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Coronavirus infections have been a part of the animal kingdom for millennia. The

difference emerging in the twenty-first century is that a greater number of novel

coronaviruses are being discovered primarily due to more advanced technology and that

a greater number can be transmitted to humans, either directly or via an intermediate

host. This has a range of effects from annual infections that are mild to full-blown

pandemics. This review compares the zoonotic potential and relationship between

MERS, SARS-CoV, and SARS-CoV-2. The role of bats as possible host species and

possible intermediate hosts including pangolins, civets, mink, birds, and other mammals

are discussed with reference to mutations of the viral genome affecting zoonosis.

Ecological, social, cultural, and environmental factors that may play a role in zoonotic

transmission are considered with reference to SARS-CoV, MERS, and SARS-CoV-2 and

possible future zoonotic events.
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INTRODUCTION

The emergence of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the virus
responsible for the COVID-19 pandemic, has focused attention on the phenomenon of zoonosis.
Zoonoses, as defined by the World Health Organization (WHO), are diseases and infections which
are naturally transmitted between vertebrate animals and humans. The challenge with emerging
zoonoses, such as SARS-CoV-2, is to establish the origin and mechanism(s) of transmission of the
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new disease. Viral mutation and recombination, viral host
physiology and immune response, ecogeography, and human
factors including ACE2 receptor structure and immune function
have all been proposed as possible mechanisms (1) (Figure 1).

Viruses account for ∼25–44% of all emerging infectious
diseases and present an increased risk of zoonotic transmission
(2–4). Zoonotic viral transmission has been well established in
the links between human immunodeficiency virus-1 (HIV-1) and
simian immunodeficiency viruses (SIVs) from chimpanzees and
gorillas in West Central Africa, and HIV-2 and SIVs from sooty
mangabeys (5). Zoonotic virus to human transmission and the
number of viral-based infections has been steadily increasing,
prompting a worldwide investigation of potential zoonotic
pathogens, not only to understand current zoonoses but, more
importantly, to also identify potential future transmissions of
viral pathogens between animals and humans (3, 4). The
emergence of SARS-CoV, Middle East Respiratory Syndrome
(MERS-CoV), and SARS-CoV-2, which are all highly pathogenic,
is the end-point in a sequence of events involving viral evolution
and ecology (6). Mutation, recombination, genetic drift, and
other evolutionary mechanisms, combined with ecological
pressures and opportunities, allow the viruses to cross several
species barriers and overcome immune responses in the new
hosts. However, the origin and the evolutionary changes of the
SARS-CoV-2 virus in humans are currently unknown.

Evidence from other viral zoonoses suggests an origin in
bats via possibly an intermediate host (7, 8). This review will
examine the origin of SARS-CoV-2 in the context of possible
zoonotic transmission, evolution, ecological factors, and the role
of reservoir species in other coronaviruses (9).

Coronavirus Characteristics
Coronaviruses are members of the family Coronaviridae, order
Nidovirales. The Coronaviridae family is further subdivided into
the Torovirinae and Coronavirinae subfamilies. Coronaviridae
have a well-conserved genomic organization and a substantial
number of nonstructural genes, as well as unique enzymatic
activities (2, 10). The sub-family of Coronavirinae contains four
genera: alphacoronavirus (α-CoV) and betacoronavirus (β-CoV),
which infect mammals, and gammacoronavirus (γ-CoV) and
deltacoronavirus (δ-CoV), which principally infect birds (11, 12).
Coronaviruses (CoVs) are large enveloped positive-sense single-
stranded (+)ssRNA viruses. Genomes of CoVs range from 25 to
32 kilobases (kb), and reproduction of this genome involves a
unique transcription mechanism (13). CoV genomes contain five
open reading frames (ORFs) encoding for the replicase protein
1a/1b nucleocapsid (N), spike (S), membrane (M), and envelope
(E) proteins essential for the replication of the virus. CoVs
also contain a variable number of ORFs coding for accessory
proteins, not essential for replication but with possible roles in
pathogenesis (14, 15).

SARS-CoV-2 belongs to the genus betacoronavirus (β-CoV).
GenBank sequences of β-CoVs from the first patients in the
Chinese city ofWuhan, who visited the seafoodmarket, indicated
that bat-SL-CoVZC45 and bat-SL-CoVZXC21 collected in 2018
in Zhoushan, eastern China, have the highest sequence identities

(∼90% similarity) with SARS-CoV-2. When gene regions were
analyzed individually, the S gene (Spike protein) had the lowest
sequence identity (75%), and the E gene the highest (98.7%).
Significantly, the SARS-CoV-2 strains in the initial Chinese study
of nine patients had a sequence identity of only 79% with SARS-
CoV and ∼50% with MERS-CoV (16). These findings suggest
that SARS-CoV-2 is a distinct β-CoV within the Coronaviridae
family (17). However, SARS-CoV-2 does share a similar ACE2-
binding domain with only a few amino acid differences from
SARS-CoV (18, 19). Later sequencing of SARS-CoV-2 from
Taiwan samples indicated further differences from SARS-CoV,
especially in the ORF8 loci (20).

Within the Coronavirinae subfamily, different host species
are involved with different transmission profiles, and not all
have demonstrated zoonotic transmission to humans at this
time. Of the seven CoVs which have transferred to humans,
two (HCoV-229E and HCoV-NL63) are α-CoVs (21, 22). HCoV-
OC43, HCoV-HKU1 (23, 24), SARS-CoV, MERS-CoV (25–28),
and SARS-CoV-2 are β-CoVs (29, 30). Infections with HCoV-
229E, HCoV-OC43, HCoV-HKU1, and HCoV-NL63 are usually
self-limiting with mild symptoms (4, 24, 31–35). Although
HCoV-OC43 infection is usually mild, more severe pathologies,
including fatal pulmonary infections and lethal encephalitis,
have been reported (36). SARS-CoV-2 does not have any close
sequence similarity to HCoV-229E, HCoV-OC43, HCoV-HKU1,
or HCoV-NL63 but is antigenically related to SARS-CoV (37, 38).

Entry to host cells by CoVs, including SARS-CoV, MERS,
and SARS-CoV-2, is mediated via the spike protein (39).
The S1 subunit of this protein binds to a receptor on the
host cell surface, and the S2 subunit fuses the viral and
host membranes (40). An important property of CoVs is
the diversity in receptors recognized by the S1 protein in
different viruses. These include zinc peptidases angiotensin-
converting enzyme 2 (ACE2) (SARS-CoV; SARS-CoV-2; HCoV-
NL63), aminopeptidase N (APN) (HCoV-229E), the serine
peptidase dipeptidyl peptidase 4 (DPP4) (MERS-CoV), 9-
O-acetylated sialic acid (9-O-Ac-Sia) (HCoV-HKU1; HCoV-
OC43), a cell adhesion molecule carcinoembryonic antigen-
related cell adhesion molecule 1 (CEACAM1) as is the case
with mouse hepatitis virus (MHV), and an angiotensin II
receptor type 2 (AGTR2) possibly with SARS-CoV-2 (41–44).
Other species use sugars as receptors or co-receptors (40).
Apart from the ACE2 receptor-binding site for virus entry,
TMPRSS2 is another key protein required for viral entry into
human tissue (45–49).

Some spike proteins may also have different access routes
to cells of possible host species. PDF2180-CoV, a MERS-like
virus found in a Ugandan bat, does not use the DPP4 receptor
for cell entry but requires proteolytic cleavage using possibly
gastrointestinal tract (GIT) released trypsin; it, then, may enter
via the digestive tract rather than via the respiratory system
(50). The MERS DPP4-binding site has also been shown to
have natural polymorphisms (K267E, K267N, A291P, and 1346-
348) that reduce cell entry capacity of the virus and two
polymorphisms (K267E and A291P) that reduce viral replication
(51). SARS-CoV-2, HCoV-OC43,MERS-CoV, andMHV-A59 are
characterized by a furin-like cleavage site that may be important
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FIGURE 1 | Zoonotic risk distribution, pathway to spillover, and the multimodal role of the determinants of spillover. The zoonotic risk is demonstrated by the

accumulated distribution of reservoir hosts and vectors that play a role in the pathway to spillover. The risk of spillover is determined by a series of processes from the

ecological dynamics of reservoir host distribution and density, to the susceptibility, replication and dissemination of the biological factors in the recipient host. This is

also reflected in the multimodal role of the determinants of spillover, demonstrating the disciplines that are being used to study zoonotic transmission and the

determinants of spillover.

in virus cell entry since furin is found in large amounts in the lung
(52, 53). In addition, potential routes of transmission of SARS-
CoV-2, including entry via oral, sexual, and ocular pathways,
cannot be discounted due to the wide spread of the ACE2
receptor in different tissues and organs (54, 55). MERS-CoV has
already been shown to have multiple transmission and infection
options by entering cells within endosomes or at the plasma
membrane, depending on the location of the host proteases that
cleave the viral spike protein to allow membrane fusion (56).

Coronavirus Evolution

Evolution-associated genotypic and phenotypic changes
are a function of complex regulatory cellular, organismic,
environmental, and geographical interactions (57).
Coronaviruses and other zoonotic viruses are genetically
heterogeneous while in prehuman hosts, such as bats, but
are often poorly adapted for zoonotic transmission from
their initial reservoir pool. This is due to physiological
differences between host species, and hence requires significant
evolutionary adaptation, which is often a co-evolutionary process
(58, 59). Evolutionary changes associated with mutations and

recombination, as well as genetic drift or pleiotropy, play an
essential role in the adaptation of viruses to new hosts. These
changes may keep viruses not only in the host population
but also determine their virulence as seen in the adaptive
evolution of the S glycoprotein of bovine coronavirus and
human coronavirus (HCoV) OC43 using phylogenetic and
phylodynamic analysis (60–62).

For successful transmission to a new species, viruses
must adapt to cell surface receptors to bind successfully
to the host receptor, escape host immune surveillance and
response, and ensure further transmission by the host (63).
Successful viral cross-species transmission and infection
depend on rapid evolution accomplished by high mutation
rates, recombination, and assortment and how closely related
possible host species are (16, 64–67). Mutations that favor

more efficient host entry, optimize virus replication, and
decrease susceptibility to host immune responses, will
increase virulence and maximize transmission potential
either within the host species or between hosts (68–70).
Findings of previous cross-species transmission has identified
the importance of tracking viral mutations in the new host,
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in SARS-CoV-2 mutations to the receptor-binding domain
changes virus virulence, and either natural immune response or
vaccine efficacy (71).

Modification of the CoV genome and associated structural
and non-structural proteins contribute to successful zoonoses
(72–75). These genomic changes are further enhanced by
geographical spread (76). Mutation rates in viruses are generally
much higher (by a factor of ∼106) (77) than those of their hosts
but vary for different viruses by several orders of magnitude (78).
Estimated mutation rates in CoVs are moderately higher than
others in the ssRNA virus category (77). In addition, SARS-CoV
and SARS-CoV-2 may have evolved rapidly due to different parts
of the genome mutating at different rates leading to a possible
increase in phenotypic diversity (79, 80). Mutations may also
lead to viral resistance to host immune reactions and resistance
to antiviral drugs (81, 82). Forty-seven SNPs (point mutations)
that may affect virulence have been identified in samples of
SARS-CoV-2 from 12 countries from which complete genome
sequencing data were available (83). Mutations in the sequence
of the spike protein have led to the great versatility of viral
receptor binding strategies, which characterizes the SARS-CoV
and SARS-CoV-2 spike proteins. This versatility may underlie
their high, yet different, affinities to the human ACE2 receptor
compared with that of the spike protein in Bat-CoV and affect
virulence and transmission (81, 84–86). However, mutations
also lead to disparity in fatality rates in different countries
following SARS-CoV-2 infection, which has been linked to
the D614G substitution in the SARS-CoV-2 spike (S) protein
suggesting changes in pathogenicity and transmission associated
with specific mutations (20, 87–89).

Major drivers of CoV evolution also include mutation rate,
viral mutation capacity, and recombination, influenced by
environmental changes, as well as surface glycoprotein plasticity
often promoted by host-parasite interaction without reducing
virulence (90, 91). Polymorphisms of specific genes, however, do
not only change the possible phenotypic expression of the gene
but may also influence other genes and their expression. Genetic
polymorphisms that affect host phenotype upon infection have
been reported for HIV-1, hepatitis C, dengue, influenza A virus
infections, and other types of parasites (92, 93). These studies, as
well as plant studies, suggest that viruses may have both virulence
and avirulence genes that map to susceptibility and resistance
genes in the host (93). Improved immunity, for instance, has been
found for the cellular co-receptor CCR5, which prevents HIV-
1 from entering the cell, leading to resistance against HIV-1 in
some individuals (94). Similarly, the human leukocyte antigen
(HLA) polymorphisms may be associated with resistance or
susceptibility to viral infection (95). SARS-CoV and SARS-CoV-
2 both enter cells via the ACE2 receptor and access to or ability
to bind to ACE2 may be associated with zoonotic transmission
potential to humans (59, 96). This is particularly interesting as
the ACE2 gene is located on the X-chromosome; hence, females
may potentially be heterozygous with different susceptibility to
males who are hemizygous (97). ACE1 is a similar receptor with
a similar function; it is characterized by an insertion (I)/deletion
(D) polymorphism where the D allele is associated with reduced
expression of ACE2 and therefore may confer some resistance

to SARS-type viruses by changes in the ACE1/ACE2 balance
(97–100). Similarly, two mutations affecting the non-structural
protein 6 (NSP6) and the ORF 10 may lead to a lower virulence
and pathogenicity of SARS-CoV-2 due to a decrease in protein
stability with similar mutations within the receptor-binding
domain (RBD) required for retaining viral strength and virulence
(101, 102). A recent study also identified a novel SARS-CoV-2
mutation in the RBD furin-associated cleavage site that may lead
to a decrease in virulence and transmission and is associated with
the sequence of ZJ01 (BataCov/Zhejiang/ZJ01/2019) in a mild
case of COVID-19 reported in China (103). Novel CoVs have
been identified in bats in Vietnam (104) and Mexico, where 13
distinct CoVs (nine α-CoVs; four β-CoVs) were identified, 12
of which were novel (105). These observations highlighted the
fact that bats may not only carry multiple viruses but harbor
distinct CoVs across different geographical regions. Sequence
homology between the novel and known viruses underscores
the importance of identifying the viral reservoirs in different bat
families (41).

The evolution of the virus does not occur in isolation but
is accompanied by alterations in the host. Host evolution and
ecology associated with genetic mutations and recombination
events provide the necessary host factors that need to occur in
parallel with viral evolution (106–108). For effective zoonoses
and the ability to establish in a new host, several factors
need to come together, including the emergence of a founder
virus that possesses a modification and allows more efficient
infection/transmission in the new host, as well as host alterations.
For example, bats have to have a specific immune response that
allows them to survive following viral infection, and not affect
virus survival, viral load, or viral spill over. In bats, this may be
associated with the type I interferon and interferon-associated
antiviral activity (4, 109, 110). These evolutionary adaptations
are linked to damping of cytoplasmic DNA through the loss of
PYHIN genes and a regulatory site mutation in STING, which
leads to changes in the inflammatory response in association with
a change in TNFα, IL-10, IL-1β, and IL-18, and IFN-α levels
(111, 112). Recent studies have also shown that frequency and
synchronization of the reproduction cycle of bats can influence
the prevalence and persistence of viruses. The Egyptian fruit
bat, Rousettus aegyptiacus E. Geoffroy, tested in Africa indicated
two peak periods of horizontal transmission throughout the year
and coincidental increase in human infections of Marburg virus,
which is carried by these bats (113).

Persistence in the new host requires further genetic
modifications. Mechanisms including repressor-operon
function in gene action, the role of viruses incorporated as
extrachromosomal elements, recombination, reassortment,
codon bias, hypermutations, and epigenetics in host evolution
all play a role in either resistance or susceptibility in viral
infections including zoonoses (114, 115). In particular,
epigenetic modifications by viruses, including CoVs, such
as histone modifications, may influence host viral susceptibility
(116). In this regard, following the zoonotic introduction
of HCoV-OC43 to humans, the hemagglutinin-esterase
protein required for binding to the 9-O-acetylated sialic
acid as receptor was selected against contributing to the
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persistence of the virus in the human population (117). In
addition, rapid recombination and mutations have led to a
diversification of HCoV-OC43, with seven genotypes identified.
In contrast, bovine coronaviruses (BoCoV) exhibit relative
genetic stability that may be similar to porcine hemagglutinating
encephalomyelitis virus (PHEV) (118–125).

In the case of SARS-CoV-2, the large ssRNA genome provides
the virus with a multitude of pathways for adaptation-associated
base substitutions and deletions and contributes to altering host
gene expression and counteracting the host immune responses
(126, 127). The previous pandemic associated with SARS-CoV
did not identify a direct evolutionary pathway toward zoonotic
transmission as no evidence has been found for mutations from
a known coronavirus, nor does it seem to be a recombination
or mutation of any known CoVs suggesting that SARS-CoV
possibly spilled over into an intermediary, unidentified animal,
bird, or reptile host prior to infecting humans (128, 129). A
similar lack of identification of an intermediary host for SARS-
CoV-2 is the case.

ECOLOGICAL FACTORS AND THE ROLE
OF RESERVOIR SPECIES

Zoonoses depend on the relationship between the virus and
a reservoir host or hosts. Both the ecology of the virus and
the ecology of the host(s) play roles in creating the potential
for zoonotic transmission. Viral ecology is concerned with the
interactions between the virus and its host or hosts but broader
ecological factors affecting the host(s) directly play a role in the
ecology of viruses. Viral ecology is an important link in the
process of zoonoses as ecological factors can facilitate or inhibit
virus spillover (130, 131). Comparisons of viral sequence data
with demographic and geographic sampling location data can
assist in our understanding of current and potential zoonoses
(132). Animal to human transmission opportunities have been
increasing in line with ecological changes worldwide (133–138).
Zoonotic transmission risk is higher where population growth
has had the greatest effect on land-use, and biodiversity is high
(76, 139, 140). A global heat map from 2017 indicated that
China, the Indian subcontinent, and the Himalayan region are
hot spots with an increased risk of future zoonotic events (76).
Although viruses play a role in broader environmental ecology,
this discussion will focus on examining interactions of CoVs with
identified host species and the types of transmission cycles that
have evolved with respect to zoonoses.

Recent studies have indicated that viral diversity is reflective
of the number of natural host species. Rodentia (rodents) and
Chiroptera (bats) contain the most species among mammals
(141). With over 1,400 bat species, bats are one of the most
common mammals on the planet and have been identified
as being likely associated with zoonosis (142). Bats form an
important part of many ecosystems by regulating possible crop
pest outbreaks, seed dispersal, and pollination, as well as soil
fertilization, and as a food source are a major intermediate host
of coronavirus species (143). The islands of the West Indian
Ocean, which are home to 50 of the 1,411 known bat species

provide a suitable environment for the co-evolution of hosts
and viruses (144). Approximately 9% of the bat species in the
West Indies tested positive for coronavirus of which nearly half
were members of the α- and β-CoVs subfamilies. Evidence of
co-evolution was shown with limited species switching, possibly
due to habitat separation. The potential for spillover in this
environment, however, remains to be investigated (143).

Viral transmission to humans may occur through the
consumption of reservoir species for food or medicinal use
of animal products from reservoir species as well as other
commercial enterprises. Transmission of MERS-CoV, where the
only identified host species are Dromedary camels, has been
attributed to consumption of unpasteurized camel milk, raw
meat, or medicinal use of camel urine, as well as proximity
to the animals (145). Ecological factors thus facilitate the
persistence and the frequent transmission of a virus in the
case of MERS and dromedary camels (146). Consumption of
wild-caught animals may not be necessary for transmission to
humans as simple proximity to the host species appears to
be sufficient for transmission in the case of SARS-CoV from
palm civets and mink (147, 148). Other potential sources of
contact between humans and wild animals occur when these
animals are used for entertainment, as is the case for performing
monkeys in Indonesia or zoos (149, 150). Thus, behavioral
and cultural factors, which alter the probability of interactions
between humans and animals have increased the possibility of
cross-species infections, which may lead to more zoonotic events
(65, 130, 141, 151–153).

Dispersal and host spillover dynamics are a function of animal
ecology. Bats, birds, and especially migrating birds, which are
hosts of CoVs, provide an opportunity for dispersal and spillover
across large distances, continents, and host species. Feeding
habits in airborne animals are constrained by the aerodynamics
of flight and associated energy requirements and location of food
sources as well as geography. Bats may either be frugivorous or
insectivorous, and the fecal contents of bats may be ingested by
ground-foraging animals, leading to transmission of the virus
(154). An interesting corollary is that flight also leads to greater
energy expenditure and higher body temperatures in bats, which
has required viruses to adapt and led to a greater diversity of
zoonotic viruses in bats (155, 156). The adaptation as part of a co-
evolution may then have led to better resistance to inflammatory
reactions, as part of the innate immune response in spillover
species such as humans (157).

Warm-blooded flying vertebrates appear to be ideal hosts for
coronaviruses, bats for alpha and beta CoVs and birds for delta
and gamma CoVs (158). Migratory birds are known to have led
to transfection of the West Nile virus, tick-borne encephalitis
virus, influenza A virus (IAV), Newcastle disease virus (NDV),
and H5Nx avian influenza viruses to humans (159, 160).

Bat ecogeographical characteristics, including food choices,
population dynamics, territorial range, migration patterns, a
long-life span, virus immunity, and the human-led changes in
habitat that brings bats in more contact with humans, lead
to bats being an ideal candidate to spread viruses to humans.
Viruses with a diverse host range and host plasticity are also more
likely to amplify viral spillover by secondary human-to-human
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transmission (30, 161–163). Shifts in the migratory behavior
of species can alter the risk of infection for wildlife, domestic
animals, and humans. These shifts in migratory behavior occur
in conjunction with changes in food availability due to natural
ecological change, agriculture, or feed supplementation (164). An
increased risk of infection may occur in smaller regional areas
if animals become sedentary and long migrations do not cull
infected hosts but reduce geographical infection spread. Climate
change and deforestation have the potential to cause many
such ecological changes in the immediate future with increased
risk of zoonotic events. Habitat deterioration, which may have
detrimental effects on the health of the reservoir species, is an
important adjunct to viral spillover probability, leading to higher
susceptibility to pathogens and increases in shedding of virus
(165). The extent that habitat deterioration or human activity
affects bat species health is quite specific and depends on the roost
type and human activity with respect to the roost type (166).

RESERVOIR SPECIES

A factor permitting viruses to persist in one host and, possibly,
to cross to another is the presence in different hosts of common
receptors. For movement across species, host evolution and
ecology associated with genetic mutations and recombination
events are the necessary host factors that need to occur in parallel
with viral evolution (106–108). The cross-species infection can
take several forms, but a common model is the spillover of the
virus from bats through undigested food. Bats mainly break
down food to obtain the high-energy sugars and spit out the
remaining fruit which is consumed by other species including
insects, which are a potential intermediary transmission vector
depending on the bat species (167). Direct human transmission
may also occur through eating bats and the use of bat feces for
medicinal purposes (65, 168).

Studies from China in the last 15 years have shown that bats
are the natural reservoir of a range of CoVs, including SARS-
CoV and SARS-like CoVs, found in Rhinolophus macrotis Blythe,
Rhinolophus ferrumequinum Schreber, Rhinolophus pearsoni
Horsfield, Rhinolophus sinicus Andersen, Pipistrellus abramus
Temminck, Pipistrellus pipistrellus Schreber, Tylonycteris
pachypus Temminck, Myotis ricketti Thomas, and Scotophilus
kuhlii Leach (135, 169–172). However, despite the high numbers
of bat species harboring diverse CoVs, any direct link between
these viruses and their bat hosts with viruses isolated from
human samples is lacking. Several possibilities exist including
host shifts between closely related hosts and/or viruses found
in host species. Preadaptation of a virus strain to overcome the
immune response of a new host is a mechanism that allows spill-
over. In addition, a previrulent virus entry into a new host can
allow mutations in the new host that eventually lead to increased
virulence. These mechanisms are further outlined here with
respect to reported studies of coronaviruses. From phylogenetic
association studies, results show that for instance there is no
strict match between Rhinolophid bats and their association
with CoVs, suggesting that interspecies transmission followed by
establishment and long-term persistence in the new host species

have occurred during the evolutionary history of the virus
rather than the current virus genome establishing in the human
population (30, 118, 119). Host shifts within Rhinolophid bats
have been identified in all bats harboring two distinct lineages
of CoVs, except for R. macrotis (118, 134). This indicates that
there is a divergence in behavior and ecogeography of the close
phylogenetic relationship between viruses harbored byM. ricketti
and S. kuhlii and reflects the similar behavior and ecology of the
R. ferrumequinum, R. pearsoni, and R. sinicus hosts. Novel bat
species have also been recently reported harboring CoVs being
Myotis (Myotis pequinius Thomas) and Fringed long-footed
Myotis (Myotis fimbriatus Peters). In addition, the genotypes of
lineage C, β-CoV in Fringed long-footed Myotis (M. fimbriatus),
and common serotine (Eptesicus serotinus Schreber) in China
have a nucleotide similarity of 85–88% with MERS-CoV (123).
Since viruses have probably evolved more recently than their
host bats, the apparent co-evolutionary patterns could be due to
a host shift that would allow viruses to undergo preadaptation
against the immune responses of the host. This mechanism
may explain the movement of SARS-like CoVs between hosts
(120, 173).

Interspecies spill-over and viral recombination may lead to
eventual zoonotic events that can also be viewed from the
receptor binding domain of the virus with the ACE2 receptor
perspective. Recent data suggests that the RBD for ACE2 may
be an ancestral trait of SARS-CoV-2 and not a result of a recent
recombinant event. Thus, SARS-CoV-2 may have diverged from
its ancestral bat sarbecovirus reservoir sometime between 1948
and 1982 and circulated in bats for some time (174). Intriguing
is the proposition that RaTG13 CoV with a high nucleotide
sequence identity with the Spike protein of SARS-CoV-2 may
not be the historic ancestor, as suggested by some reports but
that the RBD was acquired from the MP789 pangolin CoV by
recombination (175).

MERS-CoV
MERS-CoV, which causes respiratory-type illness but differing
from that caused by SARS-related coronavirus (SARSr-CoV)
was isolated in 2012 (26, 176). MERS-CoV replicates in cell
lines from Rousettus, Rhinolophus, Pipistrellus, Myotis, and
Carollia bats as well as pigs, substantiating that MERS-CoV uses
a different receptor to ACE2 that is conserved in bats, pigs, and
humans, demonstrating a continued strong zoonotic potential
(177, 178). Phylogenetic characterization has placed MERS-CoV
into the β-CoV group (179, 180). No animal reservoir for MERS-
CoV has been identified. The closest relatives of MERS-CoV
occur in a bat species Neoromicia zuluensis Roberts (181–183).
It is closely related to the Tylonycteris bat coronavirus HKU4
and Pipistrellus bat coronavirus HKU5 (26, 158). The closest
viral relative to MERS-CoV sequence identity with MERS-CoV
EMC/2012 (MERS coronavirus Erasmus Medical Center/2012)
isolated in the infected person in Saudi Arabia has been reported
for Taphozous perforatus E. Geoffroy (Egyptian Tomb bats),
suggesting a possible regional host reservoir (181, 184). Studies
of the evolutionary origins of MERS-CoV link Pipistrellus cf.
hesperidus (strain PREDICT/PDF-2180) from the bat family
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Vespertilionidae as a possible evolutionary ancestor for MERS-
like CoV, indicating a 30% homology between the MERS-CoV
S protein antigenic sites and HKU4, but a 70% homology with
HKU5 bat-CoV. A 100% homology between MERS-CoV and
both HKU4 and HKU5 was found for the E, M, and N protein
antigenic sites (156, 185, 186). Cross-reactive antibodies to
MERS-CoV have been detected in dromedary camels, which have
been suggested as an intermediary host, in Oman and the Canary
Islands, but no virus was detected in these animals (187, 188).
Another possibility has been suggested by Zhang et al. that at
least in Kenya, co-infection with MERS-CoV and a HKU8r-CoV
in camels occurred, leading to the possibility of recombination
events between a precursor virus ofMERS-CoV andHKU8r-CoV
(189). Apart from dromedary camels, other new-world camelids,
including alpacas, llamas, and Bactrian camels, are also at risk
of MERS-CoV infection. The DPP4 receptor in Bactrian camels
has a 98.8% sequence identity with the dromedary camel DPP4
receptor (190).

The precise mode of transmission for MERS-CoV, therefore,
remains uncertain due to differences in the viral genome reported
from different geographic regions (109, 191–197), including
differences between the original African MERS-CoV and the
current Saudi Arabian MERS-CoV clade (28, 198–200). MERS-
CoV differs from the closely related bat viruses in binding to
the DPP4 receptor, also referred to as CD26 cellular receptor
(201, 202) found in humans, dromedaries, and pigs (203–205).
The potential of MERS-CoV to undergo rapid alterations in the
surface charge of the spike protein enhances viral entry and
demonstrated that MERS-CoV utilizes multiple paths to adapt
to changes in the receptor sites of host species (206–208). A
study of naturally occurring DPP4 protein variants indicated that
four (K267E, K267N, A291P, and 1346-348) reduced binding
and cell entry of MERS-CoV and two polymorphisms (K267E
and A291P) attenuated viral replication (51). Whether human
DPP4 variants differ in geographical location or between ethnic
groups remains to be investigated and may shed a better
light on why MERS-CoV infection in the African continent
is less than in the Middle East. An alternative explanation of
the low zoonotic potential of MERS-CoV to humans may be
related to the level of human DPP4 receptor expression (209).
In contrast, viral escape mutations as an adaptive mechanism
toward neutralizing antibodies in humans have been shown
to most often lead to a reduction in MERS-CoV fitness and
DPP4 binding (210). Similar mutations and recombination
events are also characteristic of SARS-CoV and SARS-CoV-2
(1, 10, 29, 211). The mechanisms that lead to a balance between
enhanced transmissibility associated with the rapid mutations
observed in the Spike protein gene to DPP4 variants and adaptive
mechanisms, for neutralizing host immune response that lead to
a reduction in viral fitness, has yet to be elucidated (212).

SARS-CoV
SARS-CoV, discovered in 2003 in association with patients being
admitted to hospitals with severe acute respiratory syndrome
obtains human cell entry through the ACE2 receptor (213).
SARS-CoV shows a close relationship to murine hepatitis
virus (MHV) based on phylogeny but MHV binds to the

murine receptor CEACAM1 (214). The structure of the RBD of
SARS that binds to ACE2 reveals possible sites of importance
for crossing to humans (215–217). The pathway of zoonotic
transmission however remains unknown despite intensive
investigations and the discovery of closely related viruses that
have the capacity to infect multiple hosts using the ACE2 receptor
(218). Interspecies similarities have been reported with the RBDs
of civet and humans differing only in four positions. Amino
acids at these positions are responsible for the imbalanced salt
bridges at the hydrophobic virus/receptor interface leading to a
1,000-fold difference in affinity of the respective spike protein
for human ACE2 that creates the observed species barrier for
zoonosis (219, 220). This makes the civet an unlikely candidate
for intermediary host. Arguments for civets as an intermediary
host therefore hinge on the rapid stepwise mutation rate of
SARS-related CoV that contributed to SARS-CoV adapting to the
human RBD within a short period (221, 222).

Any viral mutations must then be non-virulent to the
reservoir or host species. Of interest is that civets showed
clinical signs when infected with two strains of human SARS-
CoV and suggesting a complex relationship between virus and
civets as possible intermediate hosts (218). More recent research
has identified two viruses, RsSHC014 and Rs3367, which are
closely related to SARS-CoV in horseshoe bats (R. sinicus) from
Yunnan, China that also have a close similarity in the RBD of
the spike protein. One, Rs3367 demonstrated that it was equally
able to infect HeLa cells expressing ACE2 from human, civet
and Chinese horseshoe bats. Rs3367 has 99.9% genome identity
with CoV-WIV-1 (223). This suggests that horseshoe bats may
not only be a natural reservoir for SARS-CoVs and SARS-like
CoVs but future virus mutations, may be able to directly cross
to humans without spilling over into intermediate species such
as palm civets (Paguma Larvata C.E.H. Smith) or raccoon dogs
(Nyctereutes procyonoides Gray) (221, 224). Continued research
by Ge and co-researchers have also published a newer WIV
mutation, SARS-like CoV-WIV16 (SL-CoV-WIV16), which has
an identical gene organization to SL-CoV-WIV1 but a slightly
different organization to that of civet SARS-CoV and other
bat SL-CoVs. SL-CoV-WIV16 has a 96% nucleotide sequence
identity with human (SARS-CoV GZ0 human isolate from 2003
SARS outbreak) and civet SARS-CoVs compared with SL-CoV-
WIV1 with 83% nucleotide sequence identity (225). The large
genetic diversity of ACE2 among bats and humans and the rapid
mutation rate seen in coronaviruses and the often close similarity
of the virus RBD with human ACE2 receptors suggests possible
future zoonotic events either directly from bats as the reservoir
species or via intermediary species including cat (Felis catus
Linnaeus), red fox (Vulpes vulpes Linnaeus), and the Chinese
ferret badger (Melogale moschata Gray), all found in market
places (11, 226–229).

SARS-CoV-2
SARS-CoV-2 is a novel recombinant virus for which the
ancestral host species or intermediate spillover species is as yet
unidentified, although horseshoe bats (R. sinicus) across China,
Europe, and Africa harbor SARS-CoVs (162, 230). Two SARS-
CoV-2-related bat coronaviruses (BatCoV RmYN02 and BatCoV
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RaTG13) have been identified in horseshoe bats (Rhinolophus
malayanus Bonhote and Rhinolophus affinis Horsfield). BatCoV
RaTG13 sampled from R. affinis in Yunnan in 2013 displayed
an approximate 95% similarity to SARS-CoV-2, suggesting that
SARS-CoV-2 may have crossed from bats in this area of China
(50). Several studies, including one investigating the polyprotein
1ab (pp1ab) of CoVs that is involved in replication and
transcription of the viral genome and virus sequence similarity,
has identified bat SARS-CoV RaTG13 as being the closest to
SARS-CoV-2, rather than CoVZXC21 and CoVZXC45, which
also show some similarity to SARS-CoV-2 (50, 80, 231, 232).
RaTG13, which has the most closely related CoV sequence to
SARS-CoV-2 (96.2%), still has a distinctive RBD which is less
efficient in binding to ACE2 (44, 50) and phylogenetic tree and
haplotype network analysis suggest historic divergence between
SARS-CoV-2 and RaTG13 CoV between 40 and 70 years ago
(175, 233).

The animal origin of SARS-CoV-2 is possibly quite diverse,
with several SARSr-CoVs having been detected in horseshoe bats
co-located in a single cave in China (223). Several sequential
recombination events may then have led to changes in the
coding sequences of the S-protein, ORF3, and ORF8 of SARSr-
CoVs in these bat species prior to spillover to the civet as a
possible intermediary host and the emergence of SARS-CoV
variants including SARS-CoV and SARS-CoV-2 (44, 234). In
the same cave, further SARSr-CoVs with different S protein
sequences that were able to recognize ACE2 were identified that
have the potential to spillover to humans, including SARS-Like
CoV-WIV1 (SL-CoV-WIV1) and β-GX210 found in Cynopterus
sphinx in Guangxi (223, 235–237). Human ACE2 is one of the
most polymorphic genes, with 317 missense single-nucleotide
variations (SNVs) identified that play an important role in
susceptibility to SARS-CoV-2 due to changes in binding affinity
of the virus to the receptor (229). The diversity of the ACE2
receptor may lead to a greater likelihood of possible infection
with future SARS-CoV-2 variants that currently may not be
as infectious in the majority of the population. SARS-CoV-2
mutations are identified in South Africa and UK that may be
spreading faster and with different infectivity (238). India has also
revealed dispersion of SARS-CoV-2 into at least three clades with
mutations found in the spike, RdRP, and nucleocapsid coding
genes (88). A further possibility is the T265I mutation in the USA
which aids SARS-CoV-2 survival in the host cells and may play a
role in virulence, transmissibility, or infectivity (239). Whether
the viral spread and infectivity is solely due to the change in the
spike protein structure or a combination of mutations in other
viral proteins, as well as differences in the ACE2 receptors, is
currently being investigated (240).

The CoVs from bats in Sichuan and Yunnan province
in China also had sequence similarities with SARSr-CoV
including β-YN2018A, β-YN2018B, β-YN2018C, β-YN2018D,
and β-SC2018 and between 92 and 97% sequence identity
with the human SARS-CoV SZ3 (237). These findings indicate
the capacity of the coronavirus to undergo recombination
between different parts of the genome in different hosts.
Such analysis helps to elucidate the possible role of Malayan
pangolins (Meloidogyne javanica Treub) as an intermediate

host, between bats and humans (241, 242). CoV sequence
similarities have identified a virus cluster, including 6 pangolin
CoVs (MP789, PCoV-GX-P5L, P5E, P1E, P4L, and P2V) and
two bat CoVs (RaTG13 and RmYN02 from R. affinis and R.
malayanus, respectively). Pangolins, sampled from Guangdong
province in China harbor the Pan-SL-CoV-GD with a genetic
similarity of 91.2% to SARS-CoV-2 and others sampled in
Guangxi province harbor the Pan-SL-CoV-GX with an 85.4%
similarity to SARS-CoV-2 (243–246). Moderate similarity was
reported on a genome level between SARS-CoV-2 and pangolin
CoV samples using phylogenetic analysis, and the ACE2
receptor binding domain of current SARS-CoV-2 resembles
most closely that of the pangolin CoVs from Guangdong.
However, it is unlikely that SARS-CoV-2 has emerged directly
from the virus isolates in pangolins but rather from an
ancestral virus that may have had sequence similarity with
RaTG13 CoV that may have obtained the S protein from the
MP789 CoV (231, 232, 244, 247, 248).

Coronavirus can infect many animal species other than
humans any of which could, conceivably act as an intermediate
host species. Possibilities include snakes (Serpentes), hedgehogs
(Erinaceidae), bats (Chiroptera), marmots (Marmota), turtles
(Chrysemys picta bellii Gray, Chelonia mydas Linnaeus,
and Pelodiscus sinensis Wiegmann) (249–252), as well as
domesticated species (253–255). Farmed mink has been shown
both to harbor SARS-CoV-2 and to transmit the virus to humans.
Infections in farms have been reported with an estimated
mutation rate of 1.16∗10−3 substitutions/site/year, suggesting
virus circulation (including the D614G mutation) within the
mink farms for some time prior to identification (256, 257).
Other animals that have been identified with SARS-CoV-2 or
SARS-CoV2-like virus include tigers, lions, pigs, ferrets, golden
hamsters, chickens (Gallus), and rabbits (RbCoV HKU14).
Of these, pigs, cats, ferrets, and primates may have increased
susceptibility to SARS-CoV-2 but possibly lesser transmission
potential to humans (258–260). This lower transmission
potential may be due to lower amplification potential associated
with the presence of virus neutralizing antibodies or conversely
a higher virulence in these animals (261, 262). The Savanna
Monkeys (Chlorocebus spp.) are an example where a high level
of human interaction occurs throughout sub-Saharan Africa and
the Caribbean. Savannah Monkeys carry the ACE2 receptor for
SARS-CoV-2 binding, which increases the risk of bi-directional
cross-species transmission and potential of viral mutations
to optimize transmission and virulence (49, 263). Ecological
and environmental factors, however, may lead to natural host
species that carry different coronaviruses and were initially
separated geographically to come in contact in the same new
host. This type of host switching and dual infection can lead
to a novel recombinant virus with higher transmissibility and
virulence (264).

Possible ectoparasite vectors including ticks, fleas, and mites
have also been reported as transmission factors (233, 259,
265–270). However, for effective transmission and virulence,
sufficient adaptation and amplification within the new host of
the viral variant are required regardless of the transmission
vector (271).
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CONCLUSION

Although direct evidence of zoonotic transfer of SARS-CoV-2
has not been demonstrated, zoonotic transfer to humans remains
an ongoing concern. Recent increases in infections and the
emergence of new zoonotic transmissions associated with climate
change, habitat changes due to agriculture, and human-animal
interaction increases the complexity of identifying possible
zoonotic pathways (151, 272, 273). Research into receptor
utilization has provided critical information on possible zoonotic
transmission but at this stage has not identified a possible host or
intermediate species for SARS-CoV, MERS, or SARS-CoV-2.

Diverse concepts aimed at explaining zoonotic transmission
including phylogenetic similarities, and environmental effects,
have highlighted the potential of zoonotic transmission. As such,
animal hosts most closely related to humans harbor zoonoses
of lower impact in terms of morbidity and mortality, while
more distantly related hosts such as Chiroptera (bats) may carry
highly virulent zoonoses but with a lower capacity for endemic
establishment in human hosts (274). Similar environments,
sharing immune responsemechanisms, or cell receptors, increase
the likelihood that a virus is preadapted to a novel host (65,
120, 275). The plasticity of CoVs, especially β-CoVs, allows these
viruses to adapt to diverse host species en route to human
spillover (276). This has been shown to be achieved through
stepwise adaptive evolution of different functional proteins of
SARS-CoVs at different epidemic stages and in different hosts
(262, 266, 277–283). However, evidence of zoonotic transmission
of specific animal CoVs has not been proven for many of the
animals studied, although there is evidence that SARS-CoV may
be transmitted from domestic hosts (284, 285).

Co-habitation of hosts carrying different (+)ssRNA viruses
within the Coronaviridae will continue to lead to the emergence
of new virulent strains by mutation, recombination, or
reassortment. HCoV-NL63, an α-CoV, which leads to common
cold symptoms, may be essential to follow as, in contrast to other
α-CoVs, which rely on the CD13 (aminopeptidase) receptor for
entry into host cells, it has been shown to lead to frequent
infection in humans and utilizes the ACE2 receptor, and so may
only require minor alterations to become more virulent (226,
286, 287). S-protein fromHCoV-NL63 and respiratory syndrome
coronavirus bind overlapping regions in ACE2. Although the
factors responsible for the difference in response between SARS-
CoV-2 and HCoV-NL63 are not known, several possibilities
have been suggested including accessory protein incorporation
into HCoV-NL63 or differences in interaction with the ACE2
receptor. The HCoV-NL63 S protein may only require minor
modification to become more virulent, and this is possible due
to the frequent HCoV-NL63 infections in humans and the high
mutation rates in these viruses (286).

The potential for further β-CoV transmission has been
highlighted by the discovery of replication-competent viruses
such as bat SL-Cov-WIV1 and SL-Cov-WIV16. SL-Cov-
WIV1 discovered between 2012 and 2013 has shown low-
level replication in human alveolar basal epithelial (A549)
cells and other mammalian cell lines. SL-Cov-WIV1 can
also use ACE2 from humans and other species for cell
entry (223, 225, 288).

Future mutations or recombination events of SL-CoV-WIV1
could increase virulence and the likelihood of spillover of this
viral strain as a related SL-CoV-WIV16 viral mutation has already
been identified with greater nucleotide similarity with SARS-
CoV GZ0 human isolate from 2003 SARS outbreak. Similarly,
HKU4-CoV and NL140422-CoV are capable of binding to
human DPP4 without adaptation of the spike protein and pose a
zoonotic risk due to possible accumulation of adaptive mutations
with persistent infections (289–292). Another SARS-like virus,
SHC014-CoV carrying the SHC014 spike mutation, and also
found in Chinese horseshoe bats, has the potential to enter via
ACE2 and, importantly, showed that immune-therapeutic and
prophylactic modalities failed to stop the infection in a mouse
model (293). The Hong Kong University 9 (HKU9) virus also has
a close similarity with sections of the SARS-CoV and the Wuhan
SARS-CoV-2 within the receptor-binding domain for ACE2 and
is also widely distributed in diverse species including Rousettus
leschenaultii Desmarest, Hypostomus commersonii Valenciennes,
Eidolon helvum Kerr, and R. aegyptiacus, from Asia to Africa
(19, 291, 294). Whether diversity of human ACE2 increases the
potential for new zoonotic transmission of viruses with similarity
to SARS-CoV and SARS-CoV-2, or as yet unidentified ACE2-
binding viruses, needs to be further investigated.

The factors determining the potential for spillover have been
more generally investigated from different perspectives,
including phylogenetic analysis and ecogeographical
perspectives. These two concepts are intricately linked as
viral diversity tends to increase as ecogeographical factors
become more favorable for virus to host transmission. Hence,
the proportion of potentially zoonotic viruses per species can
be predicted by phylogenetic relatedness to humans, host
taxonomy, and extent of human population within a species
range. Associated with this is the concept that ecosystems that
have a large biodiversity of animals, tend to have a greater
diversity of viruses. Ecogeographical factors such as clearing of
land allows diverse animals that are usually isolated to interact.
This is highlighted by Olival et al. (41), who reported that of their
mammalian virus dataset consisting of 2,805 mammal–virus
associations, and 586 viruses listed, 44.9% were found in humans,
and 71.5% of human viruses had a zoonotic origin associated
with virus diversity, phylogenetic proximity to humans, and
opportunity for human contact (41). The viral richness or
diversity in animals including bats and other mammals is most
pronounced in Flaviviruses, Bunyaviruses, and Rhabdoviruses
in bats (41). Marburg virus found in R. aegyptiacus bats and
Lassa virus (LASV) found in the Natal multimammate mouse,
Mastomys natalensis Smith (1834), across parts of Africa, further
illustrate the role of geoecology of these mammals and the role
this plays in the risk of zoonosis (295, 296). A similar database
and extraction protocol to that discussed by Olival et al. (41)
has also been developed for MERS-CoV virus host species
distribution and risk of zoonotic infection, which can be used
for future mapping efforts for MERS-CoV and other infectious
diseases (297). In the case of a more species-restricted virus, the
Epstein-Barr virus (EBV), found in Hypsignathus monstrosus
Allen, Eucalyptus torquate Luehm, and Mecynorhina torquata
Drury, fruit bats of Pteropodidae family and mainly located in
Africa, modeling of possible zoonotic transmission has identified
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regional spread in Africa and India as a possible future outbreak
risk due to bat distribution and bat-human contact probabilities
(298, 299). The example of the frequent human infection
associated with HCoV-NL63 suggests that highly pathogenic
variants have ample opportunity to evolve different strategies
for binding to the ACE2 receptor or other pathways of zoonoses
(286). MERS-CoV, but not HKU4, has adapted to use human
DPP4 and human cellular proteases for efficient human cell
entry, contributing to the enhanced pathogenesis of MERS-CoV
in humans. A similar risk of future zoonosis is associated with the
capability of the S protein to adapt to humans for cross-species
transmissions, as may be the case with the HKU4 virus, which
binds to DPP4 receptors but with current affinity to bat DPP4
rather than the human DPP4 (290). To understand the zoonotic
potential of coronaviruses, further research is required into the
role of the ORF genes as well as viral non-structural proteins
responsible for the replication and transcription of the viral
genome (14). ACE2 receptor variants may also contribute to
identifying potential future zoonotic transmission and spillover
to other mammals (300).

Determining zoonotic niches for viral host species and
continued surveillance of cases of viral infection also play an
essential role in predicting the risk and potential spread of
zoonotic transmission with reference to virus evolution and
ecology. Reverse zoonoses followed by secondary infection may
play an important part in SARS-CoV-2 viral transmission and
virulence (7, 301). Human to animal host leads to further
mutations of the virus in humans which may, in some
cases, lead to an improved adaptability of the virus and
hence enhanced spread and infection back to humans. Genetic
sequence homology between coronaviruses including MERS and
SARS-CoV2 may lead to combined infection in human hosts
as a function of dual transmission, especially in North Africa
and in the Middle East and North Africa (MENA) region in
general. Dual infection can then lead to viral mutations in

human hosts that may spillover back to animals and be more

virulent than the original. This possibility needs to be closely
monitored (264). Viral mutations in spillover species such as
mink and domesticated animals also needs to be monitored as
SARS-CoV-2mutations in some animal species have already been
observed that may change the virulence of SARS-CoV-2 and
reduce the likelihood of SARS-CoV-2 losing either its virulence
and/or transmissibility. Future pandemics may not only come
from α-CoV or β-CoV but also from γ-CoV that are found
in domestic birds such as turkeys, guinea fowls, or quails and
more recently in beluga whales and bottleneck dolphins (302–
304). δ-CoVs have potential to spillover to humans and are
present in different mammalian (Asian leopard cat CoV, Chinese
ferret badger CoV, porcine CoV HKU15) and avian (bulbul CoV
HKU11, thrush CoV HKU12, munia CoV HKU13, white-eye
CoVHKU16, sparrow CoVHKU17, magpie-robin CoVHKU18,
night heron CoV HKU19, wigeon CoV HKU20, and common
moorhen CoV HKU21) species (158, 305–307).
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