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Introduction
Atherosclerosis is a progressive disease that is 
characterized by the abnormal accumulation of 
lipids and fibrous elements in the arterial wall, 
with a consequent narrowing of the arterial 
lumen.1 The primary clinical manifestations of 
atherosclerosis, ischaemic heart disease and 
stroke, remain the leading cause of disability, 
mortality and excessive healthcare costs world-
wide.2 For example, in the Global Burden of 
Disease 2019 study, a multinational research col-
laboration, the global prevalence of cardiovascu-
lar disease increased from 271 million in 1990  
to 523 million in 2019.3 During the same 
period, there was also a significant increase in 

cardiovascular deaths, from 12.1 to 18.6 million, 
and a doubling of years lived with disability, from 
17.7 to 34.4 million, due to ischaemic heart dis-
ease and stroke.3 Therefore, despite the availabil-
ity of medications targeting key neurohormonal 
pathways (e.g. the renin–angiotensin–aldoster-
one system), blood pressure, lipid profile and 
platelet aggregation, additional research is 
needed to investigate the significance of uncon-
ventional cellular and biochemical mechanisms 
underpinning atherosclerosis. There is robust 
evidence that such mechanisms involve or even 
trigger the dysregulation of the immune system 
and the excessive activation of specific inflamma-
tory pathways.4–7
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A chronic local (arterial wall) and systemic pro-
inflammatory and pro-oxidant state associated 
with a dysregulation of immune pathways plays a 
critical role in the pathophysiology of atheroscle-
rosis.8 Such alterations also mediate the untoward 
effects of established cardiovascular risk factors, 
particularly diabetes,9–11 arterial hypertension,12,13 
hypercholesterolaemia14–18 and the metabolic 
syndrome.19,20 Consequently, there has been an 
increasing focus on discovering novel immu-
nomodulatory and anti-inflammatory agents with 
atheroprotective effects that could complement 
existing cardiovascular therapies.21–23 An alterna-
tive approach consists of determining the athero-
protective potential of other traditional 
immunomodulatory and anti-inflammatory 
agents that are commonly prescribed in patients 
with autoimmune and/or inflammatory condi-
tions.24–26 If effective, such ‘drug repurposing’ 
approaches would minimize the costs and uncer-
tainties of conventional drug discovery pro-
grammes and provide rapid public health benefits 
in cardiovascular prevention, defined as the com-
bination of pharmacological and non-pharmaco-
logical strategies used to reduce the risk of 
cardiovascular disease in the population.27,28

One example of such a traditional immunomodu-
latory and anti-inflammatory drug is methotrex-
ate, a pteridine analogue that was initially used as 
an anti-cancer agent and, more recently, as a con-
ventional synthetic disease-modifying anti-rheu-
matic drug (csDMARD).29–36 Evidence generated 
from experimental and observational clinical 
studies conducted over the last 30 years suggests 
that treatment with methotrexate is also associ-
ated with beneficial effects on surrogate markers 
of atherosclerosis and cardiovascular clinical end-
points, for example, myocardial infarction and 
stroke.37,38 Therefore, methotrexate could be a 
suitable candidate for ‘drug repurposing’ strate-
gies aimed at enhancing the efficacy of national 
and international cardiovascular prevention 
programmes.

This review article discusses the issues that limit 
the efficacy of existing cardiovascular prevention 
strategies, particularly residual cardiovascular 
and inflammatory risk, and the critical patho-
physiological role of dysregulated immunity and 
inflammation in driving the onset and the pro-
gression of atherosclerosis. Then, it critically 
appraises the published evidence, focusing on 
studies conducted over the last 5 years, regarding 

the potential atheroprotective effects of metho-
trexate in experimental and clinical studies in 
patients with and without autoimmune and 
inflammatory conditions. Finally, it discusses the 
potential practical advantages of methotrexate 
therapy over available treatments for routine car-
diovascular prevention and proposes new research 
directions in this area, including the design of 
future intervention studies investigating the 
effects of methotrexate on cardiovascular risk.

Residual cardiovascular and inflammatory 
risk
A significant number of patients with previous 
atherosclerotic cardiovascular events, for exam-
ple, acute coronary syndrome and ischaemic 
stroke, suffer from further events despite maximal 
treatment with statins, beta-blockers, antiplatelet 
agents, anticoagulants, angiotensin-converting 
enzyme (ACE) inhibitors and angiotensin recep-
tor blockers.39,40 This observation suggests the 
presence of a significant ‘residual cardiovascular 
risk’, that is, the component of an individual 
patient’s cardiovascular risk that is not influenced 
by existing treatments.41–43 The increasing recog-
nition of the critical role played by excess inflam-
mation and dysregulated immunity in driving this 
residual risk has led several experts to rename this 
phenomenon ‘residual inflammatory risk’. The 
results of several observational studies support 
the clinical relevance of the residual inflammatory 
risk, potentially ascribable to the local pool of 
pro-inflammatory T memory cells.44–46 For exam-
ple, in a Chinese study of 5840 patients with a 
recent ischaemic stroke or transient ischaemic 
attack receiving optimal preventive treatment, the 
subgroup with relatively high C-reactive protein 
(CRP) concentrations both at baseline and at 
3-month of follow-up had significantly worse out-
comes at 1 year when compared to the subgroup 
with relatively low CRP at both timepoints (stroke 
recurrence: adjusted hazard ratio, aHR = 1.39, 
95% CI: 1.08–1.78, p = 0.01; composite of stroke, 
myocardial infarction, and cardiovascular death: 
aHR = 1.43, 95% CI: 1.12–1.82, p = 0.004; all-
cause mortality: aHR = 2.57, 95% CI: 1.50–4.41, 
p < 0.001; and poor functional outcome: 
aHR = 1.75, 95% CI: 1.34–2.28, p < 0.001).47 In 
another study of 3013 patients undergoing percu-
taneous coronary revascularisation and receiving 
optimal preventive treatment, those with persis-
tently high CRP at baseline and after 4 weeks had 
a significantly higher risk of major adverse cardiac 
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and cerebrovascular events at 1 year when com-
pared with those with low CRP at both timepoints 
(aHR = 2.10, 95% CI: 1.45–3.02, p < 0.001). 
Different risks were also observed in two other 
subgroups (low baseline and high CRP at follow-
up: aHR = 1.91, 95% CI: 1.21–3.03, p = 0.006; 
high baseline and low CRP at follow-up: 
aHR = 1.52, 95% CI: 0.95–2.44, p = 0.08), sug-
gesting the importance of the temporal direction 
in changes in inflammation in modulating resid-
ual inflammatory risk.48 Several other recent 
observational trials and post-hoc analyses of 
intervention trials have similarly reported signifi-
cant associations between residual inflammatory 
risk, assessed by measuring CRP or other bio-
markers (e.g. the neutrophil-to-lymphocyte 
ratio), and adverse outcomes in patients with 
atherosclerosis.49–55

Atheroprotective strategies targeting 
inflammation and immunity
The structural and functional integrity of the 
endothelium is critical to ensure the maintenance 
of homeostatic mechanisms protecting against 
atherosclerosis, mainly through the production of 
the endogenous messenger nitric oxide (NO) by 
endothelial NO synthase (eNOS). NO regulates 
endothelial-dependent vasodilation, peripheral 
vascular resistance, arterial stiffness, blood pres-
sure and platelet activity, preventing at the same 
time the adhesion of leucocytes to the arterial wall 
and the proliferation of vascular smooth muscle 
cells, critical steps involved in the pathophysiol-
ogy of atherosclerosis.56–63 According to the 
‘inflammatory theory of atherosclerosis’ postu-
lated some 40 years ago, the dysregulated produc-
tion of specific cytokines by subpopulations of 
macrophages (M1), for example, tumour necrosis 
factor-alpha (TNF-α), interleukin-6 (IL-6) and 
IL-12, favours excess inflammation in the arterial 
wall. This, in turn, favours the oxidation of spe-
cific cholesterol fractions, that is, low-density 
lipoprotein (LDL) cholesterol, endothelial dam-
age, the creation of foam cells and the ultimate 
formation of the atherosclerotic plaque.17,21,22,64

In support of the pathophysiological role played 
by pro-inflammatory cytokines in atherosclerosis, 
several observational studies have reported sig-
nificant associations between circulating cytokines 
and the risk of adverse cardiovascular outcomes. 
For example, in a study of patients with myocar-
dial infarction, the concentrations of TNF-α 

measured after an average of 9 months after the 
event were significantly higher in those who expe-
rienced recurrent cardiovascular events during 
follow-up than those who did not (2.84 pg/mL 
versus 2.57 pg/mL, p = 0.02). Notably, the associ-
ation between TNF-α concentrations and recur-
rent events was also independent of conventional 
cardiovascular risk factors.65 Similarly, a recent 
two-sample Mendelian randomization study has 
reported significant associations between geneti-
cally predicted TNF-α concentrations and ischae-
mic heart disease (odds ratio, OR = 2.25, 95% CI: 
1.50–3.37, p < 0.001) and stroke (OR: 2.27, 95% 
CI: 1.50–3.43, p < 0.001).66 In another prospec-
tive study investigating 3269 patients with acute 
coronary syndrome, plasma IL-6 concentrations 
⩾5 ng/L were significantly associated with 
12-month mortality in patients not undergoing 
revascularisation (relative risk, RR = 3.47, 95% 
CI: 1.95–6.21, p < 0.001) but not in those under-
going revascularisation (RR = 1.43, 95% CI: 
0.64–3.21, p = 0.38).67 Taken together, these 
studies highlight that the negative impact of 
excess inflammation is not only limited to the 
assessment of surrogate markers in experimental 
studies but also translates into a tangible increase 
in cardiovascular risk at the population level.

This evidence has stimulated a significant body of 
research over the last 10–15 years that has led to 
the identification of promising atheroprotective 
treatments targeting specific immune and inflam-
matory mediators. Such mediators include 
interleukin-1β (e.g. canakinumab),65 the interleu-
kin-1 receptor (e.g. anakinra),68 the NLR family 
pyrin domain containing three inflammasome 
(e.g. MCC950 and tranilast),69,70 TNF-α (e.g. 
adalimumab),71 IL-6 (e.g. tocilizumab),72 
chemokines (e.g. maraviroc and MNL1202),73,74 
interleukin-2 (e.g. aldesleukin)75 and CD20 (e.g. 
rituximab).76 However, it is essential to highlight 
that these and other agents under investigation 
are often characterized by prohibitive costs and 
toxicity,77–83 which may limit their widespread use 
in cardiovascular prevention, a type of treatment 
that can last for several decades. Recent rand-
omized-controlled studies have also demon-
strated the benefits of ‘drug repurposing’ 
strategies for combating atherosclerosis with 
colchicine, a relatively old antimalarial, antimi-
totic and anti-inflammatory agent targeting 
multiple cellular pathways that is used for acute 
gout and pericarditis.84,85 A similar drug repur-
posing approach in the quest for alternative 
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atheroprotective treatments will be discussed for 
another traditional immunomodulatory and anti-
inflammatory agent, methotrexate, in the follow-
ing sections.

Methotrexate pharmacology and role in 
cardiovascular risk in clinical studies
Methotrexate, a pteridine molecule and an ana-
logue of the B-vitamin folic acid, has been used 
since 1948 for the treatment of cancer and, more 
recently over the last 30–40 years, as a csDMARD 
for a wide range of autoimmune and autoinflam-
matory conditions.34,36,86–88 In this context, it is 
essential to emphasize that the doses of metho-
trexate used for the treatment of autoimmune and 
inflammatory conditions, between 7.5 and 30 mg 
weekly, are considerably lower than those used 
for malignancies, up to ⩾500 mg/m2.34,86–90

Pharmacology of methotrexate
In patients with autoimmune and/or inflamma-
tory conditions, methotrexate is normally admin-
istered once weekly either orally or subcutaneously. 
The mean bioavailability following oral adminis-
tration has been shown to be 0.64 (range 0.21–
0.96) when compared to subcutaneous 
administration.91 Subcutaneous methotrexate is 
gaining increasing popularity in clinical practice 
because of the higher bioavailability, as previously 
described, a more predictable pharmacokinetic 
profile, and a reduced rate of gastrointestinal tox-
icity when compared to oral methotrexate.92 
Circulating methotrexate is not significantly 
bound to plasma proteins, ~50%, can easily dis-
tribute in the synovial fluid and is primarily elimi-
nated by the kidney through glomerular filtration 
and active tubular secretion.93,94 The plasma half-
life of methotrexate ranges between 4.5 and 
10 h.93,94 However, the circulating concentrations 
of methotrexate are not particularly significant 
from a clinical standpoint as the drug enters cells 
via the human solute carrier superfamily of trans-
porters before accumulating as pharmacologically 
active polyglutamate forms by folylpolyglutamate 
synthetases (Figure 1).95 A pharmacokinetic 
study has shown that the median time to achieve 
a steady state of the different forms of methotrex-
ate polyglutamate concentrations in red blood 
cells after commencing oral methotrexate ranged 
between 6 and 149 weeks.96 The same study 
reported that the median time for the polygluta-
mates to become undetectable following 

treatment cessation ranged between 4 and 
10 weeks.96 This period is considerably longer 
that the half-life of circulating methotrexate, 
which also justifies the weekly administration 
schedules in patients with autoimmune and 
inflammatory disorders.

The polyglutamate forms mediate the inhibitory 
effects of methotrexate on the biosynthesis of 
purines and pyrimidines. These effects involve 
the inhibition of the enzymes thymidylate syn-
thase, dihydrofolate reductase and aminoimida-
zole carboxamide ribonucleotide (AICAR) 
transformylase (Figure 1) (ATIC).97 The accu-
mulation of the ATIC substrate, AICAR, in turn, 
favours the accumulation of adenosine, a critical 
anti-inflammatory mediator, through the inhibi-
tion of catabolic pathways mediated by adenosine 
deaminase and adenosine monophosphate deam-
inase (Figures 1 and 2).97

Treatment with methotrexate, particularly long-
term, is known to be associated with gastroenter-
ological, haematological, renal, neurological, 
pulmonary and mucocutaneous toxicity of differ-
ent severity.98,99 However, with appropriate dos-
ing and regular clinical and biochemical 
monitoring, the clinical manifestations of toxicity 
appear to be relatively infrequent and overall 
benign. For example, in an observational study of 
673 patients with inflammatory arthritis, includ-
ing rheumatoid arthritis, about three-quarters 
remained on methotrexate after 5 years. In the 
subgroup that stopped treatment, 11% reported 
inefficacy and opted for withdrawal, 6% liver 
abnormalities and a further 6% haematological 
abnormalities.100 In a study of 379 patients with 
rheumatoid arthritis receiving 1-year treatment 
with methotrexate with other csDMARDs and/or 
corticosteroids, only 2% reported serious adverse 
events.101 In a randomized-controlled study 
investigating the effects of 1-year treatment with 
methotrexate versus placebo in patients with 
arthritis thought to progress to rheumatoid arthri-
tis, there were non-significant between-group dif-
ferences in serious adverse events (11% versus 
11%). However, patients receiving methotrexate 
had a higher incidence of significant (>3 × upper 
limit of normal) elevations in liver enzymes (inci-
dence rate per 100 persons-years: 6.1, 95% CI: 
3.2–10.4 versus 0.5, 95% CI: 0.0–27.4, 
p = 0.0025).102 Additionally, early reports sug-
gesting an increased risk of liver fibrosis during 
methotrexate treatment have not been confirmed 
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Figure 1.  The pharmacology of methotrexate.
AICAR, 5-aminoimidazole-4-carboxamide ribonucleoside; AMP, adenosine monophosphate; ATIC, aminoimidazole 
carboxamide ribonucleotide transformylase/inosine monophosphate cyclohydrolase; DHF, dihydrofolate;  
DHFR, dihydrofolate reductase; dTMP, deoxythymidine monophosphate; dUMP, deoxyuridine monophosphate;  
FAICAR, 5-formamidoimidazole-4-carboxamide ribotide; FPGS, folylpolyglutamate synthetase; IMP, inosine monophosphate; 
MTX-PGs, methotrexate polyglutamates; SLC19A1, solute carrier family 19 member 1; THF, tetrahydrofolate;  
TYMS, thymidylate synthase.

Figure 2.  The effects of methotrexate on adenosine, AICAR and AMPK.
AICAR, 5-aminoimidazole-4-carboxamide ribonucleoside; AMP, adenosine monophosphate; AMPK, 5′ adenosine 
monophosphate-activated protein kinase; ATIC, aminoimidazole carboxamide ribonucleotide transformylase/inosine 
monophosphate cyclohydrolase; FAICAR, 5-formamidoimidazole-4-carboxamide ribotide; IMP, inosine monophosphate; 
MTX-PGs, methotrexate polyglutamates; 5′-NT, 5′-Nucleotidase.

in recent studies.103,104 The safety profile of meth-
otrexate was also comprehensively investigated in 
a secondary analysis of the Cardiovascular 

Inflammation Reduction Trial (CIRT). The 
authors reported a mildly yet significantly higher 
3-year cumulative incidence of severe adverse 
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events in patients receiving methotrexate versus 
placebo (0.13, 95% CI: 0.12–0.15 versus 0.10, 
95% CI: 0.08–0.11).105 The safety of methotrex-
ate reported in these studies appears similar to 
that reported in trials of conventional atheropro-
tective drugs. For example, in the Systolic Blood 
Pressure Intervention Trial in 9069 patients, 
9.8% in the intensive treatment arm and 7.2% in 
the standard treatment arm reported serious 
adverse events.106 Furthermore, in the Ongoing 
Telmisartan Alone and in Combination with 
Ramipril Global Endpoint Trial investigating a 
total of 25,620 patients, the incidence of serious 
adverse events in the three treatment arms ranged 
between 5.0% and 12.0%.107

Rheumatoid arthritis and cardiovascular 
disease
The pathophysiological mechanisms underlying 
one of the most common and studied types of auto-
immune disease, rheumatoid arthritis,108 exhibit 
significant similarities with atherosclerosis. Such 
similarities include the presence of a vascular and 
systemic pro-inflammatory and pro-oxidant 
state,109–115 reduced NO synthesis and endothelial 
dysfunction,116–120 arterial stiffening121–124 and an 
increased risk of arterial hypertension.125,126 A criti-
cal additional element of similarity is represented 
by the excess production of pro-inflammatory and 
pro-atherogenic cytokines, for example, TNF-α, 
IL-1 and IL-6, that synergistically build and main-
tain a pro-inflammatory microenvironment in 
blood vessels.127–130 Not surprisingly, the risk of 
atherosclerotic cardiovascular disease in this group 
is significantly higher than the general population, 
as also shown in a systematic review and meta-anal-
ysis of six studies (RR = 1.55, 95% CI: 1.18–2.02). 
In subgroup analysis, the RR was higher in patients 
aged <60 years (RR = 1.98, 95% CI: 1.41–2.79) 
than in those aged ⩾60 years (RR = 1.43, 95% CI: 
1.16–1.75), although the risk remained significant 
in both groups.131 In addition to inflammation and 
oxidative stress, traditional risk factors, for exam-
ple, diabetes, arterial hypertension and the meta-
bolic syndrome, have also been shown to account 
for the increased risk of atherosclerosis and cardio-
vascular disease in rheumatoid arthritis.132,133

Methotrexate and cardiovascular risk
Several observational studies have reported that 
treatment with methotrexate is associated with a 

significant reduction of cardiovascular and all-
cause mortality in patients with rheumatoid 
arthritis. For example, in a recent systematic 
review and meta-analysis of 15 studies, 7 longitu-
dinal observational cohort, 6 retrospective cohort 
and 2 prospective cohort studies, the use of meth-
otrexate was associated with a significant reduc-
tion in all-cause mortality (HR = 0.59, 95% CI: 
0.50–0.71, p < 0.001). In a subgroup analysis of 
four studies, the use of methotrexate was also 
associated with a significant reduction in cardio-
vascular mortality (HR = 0.72, 95% CI: 0.53–
0.97, p = 0.031).134 The results of another 
systematic review and meta-analysis also support 
the possible protective role of methotrexate 
against cardiovascular events in rheumatoid 
arthritis. In 10 selected studies, 3 cohort, 2 cross-
sectional, 1 case–control and four nest case–con-
trol, investigating a total of 195,416 participants, 
there was a significant negative association 
between methotrexate and cardiovascular events 
(RR = 0.80, 95% CI: 0.73–0.88, p < 0.001). The 
association was similar in a subgroup of eight 
studies that adjusted for concomitant cardiovas-
cular risk factors (RR = 0.78, 95% CI: 0.71–0.86, 
p = 0.003).135

Importantly, current evidence suggests that other 
immunomodulatory and anti-inflammatory 
agents do not share the putative protective effects 
of methotrexate against atherosclerosis and car-
diovascular disease.136,137 In a systematic review 
and meta-analysis of eight studies investigating a 
total of 65,736 patients with rheumatoid arthritis, 
methotrexate use was associated with a significant 
reduction in total cardiovascular events when 
compared to other csDMARDs (RR = 0.72, 95% 
CI: 0.57–0.91, p = 0.007). A substantial reduc-
tion in the specific risk of myocardial infarction 
was also observed in a subgroup of three studies 
(RR = 0.81, 95% CI: 0.68–0.96).138 A more 
recent retrospective cohort study assessing 
Medicare claims data in the United States for the 
period 2006–2015 sought to investigate whether 
methotrexate use might exert atheroprotective 
effects in patients with rheumatoid arthritis who 
are already receiving treatment with biologic 
agents. In a total of 88,255 patients receiving bio-
logics, the additional use of methotrexate was 
associated with a significant reduction in the risk 
of a composite endpoint of myocardial infarction, 
stroke and fatal cardiovascular disease 
(aHR = 0.76, 95% CI: 0.68–0.85).139 The effect 
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size of the cardiovascular risk reduction with 
methotrexate in these studies is comparable to 
that observed in intervention studies of estab-
lished atheroprotective agents, for example, ACE 
inhibitors (RR = 0.80, 95% CI: 0.70–0.91),140 
and statins (OR = 0.69, 95% CI: 0.64–0.75).141

Another recent study has sought to investigate 
whether methotrexate may have competitive 
advantages in terms of cardiovascular prevention 
over other csDMARDs, such as hydroxychloro-
quine, an agent with evidence of atheroprotective 
effects in animal and human studies.26,142 Using 
Medicare data during the period 2008–2016, the 
study authors propensity score-matched 54,462 
patients with rheumatoid arthritis aged ⩾65 years 
commenced on either hydroxychloroquine or 
methotrexate. No significant between-group dif-
ferences were observed in the primary endpoint, 
sudden cardiac arrest (or ventricular arrhythmia) 
and major adverse cardiovascular events. 
However, in a subgroup of patients with heart 
failure, hydroxychloroquine was associated with a 
significantly higher risk of major adverse cardio-
vascular events (HR = 1.30, 95% CI: 1.08–1.56), 
cardiovascular mortality (HR = 1.34, 95% CI: 
1.06–1.70), all-cause mortality (HR = 1.22, 95% 
CI: 1.04–1.43), myocardial infarction (HR = 1.74, 
95% CI: 1.25–2.42) and hospitalizations for heart 
failure (HR = 1.29, 95% CI: 1.07–1.54) when 
compared to methotrexate.143

The main study assessing the effects of metho-
trexate on cardiovascular prevention, the CIRT, 
randomized 4786 patients without autoimmune 
conditions but with myocardial infarction or mul-
tivessel coronary disease with either type 2 diabe-
tes or metabolic syndrome to methotrexate (target 
dose of 15–20 mg/week) or placebo. There were 
non-significant between-group differences in the 
primary endpoint, a composite of nonfatal myo-
cardial infarction, nonfatal stroke, cardiovascular 
death and hospitalization for unstable angina 
requiring urgent revascularisation (HR = 0.96, 
95% CI: 0.79–1.16).144 Whilst the results of this 
study do not support the presence of significant 
atheroprotective effects of methotrexate in 
patients without autoimmune conditions, it is 
essential to emphasize that, by trial design, both 
patients in the methotrexate and the placebo arms 
received treatment with the B-vitamin folic acid. 
Folic acid is often co-administered with metho-
trexate by rheumatologists, given that both 

compounds compete for the same transporter in 
the intestine and cellular uptake and that folic 
acid supplementation has been shown to reduce 
the incidence of adverse effects with methotrex-
ate.145–147 However, at the same time, there is 
robust evidence from experimental and clinical 
studies that treatment with folic acid per se exerts 
significant atheroprotective effects, including the 
lowering of the highly reactive and pro-athero-
genic amino acid homocysteine,148 improved NO 
synthesis and endothelial function149 and reduced 
arterial stiffness and blood pressure.150,151 
Furthermore, in a large randomized-controlled 
trial conducted in China in 20,702 hypertensive 
patients without previous myocardial infarction 
or stroke, a combination treatment of folic acid 
with the ACE inhibitor enalapril significantly 
reduced the risk of overall stroke (primary end-
point, HR = 0.79, 95% CI: 0.68–0.93); first 
ischaemic stroke (HR = 0.76, 95% CI: 0.64–0.91) 
and a composite endpoint of cardiovascular 
death, myocardial infarction and stroke 
(HR = 0.80, 95% CI: 0.69–0.92). By contrast, 
there were non-significant between-group differ-
ences in other secondary endpoints, that is, haem-
orrhagic stroke (HR = 0.93, 95% CI: 0.65–1.34), 
myocardial infarction (HR = 1.04, 95% CI: 0.60–
1.82) and all-cause mortality (HR = 0.94, 95% 
CI: 0.81–1.10).152 Therefore, further studies 
investigating the effects of methotrexate on car-
diovascular prevention are warranted to deter-
mine whether the use of folic acid in the 
comparator group might have diluted the poten-
tial atheroprotective effects of methotrexate in the 
CIRT study.

Effects of methotrexate on traditional 
cardiovascular risk factors
Several experimental and clinical studies have 
investigated the effects of methotrexate on con-
ventional cardiovascular risk factors, particularly 
dyslipidaemia, diabetes, arterial hypertension and 
the metabolic syndrome (Figure 3).

Lipid profile
In a study in cholesterol-fed rabbits, treatment 
with lipid core nanoparticles containing metho-
trexate, with or without paclitaxel, caused signifi-
cant regression of aortic plaque (−59%) and 
intima areas (−57%). These effects were associ-
ated with a substantial reduction in macrophages 

http://tac.sagepub.com


Volume 17

8	 http://tac.sagepub.com

Therapeutic Advances in 
Cardiovascular Disease

and TNF-α gene expression.153 In a secondary 
analysis of the Optimised Treatment Algorithm 
for Patients With Early Rheumatoid Arthritis 
(OPERA) trial, comparing the effects of adali-
mumab and methotrexate (n = 86) versus metho-
trexate and placebo (n = 88), there was no 
significant between-group difference in the 
changes at 1 year versus baseline in total, LDL 
cholesterol, high-density lipoprotein (HDL) cho-
lesterol and triglyceride concentrations.154 In an 
observational study of 262 patients with psoriasis, 
12-week treatment with methotrexate signifi-
cantly reduced total cholesterol (p < 0.05), LDL 
cholesterol (p < 0.05), apolipoprotein B 
(p < 0.001) and lipoprotein A (p < 0.001) in 
annexin A6, a protein that regulates cholesterol 
homeostasis,155 TC and CC genotype carriers of 
rs11960458 and apolipoprotein B (p = 0.04) in TT 
genotype carriers. However, methotrexate also 
significantly reduced the concentrations of the 
atheroprotective subfractions, HDL cholesterol 
(p = 0.007) and apolipoprotein A1 (p = 0.04) in 
TC genotype carriers of rs11960458. Moreover, 
methotrexate significantly reduced triglyceride 
concentrations only in the CC genotype carriers 
(p = 0.01).156 In another study of 288 patients 
with psoriasis, 136 with and 152 without psoriatic 
arthritis, 12-week treatment with methotrexate 
significantly lowered apolipoprotein B 
(p = 0.0003), total cholesterol (p = 0.0007), tri-
glycerides (p = 0.04), HDL cholesterol (p = 0.037) 
and lipoprotein A (p = 0.005) in patients with 
arthritis, and apolipoprotein B (p < 0.0001), total 

cholesterol (p < 0.0001), HDL cholesterol 
(p = 0.011), LDL cholesterol (p = 0.0001) and 
lipoprotein A (p < 0.0001) in patients without 
arthritis.157 Interestingly, in another study in 35 
patients with psoriasis, 12-week treatment with 
methotrexate significantly reduced the concentra-
tions of proprotein convertase subtilisin/kexin 
type 9,158 critically involved in cholesterol homeo-
stasis by binding to the LDL receptor in hepato-
cytes and an established therapeutic target for 
cardiovascular prevention.159,160 Collectively, 
these studies have provided conflicting results on 
the effects of methotrexate treatment on lipid 
profile and, expressly, on atheroprotective versus 
pro-atherogenic cholesterol fractions (Figure 3).

Type 1 and type 2 diabetes
In a systematic review and meta-analysis of 16 
studies investigating patients with rheumatoid 
arthritis, 3 with a cross-sectional design, 1 with a 
nested case-control design, 8 prospective cohorts 
and 4 retrospective cohorts, the use of methotrex-
ate was associated with a significant reduction in 
the risk of type 2 diabetes (RR = 0.13, 95% CI: 
0.08–0.22). Factors significantly associated with 
the reduced risk of diabetes included age 
>60 years, rheumatoid arthritis duration ⩽2 years 
and the measurement of disease activity.161 A 
similar negative association between methotrex-
ate and type 1 and type 2 diabetes has been 
reported in another systematic review and meta-
analysis of 15 studies (seven on methotrexate) 

Figure 3.  Effects of methotrexate on cardiovascular risk factors (orange) and putative atheroprotective 
mechanisms (cyan) according to experimental and clinical studies.
AICAR, 5-aminoimidazole-4-carboxamide ribonucleoside; AMPK, 5′ adenosine monophosphate-activated protein kinase.
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investigating a total of 552,019 patients with 
rheumatoid arthritis (HR = 0.81, 95% CI: 0.75–
0.87). The reduced risk of type 1 and type 2 dia-
betes with methotrexate was similar in studies 
assessing comparisons with non-users of metho-
trexate (HR = 0.77, 95% CI: 0.67–0.88) as well as 
users of csDMARDs not including methotrexate 
or hydroxychloroquine (HR = 0.85, 95% CI: 
0.74–0.98).162 Furthermore, in a nationwide pop-
ulation study of 69,799 patients with rheumatoid 
arthritis but without type 1 and type 2 diabetes at 
baseline, the long-term use of methotrexate 
(>270 days/year) was associated with a significant 
reduction in incident type 1 and type 2 diabetes 
(adjusted OR = 0.84, 95% CI: 0.78–0.92).163 
Taken together, the available evidence suggests 
that methotrexate treatment in rheumatoid arthri-
tis is associated with a reduced risk of type 1 and 
type 2 diabetes, although the mechanisms under-
pinning the effects on glucose metabolism require 
further studies (Figure 3).

Arterial hypertension
In a repeated cross-sectional study of patients 
with rheumatoid arthritis, the use of methotrexate 
was associated with a significantly lower clinical 
and 24-h blood pressure when compared to other 
csDMARDs.120 Another study of 21,916 patients 
with rheumatoid arthritis with data from adminis-
trative Veterans Affairs databases in United States 
investigated the changes in blood pressure after 
commencing methotrexate, leflunomide, sul-
fasalazine, hydroxychloroquine, TNF-α inhibi-
tors or prednisone. In this study, there was a 
reduction in blood pressure after starting pred-
nisone, methotrexate and hydroxychloroquine 
and a more modest decline with sulfasalazine and 
tumour necrosis factor inhibitors. Notably, in 
patients commencing methotrexate, a more sig-
nificant proportion had an optimal blood pres-
sure control at 6 months versus baseline (51.0% 
versus 46.8%, p < 0.001). Similar associations 
were observed for prednisone, tumour necrosis 
factor inhibitors and hydroxychloroquine.164 
Collectively, these studies suggest that metho-
trexate treatment can exert ameliorative effects on 
blood pressure control, at least in patients with 
rheumatoid arthritis (Figure 3).

Metabolic syndrome
The association between methotrexate and the 
metabolic syndrome has been investigated in 

cross-sectional and intervention studies. In a 
cross-sectional study of 400 patients with rheu-
matoid arthritis, the use of methotrexate, but not 
other csDMARDs, was significantly and nega-
tively associated with the risk of metabolic syn-
drome in multivariate regression analysis 
(adjusted OR = 0.52, 95% CI: 0.33–0.80, 
p = 0.004).165 The reduced prevalence of meta-
bolic syndrome in methotrexate users versus non-
users has also been reported in another 
cross-sectional study investigating 100 women 
with rheumatoid arthritis (17% versus 35%, 
p = 0.046).166 However, a retrospective study has 
failed to show any significant effect of 24-month 
methotrexate treatment on the prevalence of met-
abolic syndrome and its individual components in 
70 patients with psoriatic arthritis.167 Therefore, 
there is conflicting evidence regarding the effects 
of methotrexate on the risk of metabolic syn-
drome and its individual components (Figure 3).

Methotrexate and atheroprotection: 
Mechanistic insights
Several mechanisms have been postulated to 
account for the possible atheroprotective effects 
of methotrexate. Such mechanisms include 
cytokine modulation, the accumulation of adeno-
sine, the activation of 5′ adenosine monophos-
phate-activated protein kinase (AMPK) and the 
regulation of the redox balance (Figure 3).

Cytokines
Studies conducted over the last 20 years have 
shown the potential for methotrexate to down-
regulate several pro-inflammatory and pro-ather-
ogenic cytokines, for example, TNF-α, IL-1 and 
IL-6,168–175 and to upregulate anti-atherogenic 
cytokines, for example, IL-10,175–181 providing a 
potential advantage over available therapies that 
target one pro-inflammatory cytokine. In more 
recent studies, the use of methotrexate-loaded 
chitosan nanoparticles has also been shown to 
significantly reduce the circulating concentrations 
of TNF-α (645 ± 37 pg/mL versus 140 ± 4 pg/mL, 
p < 0.001) and IL-6 (334 ± 34 pg/mL versus 
62 ± 5 pg/mL, p < 0.001) in a rat model of arthri-
tis.182 In another study, the release of another 
pro-inflammatory cytokine, IL-8, by monocytic 
MONO-MAC-6-cells activated by lysates of 
Fusobacterium nucleatum was significantly reduced 
by methotrexate, but not by other anti-inflamma-
tory agents, that is, ibuprofen or prednisolone. 
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However, the concentrations of IL-8 following 
treatment with methotrexate remained signifi-
cantly higher than those measured in the absence 
of exposure to F. nucleatum.183 The results of 
another recent study have challenged the proposi-
tion that methotrexate can upregulate anti-
inflammatory cytokines. In patients with plaque 
psoriasis, 12-week methotrexate treatment was 
associated with a significant reduction of the anti-
inflammatory cytokine IL-10 (p = 0.02).184 
Additional uncertainties regarding the clinical rel-
evance of the modulation of cytokine pathways by 
methotrexate derive from a sub-analysis of the 
previously described CIRT study, which showed 
that methotrexate treatment failed to significantly 
reduce the concentrations of IL-1β and IL-6 dur-
ing follow-up. Interestingly, in this study, metho-
trexate also failed to significantly reduce the 
concentrations of CRP. This observation might 
be related to the relatively low baseline concentra-
tions of CRP (1.5 mg/L), IL-1β (1.5 pg/mL) and 
IL-6 (2.3 pg/mL) in CIRT participants, particu-
larly when compared to other, successful, trials 
investigating treatments (canakinumab) targeting 
IL-1β and residual inflammatory risk (baseline 
CRP and IL-6 concentrations, 4.10 and 2.6 pg/
mL, respectively).144,185

Adenosine and AMPK
The methotrexate-mediated accumulation of 
adenosine (Figures 1 and 2) might exert signifi-
cant effects on cardiovascular homeostasis, par-
ticularly vasodilatation through the inhibition of 
alpha-1 adrenergic vasoconstriction and the stim-
ulation of the A2A and A2B receptors in the 
aorta,186,187 kidney188 and skeletal muscle.189 The 
resulting increase in blood flow in the renal 
medulla also favours natriuresis.190 The critical 
role of adenosine in maintaining cardiovascular 
homeostasis is further supported by studies 
reporting a significant increase in arterial stiffness 
and blood pressure following the pharmacological 
inhibition of the adenosine receptors, A1 and 
A2A.

191,192 There is also evidence that adenosine 
A2B receptor activation prevents the formation of 
atherosclerotic lesions and reduces the plasma 
concentrations of cholesterol and triglycerides, 
possibly through the reduced activation of the 
transcription factor sterol regulatory element-
binding protein 1 in the liver.193,194 Additional 
potential beneficial effects of adenosine include 
promoting the differentiation of monocytes into 

the anti-inflammatory M2 macrophage pheno-
type195 and upregulating cholesterol efflux trans-
porters in macrophages. The transporters shown 
to be affected by adenosine include ABCA1, 
which effluxes cholesterol as apoA-1, a major 
component of HDL cholesterol, ABCG1, which 
effluxes cholesterol as HDL cholesterol, and 
sterol the cytochrome P450 enzyme 27-OH 
hydroxylase, which effluxes cholesterol in the 
form of 27-hydroxycholesterol.196,197 These forms 
of cholesterol prevent lipid overload and the 
transformation of macrophages in foam cells, 
which are critically involved in the formation and 
progression of the atherosclerotic plaque.198

AICAR per se can upregulate the AMPK,199,200 
which protects endothelial cells against oxidative 
stress and apoptosis and inhibits vascular smooth 
muscle cell proliferation.201–203 There is also 
increasing evidence that AICAR and/or AMPK 
activation enhances vasodilation, reduces blood 
pressure and improves cholesterol efflux capac-
ity.204–211 Furthermore, AMPK exerts beneficial 
effects on glucose homeostasis by stimulating cel-
lular glucose uptake and glycolysis.212–214

Redox balance
Methotrexate has been traditionally used at high 
doses to induce cytotoxicity in the treatment of 
malignancies as well as in experimental studies 
investigating the effects of rescuing treatments. 
The cytotoxic effects of methotrexate are ascribed 
to the inhibition of dihydrofolate reductase, 
involved in the conversion of dihydrofolate into 
tetrahydrofolate, required for the synthesis of the 
nucleotides of both DNA and RNA and the de 
novo purine synthesis of both purine and thymi-
dylate synthase, which further inhibits DNA syn-
thesis (Figure 1).32,35,215 However, at relatively 
high doses, methotrexate is also known to trigger 
a pro-oxidant state which further contributes to 
the structural and functional alteration of critical 
cell components, for example, lipids, proteins and 
DNA.216

Notably, however, studies have reported that at 
lower doses methotrexate can exert significant 
anti-oxidant effects. In one study, methotrexate 
treatment (2 μg) in HEK293 cells was able to 
directly scavenge free radicals, specifically O2

.−, 
consequently inhibiting the formation of malon-
dialdehyde–acetaldehyde adducts, including 
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proteins exerting pro-inflammatory effects that 
have also been detected in atherosclerotic 
plaques.217 The use of a specific cell line to quan-
tify the activation of the redox-sensitive transcrip-
tion factor, nuclear factor (erythroid-derived 
2)-like 2 (Nrf2), allowed to demonstrate that 
methotrexate also reduces the activation of the 
Nrf2-dependent intracellular redox signalling 
pathway.218 In a more recent study in rat primary 
astrocytes, pre-conditioning with 10 or 20 nM 
methotrexate (corresponding to 5 or 10 μg of the 
drug) enhanced the anti-oxidant defence mecha-
nisms in these cells, expressed as the ratio of 
reduced to oxidized glutathione, as well as cell 
viability against a higher dose of methotrexate 
(500 nM or 0.23 mg/L).219 Taken together, the 
results of these studies suggest that, at specific 
doses, methotrexate can scavenge free radicals, 
reduce the activation of redox-sensitive intracel-
lular signalling pathways and enhance anti-oxi-
dant mechanisms in the context of atherosclerosis 
(Figure 3).

Practical considerations for using 
methotrexate in cardiovascular prevention
One potential advantage of methotrexate, in 
terms of treatment adherence, is the once-weekly 
administration compared to the daily administra-
tion of currently available antihypertensives, anti-
platelet and lipid-lowering agents. This feature is 
likely clinically relevant as poor treatment adher-
ence remains a vexing issue in cardiovascular pre-
vention. For example, a systematic review and 
meta-analysis of 45 prospective studies investigat-
ing a total of nearly 2 million patients reported a 
good adherence (defined as an intake of ⩾80%) 
to medications used for cardiovascular prevention 
in only 60% (95% CI: 52–68). In further analy-
ses, patients with good adherence were signifi-
cantly less likely to experience a cardiovascular 

event when compared to those with poor adher-
ence (RR = 0.81, 95% CI: 0.76–0.86 for antihy-
pertensive drugs).220

Future research directions
In the last 5 years, additional evidence has accu-
mulated on the association between the use of 
methotrexate, surrogate markers of atherosclero-
sis and hard cardiovascular endpoints in experi-
mental and clinical studies (Figure 3). However, 
the contrasting nature of the results observed, 
particularly regarding the effects on cardiovascu-
lar morbidity and mortality in observational versus 
intervention studies, suggests that further research 
is warranted to support the repurposing of meth-
otrexate for cardiovascular prevention (Table 1). 
In the first instance, studies should investigate the 
effects of this immunomodulatory and anti-
inflammatory drug on a wide range of conven-
tional cardiovascular risk factors and determine 
the mediating role of pro- and anti-inflammatory 
cytokines, adenosine, AMPK activation and oxi-
dative stress. In this context, the negative results 
of the CIRT study, whilst disappointing, have 
been helpful for the design of future intervention 
trials for at least two reasons. Firstly, the relatively 
low-baseline CRP concentrations in study partici-
pants and the lack of tangible effects of metho-
trexate on the pro-inflammatory cytokines, IL-1β 
and IL-6, in CIRT suggests that further studies 
should focus on patients with significant residual 
inflammatory risk, that is, higher baseline CRP, 
IL-1β and IL-6 concentrations. Secondly, future 
studies should ideally investigate the effects of 
methotrexate separately from those of folic acid, 
given the previously described effects of this 
B-vitamin on endothelial function, blood pres-
sure and other markers of atherosclerosis. Such 
trials should ideally investigate the impact of 
methotrexate alone, folic acid alone and 

Table 1.  Directions for future research to investigate the role of methotrexate in cardiovascular prevention.

• � Study the effects of methotrexate on surrogate markers of atherosclerosis, risk, factors and 
cardiovascular endpoints independently of folic acid.

• � In intervention studies, include participants with high residual cardiovascular/inflammatory risk, 
defined using specific thresholds for CRP, IL-1 and IL-6 concentrations at baseline.

• � Investigate the mediating effects of pro-inflammatory and anti-inflammatory cytokines, adenosine, 
AICAR and redox balance.

• � Determine the potential role of genetic polymorphisms in specific transporters and enzymes in 
the identification of ‘high-responders’ versus ‘low-responders’ to the atheroprotective effects of 
methotrexate.

AICAR, 5-aminoimidazole-4-carboxamide ribonucleoside; CRP, C-reactive protein; IL, interleukin.
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methotrexate in combination with folic acid and 
include a non-methotrexate/folic acid comparator 
arm to fully determine the atheroprotective 
potential of methotrexate. Finally, the peculiar 
pharmacology of methotrexate, which involves 
membrane transporters for cellular uptake, 
enzymes for the biotransformation into intracel-
lular polyglutamates and other enzymes as drug 
targets (Figure 1), has stimulated a significant 
body of research to investigate whether specific 
genetic characteristics can influence the efficacy 
and safety of the drug, particularly in rheumato-
logical disorders.221–223 While pharmacogenetic 
studies investigating surrogate markers of ather-
osclerosis are in their infancy,224 the assessment 
of genetic polymorphisms might allow identify-
ing specific subgroups that are more likely to 
benefit from the atheroprotective effects of 
methotrexate.

Conclusion
The recognition that atherosclerosis is a chronic 
inflammatory disease of the arterial wall, and that 
significant residual cardiovascular/inflammatory 
risk exists in many patients despite maximal treat-
ment with atheroprotective medications justifies 
the search for more effective therapies that target 
multiple pathways, including inflammation. 
Recent studies have highlighted the beneficial 
effects of new biologics targeting specific inflam-
matory pathways and traditional anti-inflamma-
tory drugs with a broader range of effects, such as 
colchicine and hydroxychloroquine, in reducing 
cardiovascular events.26,225–227

This review has discussed the current evidence 
supporting the potential for methotrexate to be 
repurposed for the management of atheroscle-
rotic cardiovascular disease in view of a unique 
combination of anti-inflammatory and, possibly, 
blood pressure lowering and vasculoprotective 
effects (Figure 3). However, one important limi-
tation of this review is the lack of randomized-
controlled studies demonstrating the efficacy of 
methotrexate in significantly reducing cardiovas-
cular risk in patients with or without autoimmune 
and inflammatory disorders. In this context, the 
identification of patients that are most likely to 
benefit from methotrexate might require addi-
tional stratification by measuring pro-atherogenic 
and possibly anti-atherogenic, cytokine concen-
trations as well as genetic polymorphisms of 

relevant transporters and enzymes. Ultimately, 
however, only the completion of additional pro-
spective studies that take into account the design 
considerations previously discussed will provide a 
definite answer regarding the therapeutic poten-
tial of methotrexate in cardiovascular prevention.
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