthan gum and nanoclay, which
may be due to enriched interaction between the polymeric molecules and reinforcing
material. SEM was used to study the surface morphology of alginate/gelatin biocomposite
microfibers. Between 200 and 400 µm, the diameter of the microfibers was determined.
On the surface of the microfibers, crystal deposition was visualized clearly, which could
be attributable due to the precipitation of calcium chloride crystals after deposition to the
surface during the process of drying. A smooth homogeneous morphology was revealed on
the surface that clearly demonstrated augmented miscibility and consistent homogeneity
between the polymers, as shown in Figure 2.

Rifampicin has a crystalline nature and exhibits major peaks at 2θ = 11.1, 12.7, 15.8,
16.3, 17.2, 18.1, and 20, respectively, according to the effects of the XRD pattern. In fab-
ricated microfiber, the loss of crystalline peaks was observed (RF5). The results showed
intercalation and potential bonding between the polymers, thus indicating that the drug
was effectively trapped between the polymeric matrix in the microfibers, as depicted in
Figure 3a. To scrutinize the interaction of polymers with the crystalline nature of entrapped
rifampicin in the polymeric matrix of microfibers, and further embedded into the reservoir
system of transdermal films, DSC analysis was performed and DSC curves are depicted
in Figure 3b. The thermogram suggested that rifampicin showed an endothermic sharp
peak at 183.7 ◦C whereas this prominent peak was found to be absent, which confirmed
that the drug was molecularly dispersed into the matrix of rifampicin microfibers. It also
confirmed its existence in an amorphous form.

Table 2. Various parameters of formulation batches.

Formulation
Code

Entrapment
Efficiency (%)

Water Uptake
(%)

Tensile
Strength
(N/mm2)

Elongation to
Break (%)

RF1 91.14 ± 3.23 36.42 ± 1.22 7.12 ± 0.25 15.20 ± 0.98
RF2 94.34 ± 1.24 38.16 ± 2.18 9.44 ± 0.73 17.46 ± 0.42
RF3 95.21 ± 2.31 47.11 ± 2.14 19.23 ± 0.72 32.27 ± 1.06
RF4 94.97 ± 2.17 42.52 ± 2.64 18.21 ± 0.78 33.34 ± 1.07
RF5 96.34 ± 1.76 47.24 ± 3.28 25.28 ± 0.76 42.09 ± 1.09
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In order to provide accurate information on the interaction seen between formulations,
Fourier transform infrared (FTIR) attenuated total reflectance was used. The FTIR spectra of
the drug (rifampicin), formulated rifampicin microfibers and polymers used are shown in
Figure 4. The FTIR drug rifampicin spectrum showed a peak of 3472 cm−1 (NH stretching),
2894 cm−1 (C-H bonding), 1629 cm−1 (C=O), 1478 cm−1 (C=C), 1379 cm−1 (CH2, C=C),
1059 cm−1 (-CH, CO, C-H), and 987 cm−1 (≡C-H, C-H) [18]. The IR range of alginate had
characteristic absorption peaks at 3311 cm−1, which showed OH stretching, 1612 cm−1,
which showed carboxylic C=O, 1298 cm−1, which possessed C-CH, 1086 and 1059 cm−1,
ascribed to C-O stretching, 1032 cm−1, which represented C-C, 942 cm−1, which showed
C-O, 888 cm−1, which manifested CH, and 822 cm−1, which represented Na-O [19]. The
substantial gelatin peaks showed absorption bands at 3414 cm−1, confirmed NH stretch-
ing, 1655 cm−1, confirmed amide C=O, 1556 cm−1, proclaimed amide NH bending, and
1343 cm−1, ascribed to C-N stretching [20]. The prominent peaks of xanthan gum showed
peaks at 3427cm−1 (O-H stretching), 2995 cm−1 (aliphatic C-H stretching), 1635 cm−1 (COO
symmetric stretching), 1434 cm−1 (asymmetric stretching) and 1245–1043 cm−1 (pyranoid
C-O-C ring stretching) [21]. The FTIR spectra of nanoclay exhibited peaks at 3442 cm−1

(OH stretching), 2916–2846 cm−1 (methylene symmetric vibration), 1737–1467 cm−1 (C=O,
C-O-H stretching and hydrogen bonds), and 1063 cm−1 (Si-O bending) [22]. The FTIR
spectrum relating to microfibers was similar to the polymer spectrum. Due to the lack of
optimum peak characteristics of rifampicin in the FTIR spectra of microfibers as they have
been cloaked by bands formed by polymers, it could be inferred that rifampicin was well
embedded in the microfibers [17].

In developed microfibers, the water uptake property or capability of alginate–gelatin
biocomposite microfibers was found to be enhanced; improved network formation was
as imparted by gelatin concentration. In addition to xanthan gum and nanoclay, the per-
centage of water absorption of biocomposite microfibers was decreased, with a maximum
value of 47.24± 3.28% in the case of RF5 (Figure 5 and Table 2). As rifampicin is a lipophilic
drug, its prevalence in the biopolymer matrix may be due to this reduction in water affinity.

Pertaining to mechanical parameters, tensile strength and elongation to break (extensi-
bility) were evaluated. Tensile strength and break elongation differed between 7.12 ± 0.25
to 25.28 ± 0.76 N/mm2 and 15.20 ± 0.98% to 42.09 ± 1.09%. With the addition of xan-
than gum and nanoclay, the tensile strength of the microfibers improved as illustrated in
Figure 5 and Table 2. An increase in the mechanical strength of biocomposite fibers may be
due to the association and bond formation between the biopolymers used. The addition
of nanoclay has significantly enhanced this mechanical property. This may be due to the
reinforcing material’s capability to act as fillers (rigid) in the polymeric matrix, as well as
intermolecular interactions between the polymeric matrix and layered silicates through H
bonds. As explained in the FTIR discussion, the tensile strength in blended microfibers is
effectively enhanced due to the partial contact between the biomacromolecules [20].

The results of the in vitro drug release study revealed that microfibers containing
a combination of polymeric content and reinforcing material resulted and thereby mini-
mized the total percent release of the drug. The drug releases from RF1, RF2, RF3, RF4
and RF5 were observed to be 31.28 ± 4.36%, 20.23 ± 3.12%, 14.06 ± 2.2%, 17.22 ± 3.08%
and 9.03 ± 2.04%, respectively, in 90 h, as depicted in Figure 6. Alginate polymer matrix
formation may be a retardant factor in the release of the drug from prepared fibers. Further-
more, the incorporation of xanthan gum and nanoclay delayed drug release from prepared
microfibers. This may be due to the formation of intermolecular hydrogen bonds between
polymeric chains and reinforcing material in biocomposite fibers. Molecular interaction
with polymeric chain relaxation (up to hydration) could also lead to a decrease in the
release of the drug from RF5. The drug release data obtained after in vitro release study
were further analyzed via fitting into various kinetic models, i.e., zero order, first order,
Higuchi equation, Hixson–Crowell model, and the power law. The coefficient of determi-
nation (r2) was much closer to 1 for the first order equation. All the formulations followed
non-Fickian diffusion with n values falling within the 0.5 < n < 1.0 range and depicted
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anomalous release behavior as shown in Table 3. This value indicates a combination of
diffusion and erosion controlled mechanisms responsible for the release of the drug from
the biocomposite fibers.
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RF5 96.34 ± 1.76 47.24 ± 3.28 25.28 ± 0.76 42.09 ± 1.09 

Figure 4. FTIR spectra of drug (rifampicin), alginate, gelatin, nanoclay and microfiber (RF5).
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Figure 6. In vitro release of various formulation batches of microfibers.

Table 3. Drug release kinetic modeling data of various microfiber batches.

Batches
Zero Order First Order Higuchi Model Hixson Crowell

Model KorsmeyerPeppas Model

r2 ko r2 k1 r2 kH r2 kHC r2 Kkp N

RF1 0.877 0.271 0.980 −0.012 0.984 2.922 0.972 −0.020 0.988 0.817 0.334
RF2 0.780 0.190 0.970 −0.014 0.942 2.131 0.939 −0.019 0.981 0.616 0.388
RF3 0.928 0.160 0.992 −0.013 0.944 1.683 0.993 −0.018 0.994 0.061 0.392
RF4 0.832 0.177 0.989 −0.015 0.965 1.947 0.965 −0.020 0.977 0.388 0.424
RF5 0.951 0.121 0.983 −0.011 0.986 1.254 0.988 −0.015 0.985 0.403 0.469
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In order to evaluate whether blank fibers and rifampicin loaded fibers (RF5) can
increase the rate of blood clotting, whole blood was contacted with fibers for 10 min before
hemolyzing RBCs that were not trapped in the clot that formed on the fiber surface. A
higher absorbance value of the hemoglobin solution thus indicates a slower clotting rate.
Rifampicin loaded fibers led to significantly lower absorbance values than blank fibers, as
shown in Figure 7a. The antimicrobial activity of rifampicin against bacteria (Gram-positive
and Gram-negative bacteria) was assessed using the disc diffusion method. The zone of
inhibition of microfiber (RF5) was found to be 23 mm against S. aureus and 22 mm against
E. coli. In comparison to the normal or control group, rifampicin had an inhibition zone of
24 mm against S. aureus and 20 mm against E. coli. The antimicrobial study demonstrated
that the drug was effectively released from the microfiber polymer matrix and exhibited
antimicrobial activity, which can be seen in Figure 7b.
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Polymers 2021, 13, 1514 11 of 12

4. Conclusions

An appropriate analytical method for rifampicin was developed by the UV/Visible
spectrophotometer, and rifampicin showed maximal absorption at a wavelength of 337 nm
in a solution mixture comprised of phosphate buffer saline (pH 7.4) and ethanol in the
ratio (50:50, v/v). The formulation produced was identified by different techniques such as
SEM, XRD, DSC and FTIR. The addition of xanthan gum and nanoclay relatively enhanced
the mechanical strength individually, and when used in the combination with alginate
and gelatin, it significantly increased the mechanical properties. The kinetic analysis was
conducted and fitted into various kinetic models in which the anomalous behavior of
all formulations produced was represented by n value. As a controlled drug delivery
system, the formulation batches have maximum release at 90 h, implying the prolonged
retardation of drug release from the prepared microfibers. Since biocomposite microfibers
have good mechanical properties, they may be an effective candidate for developing a
controlled drug delivery system and prolonged drug delivery system. The microfibers
could be potential candidates and effective biopolymeric wound dressing materials for
wound healing applications, as they implied excellent anti-microbial properties.
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