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SUMMARY

The false discovery rate (FDR) measures the proportion of false discoveries among a set of hypothesis tests
called significant. This quantity is typically estimated based on p-values or test statistics. In some scenarios,
there is additional information available that may be used to more accurately estimate the FDR. We
develop a new framework for formulating and estimating FDRs and q-values when an additional piece of
information, which we call an “informative variable”, is available. For a given test, the informative variable
provides information about the prior probability a null hypothesis is true or the power of that particular
test. The FDR is then treated as a function of this informative variable. We consider two applications
in genomics. Our first application is a genetics of gene expression (eQTL) experiment in yeast where
every genetic marker and gene expression trait pair are tested for associations. The informative variable
in this case is the distance between each genetic marker and gene. Our second application is to detect
differentially expressed genes in an RNA-seq study carried out in mice. The informative variable in this
study is the per-gene read depth. The framework we develop is quite general, and it should be useful in a
broad range of scientific applications.

Keywords: eQTL; FDR; Functional data analysis; Genetics of gene expression; Kernel density estimation; Local false
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1. INTRODUCTION

Multiple testing is now routinely conducted in many scientific areas. For example, in genomics, RNA-seq
technology is often utilized to test thousands of genes for differential expression among two or more
biological conditions. In expression quantitative trait loci (eQTL) studies, all pairs of genetic markers and
gene expression traits can be tested for associations, which often involves millions or more hypothesis
tests. The false discovery rate (FDR, Benjamini and Hochberg, 1995) and the q-value (Storey, 2002, 2003)
are often employed to determine significance thresholds and quantify the overall error rate when testing
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a large number of hypotheses simultaneously. Therefore, improving the accuracy in estimating FDRs and
q-values remains an important problem.

In many emerging applications, additional information on the status of a null hypothesis or the power
of a test may be available to help better estimate the FDR and q-value. For example, in eQTL studies,
gene–single nucleotide polymorphism (SNP) basepair distance informs the prior probability of association
between a gene–SNP pair, with local associations generally more likely than distal associations (Brem and
others, 2002; Doss and others, 2005; Ronald and others, 2005). A second example comes from RNA-seq
studies, for which per-gene read depth informs the statistical power to detect differential gene expression
(Tarazona and others, 2011; Cai and others, 2012) or the prior probability of differential gene expression
(Robinson and others, 2015). Genes with more sequencing reads mapped to them (i.e., higher per-gene
read depth) have greater ability to detect differential expression or may be more likely to be differentially
expressed than do low depth genes.

Figure 1 shows results from multiple testing on a genetics of gene expression study (Smith and Kruglyak,
2008) and an RNA-seq differential expression study (Bottomly and others, 2011). In the genetics of gene
expression study, the p-values are subdivided according to six different gene–SNP basepair distance strata.
In the RNA-seq study, the p-values are subdivided into six different strata of per-gene read depth. It can
be seen in both cases that the proportion of true null hypotheses and the power to identify significant
tests vary in a systematic manner across the strata. The goal of this article is to take advantage of this
phenomenon so that we may improve the accuracy of calling tests significant and do so without having to
create artificial strata as in Figure 1.

We propose the functional FDR (fFDR) methodology that efficiently incorporates additional quantita-
tive information for estimating the FDR and q-values. Specifically, we code additional information into a
quantitative informative variable and extend the Bayesian framework for FDR pioneered in Storey (2003)
to incorporate this informative variable. This leads to a functional proportion of true null hypotheses (or
“functional null proportion” for short) and a functional power function. From this, we derive the optimal
decision rule utilizing the informative variable. We then provide estimates of functional FDRs, functional
local FDRs, and functional q-values to utilize in practice.

Related ideas have been developed, such as p-value weighting (Genovese and others, 2006; Roquain
and van de Wiel, 2009; Hu and others, 2010; Ignatiadis and others, 2016; Ignatiadis and Huber, 2018),
stratified FDR control (Sun and others, 2006), stratified local FDR thresholding (Ochoa and others, 2015),
and covariate-adjusted conditional FDR estimation (Boca and Leek, 2018). Stratified FDR and local FDR
rely on clearly defined strata, which may not always be available or make the best use of information.
Covariate-adjusted conditional FDR estimation focuses on only one component of the FDR. P-value
weighting has been a successful strategy. The methods in Genovese and others (2006) and Roquain and
van de Wiel (2009) regard each hypothesis as a group and assign a weight to the p-value associated with
a hypothesis, whereas those in Hu and others (2010), Ignatiadis and others (2016), and Ignatiadis and
Huber (2018) partition hypotheses in groups and assign a weight to all p-values in a group. In particular,
weights for the “independent hypothesis weighting (IHW)” method proposed by Ignatiadis and others
(2016) and Ignatiadis and Huber (2018) are derived from non-trivial optimization algorithms. However,
for a p-value weighting method, it remains challenging to derive weights that indeed result in improved
power subject to a target FDR level, and how to obtain optimal weights under different optimality criteria
is still an open problem. Furthermore, for a p-value weighting procedure that is also based on partitioning
hypotheses into groups, its inferential results can be considerably affected by how the groups are formed.

Our methodology serves as an alternative to p-value weighting. We are motivated by similar scientific
applications as the IHW method which employs a covariate to improve the power of multiple testing
and is based on partitioning hypotheses into groups and p-value weighting. The authors of the IHW
method have shown that this method has advantages over several existing methods including those of
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Fig. 1. (a) P-value histograms of Wilcoxon tests for genetic association between genes and SNPs for the eQTL
experiment in Smith and Kruglyak (2008), divided into six strata based on the gene–SNP basepair distance indicated
by the strip names. The null hypothesis is “no association between a gene–SNP pair”. (b) P-value histograms for
assessing differential gene expression in the RNA-seq study in Bottomly and others (2011), divided into six strata
based on per-gene read depth indicated by the strip names. The null hypothesis is “no differential expression (for a
gene) between two conditions”. In each subplot, the estimated proportion of true null hypotheses for all hypotheses
in the corresponding stratum is based on Storey (2002) and indicated by the horizontal dashed line. It can be seen
that gene–SNP genetic distance or per-gene read depth affects the prior probability of a gene–SNP association or
differential gene expression.

Benjamini and Hochberg (1995), Hu and others (2010), Scott and others (2015), and Cai and Sun (2009).
However, our approach is distinct from the IHW method since the latter is a weighted version of the
Benjamini–Hochberg procedure (Benjamini and Hochberg, 1995). In contrast, we work with a Bayesian
model developed in Storey (2003), provide direct calculations of optimal significance thresholds, and



Functional false discovery rate 71

take an empirical Bayes strategy to estimate several FDR quantities. As earlier frequentist and Bayesian
approaches to the FDR in the standard scenario both proved to be important, our contribution here should
serve to complement the p-value weighting strategy.

To demonstrate the effectiveness of our proposed methodology, we conduct simulations and analyze
two genomics studies, an RNA-seq differential expression study and a genetics of gene expression study.
In doing so, we uncover important operating characteristics of the fFDR methodology and we also pro-
vide several strategies for visualizing and interpreting results. Although our applications are focused on
genomics, we anticipate the framework presented here will be useful in a wide range of scientific problems.

This rest of the article is organized as follows. We formulate the fFDR methodology in Section 2 and
provide its implementation in Section 3. Two applications of the methodology are given in Section 4. We
end the article with a discussion in Section 5.

2. THE FUNCTIONAL FDR FRAMEWORK

In this section, we formulate the fFDR theory and methodology. To this end, we first introduce our model,
provide formulas for the positive false discovery rate (pFDR), positive false non-discovery rate (pFNR),
and q-value, and then describe the significance rule based on the q-value.

2.1. Joint model for p-value, hypothesis status, and informative variable

Let Z be the informative variable that is uniformly distributed on the interval [0, 1], i.e., Z ∼ Uniform (0, 1).
For example, Z can denote the quantiles of the per-gene read depths in an RNA-seq study or the quantiles
of the genomic distances in an eQTL experiment. Denote the status of the null hypothesis by H , such that
H = 0 when the null hypothesis is true and H = 1 when the alternative hypothesis is true. We assume
that conditional on Z = z the null hypothesis is a priori true with probability π0 (z), i.e.,

(H | Z = z) ∼ Bernoulli (1 − π0 (z)) , (2.1)

where the function π0(z) ranges in [0, 1]. We call π0(z) the “prior probability of the null hypothesis”,
“functional proportion of true null hypotheses”, or “functional null proportion.” When π0(z) is constant,
it will be simply denoted by π0.

To formulate the distribution of the p-value, P, we assume the following: (i) when the null hypothesis
is true, (P|H = 0, Z) ∼ Uniform (0, 1) regardless of the value of Z ; (ii) when the null hypothesis is false,
the conditional density of (P|H = 1, Z = z) is f1 (·|z). The conditional density of P given Z = z is then

f (p|z) = f (p|z, H = 0) Pr(H = 0|z) + f (p|z, H = 1) Pr(H = 1|z)
= π0 (z) + (1 − π0 (z))f1 (p|z) .

(2.2)

Since Z has constant density f (z) = 1, the joint density f (p, z) = f (p|z) for all (p, z) ∈ [0, 1]2 so that

f (p, z) = π0 (z) + (1 − π0 (z))f1 (p|z) . (2.3)

Z ∼ Uniform (0, 1) and the representation in equation (2.3) are important since they enable more
straightforward estimation of f (p, z) than f (p|z).

2.2. Optimal statistic

Now suppose there are m hypothesis tests, with Hi for i = 1, 2, . . . , m indicating the status of each
hypothesis test as above. For example, Hi can denote whether gene i is differentially expressed or not, or
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whether there is an association between the ith gene–SNP pair. For the ith hypothesis test, let its calculated
p-value be pi and its measured informative variable be zi; additionally, let Pi and Zi be their respective
random variable representations.

Let T = (P, Z) and Ti = (Pi, Zi) for 1 ≤ i ≤ m. Suppose the triples (Ti, Hi) are independent
and identically distributed (i.i.d.) as (T , H ). If the same significance region � in [0, 1]2 is used for the
m hypothesis tests, then identical arguments in the proof of Theorem 1 in Storey (2003) imply that
pFDR(�) = Pr(H = 0|T ∈ �) and pFNR(�) = Pr(H = 1|T /∈ �), where pFDR is the positive
false discovery rate and pFNR is the false non-discovery rate as defined in Storey (2003). The bivariate
function

r (p, z) = π0 (z)

f (p, z)
(2.4)

defined on [0, 1]2 is the posterior probability that the null hypothesis is true given the observed pair (p, z)
of p-value and informative variable. Note that r(p, z) = Pr(H = 0|T = (p, z)). So, r(p, z) is an extension
of the local FDR (Efron and others, 2001; Storey, 2003) also known as the posterior error probability
(Kall and others, 2008). Straightforward calculation shows that

pFDR(�) =
∫

�

r (p, z) dpdz and pFNR(�) =
∫

[0,1]2\�
(1 − r (p, z))dpdz (2.5)

Define significance regions {�τ : τ ∈ [0, 1]} with

�τ = {
(p, z) ∈ [0, 1]2 : r(p, z) ≤ τ

}
(2.6)

such that test i is statistically significant if and only if Ti ∈ �τ . Then by identical arguments in Section 6
leading up to Corollary 4 in Storey (2003), �τ gives the Bayes rule for the Bayes error

BE(�τ ) = (1 − τ) Pr(Ti ∈ �τ , Hi = 0) + τ Pr(Ti /∈ �τ , Hi = 1) (2.7)

for each τ ∈ [0, 1]. Therefore, by arguments analogous to those in Storey (2003), r(p, z) is the optimal
statistic for the Bayes rule with Bayes error (2.7).

2.3. Q-value based decision rule

With the statistic r(p, z) in (2.4) and nested significance regions {�τ : τ ∈ [0, 1]} with �τ defined by
(2.6), the definition of q-value in Storey (2003) implies that the q-value for the observed statistic
t = (p, z) is

q (p, z) = inf
{�τ :t∈�τ }

pFDR (�τ ) = pFDR
(
�r(p,z)

)
, (2.8)

where the second equality follows from Theorem 2 in Storey (2003), noting that {�τ } are constructed from
the posterior probabilities r(p, z). Estimating the q-value in (2.8) will be discussed in Section 3.3.

Let q(pi, zi) denote the q-value of ti = (pi, zi) for the ith null hypothesis Hi. At a target pFDR level
α ∈ [0, 1], the following significance rule

“call the ith null hypothesis Hi significant when q(pi, zi) ≤ α” (2.9)
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has pFDR no larger than α. Note that this significance rule is identical to the significance regions {�τ }
from above, so significance rule (2.9) also achieves the Bayes optimality for the loss function (2.7). We
refer to (2.9) as the “Oracle”, which will be estimated by a procedure detailed below in Section 3. When
only p-values {pi}m

i=1 are used, the above significance rule becomes

“call the ith null hypothesis Hi significant when q(pi) ≤ α”, (2.10)

where q(pi) is the original q-value for pi as developed in Storey (2002) and Storey (2003).

3. IMPLEMENTATION OF THE fFDR METHODOLOGY

We aim to implement the decision rule in (2.9) for the fFDR methodology by a plug-in estimation proce-
dure. For this, we need to estimate the two components of the statistic r(p, z) given in (2.4): the functional
null proportion π0(z) and the joint density f (p, z) with support on [0, 1]2. We also need to estimate the
q-value defined in (2.8). We will provide in Section 3.1 three complementary methods to estimate π0(z),
in Section 3.2 a kernel-based method to estimate f (p, z), and in Section 3.3 the estimation of q-values and
the plug-in procedure.

3.1. Estimating the functional null proportion

Our proposed approaches to estimate the functional null proportion π0(z) are based on an extension of
the approach taken in Storey (2002). Recalling that π0 (z) = Pr (H = 0|Z = z), it follows that for each
λ ∈ [0, 1),

Pr(P > λ|Z = z)

1 − λ
≥ Pr(P > λ|H = 0, Z = z)Pr(H = 0|Z = z)

1 − λ

= (1 − λ)Pr(H = 0|Z = z)

1 − λ

= π0 (z) .

If we define the indicator function ξλ (z) = 1{P>λ|Z=z}, then

E [ξλ (z)]

1 − λ
= Pr(P > λ|Z = z)

1 − λ
. (3.11)

Therefore, E [ξλ (z)] /(1 − λ) is a conservative estimate of π0 (z) and it will form the basis of our estimate
of π0(z).

Our first method to estimate π0(z) is referred to as the “GLM method” since it estimates E [ξλ (z)] using
generalized linear models (GLMs). For each z ∈ [0, 1], we let η(z) = β0 + β1z and

g(z; β0, β1) = 1 − λ

1 + exp (−η(z))
(3.12)

for two parameters (β0, β1), and then fit

ξλ (z) ∼ Bernoulli (g(z; β0, β1)) (3.13)
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to obtain an estimate
(
β̂0, β̂1

)
of (β0, β1) using the paired realizations {(zi, pi)}m

i=1. We then estimate

π0 (z) by

π̂0 (z; λ) = g(z; β̂0, β̂1)

1 − λ
. (3.14)

Our second method to estimate π0(z) is referred to as the “GAM method” since it estimates E[ξλ (z)]
using generalized additive models (GAMs). Specifically, we model η in the GLM method as a nonlinear
function of z via GAM, while keeping the functional form of g in (3.12) and the estimator (3.14). For
example, η can be modeled by B-splines (Hastie and Tibshirani, 1986; Wahba, 1990) whose degree can
be chosen, e.g., by generalized cross-validation (GCV) (Craven and Wahba, 1978). The GAM method
removes the restriction induced by the GLM method that π0(z) be a monotone function of z.

Our third method to estimate π0(z) is referred to as the “Kernel method” since it estimates E [ξλ (z)]
via kernel density estimation (KDE). Since Z ∼ Uniform (0, 1), it follows that

E [ξλ (z)] = Pr (Z = z|P > λ) Pr (P > λ) . (3.15)

To estimate E [ξλ (z)], we estimate the two factors in the right-hand side of (3.15) separately. It is
straightforward to see that the estimator from Storey (2002),

π̂ S
0 (λ) =

∑m
i=1 1{pi>λ}

m(1 − λ)
for λ ∈ [0, 1), (3.16)

is a conservative estimator of Pr(P > λ)/(1 − λ). Further, if we let ĥλ be a conservative estimator of the
density of the zi’s whose corresponding p-values are greater than λ, then ĥλ (z) conservatively estimates
Pr (Z = z|P > λ). Correspondingly,

π̂0 (z; λ) = ĥλ (z) × π̂ S
0 (λ) (3.17)

is a conservative estimator of π0(z). In the implementation, we obtain ĥλ(z) using the methods in Geenens
(2014) since z ranges in the unit interval. Note that (3.17) is essentially a nonparametric alternative to
(3.14) since ĥλ(z) does not have the constraint on its shape that g(z; β̂0, β̂1) does.

To maintain a concise notation, we write π̂0 (z; λ) as π̂0(z). If no information on the shape of π0(z) is
available, we recommend using the Kernel or GAM method to estimate π0(z); if π0(z) is monotonic in
z, then the GLM method is preferred. An approach for automatically handling the tuning parameter λ for
the estimators is provided in Section 2 of the supplementary material available at Biostatistics online.

3.2. Estimating the joint density f (p, z)

The estimation of the joint density f (p, z) of the p-value P and informative variable Z involves two
challenges: (i) f is a density function defined on the compact set [0, 1]2; (ii) f (p, z) may be monotonic in p
for each fixed z, requiring its estimate to also be monotonic. In fact, in the simulation study in Section 1 of
the supplementary material available at Biostatistics online, f (p, z) is monotonic in p. To deal with these
challenges, we estimate f in a two-step procedure as follows. Firstly, to address the challenge of density
estimation on a compact set, we use a local likelihood KDE method with a probit density transformation
(Geenens, 2014) to obtain an estimate f̃ (p, z) of f (p, z), where an adaptive nearest-neighbor bandwidth
is chosen via GCV. Secondly, if f (p, z) is known to be monotonic in p for each fixed z, then we utilize
the algorithm in Section 3 of the supplementary material available at Biostatistics online to produce an
estimated density f̂ (p, z) that has the same monotonicity property as f (p, z) at the observations {(pi, zi)}m

i=1.

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz010#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz010#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz010#supplementary-data
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3.3. FDR and q-value estimation

With the estimates π̂0(z; λ) and f̂ (p, z), respectively for π0(z) and f (p, z), the functional posterior error
probability (or local FDR) statistic r(p, z) in (2.4) is estimated by

r̂ (p, z) = π̂0 (z)

f̂ (p, z)
. (3.18)

For a threshold τ , Storey and others (2005) proposed the following pFDR estimate

̂pFDR (�τ ) = 1

|Sτ |
∑
j∈Sτ

r̂(pj, zj), where Sτ = {
j : r̂(pj, zj) ≤ τ

}
.

The rationale for this estimate is that the numerator is the expected number of false positives given the
posterior distribution r̂(p, z) and the denominator is the expected number of total discoveries given r̂(p, z)
(which is directly observed). This is related to a semiparametric Bayesian procedure detailed in Newton
and others (2004). Given this, the functional q-value q(pi, zi) of ti = (pi, zi) corresponding to the ith null
hypothesis Hi is estimated by:

q̂(pi, zi) = 1

|Si|
∑
j∈Si

r̂(pj, zj), where Si = {
j : r̂(pj, zj) ≤ r̂(pi, zi)

}
. (3.19)

The plug-in decision rule is to call the null hypothesis Hi significant whenever q̂(pi, zi) ≤ α at a target
pFDR level α. In this work, we refer to this rule as the “functional FDR (fFDR) method”.

Recall that an estimate of q̂(pi) of the q-value q(pi) for pi can be obtained by the q-value package
(Storey and others, 2019). Then the plug-in decision rule based on q̂(pi) is to call the null hypothesis Hi

significant whenever q̂(pi) ≤ α. This rule is referred to as the “standard FDR method” in this work. In
Section 1 of the supplementary material available online at Biostatistics, we carry out a simulation study
to demonstrate the accuracy of our estimator and compare its power to existing methods.

4. APPLICATIONS IN GENOMICS

In this section, we apply the fFDR method to analyze data from two studies, one in a genetics of gene
expression (eQTL) study on baker’s yeast and the other in an RNA-seq differential expression analysis on
two inbred mouse strains. We will provide a brief background on the studies and then present the analysis
results for both data sets.

4.1. Background on the eQTL experiment

The experiment on baker’s yeast (Sacchromyces cerevisiae) has been performed by Smith and Kruglyak
(2008), where genome-wide gene expression was measured in each of the 109 genotyped strains under
two conditions, glucose and ethanol. Here, we aim to identify genetic associations (technically, genetic
linkage in this case) between pairings of expressed genes and SNPs among the samples grown on glucose.
In this setting, the null hypothesis is “no association between a gene-SNP pair”, and the functional null
proportion denotes the prior probability that the null hypothesis is true. The data set from this experiment
is referred to as the “eQTL dataset”.

To keep the application straightforward, we consider only intra-chromosomal pairs, for which the
genomic distances can be defined and are quantile normalized to give the informative variable Z . (Note

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz010#supplementary-data
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that the fFDR framework can be used to consider all gene–SNP pairs by estimating a standard r(p) =
π0/f (p) for all inter-chromosomal pairs and then combining these with the estimated r(p, z) from the
intra-chromosomal pairs to form the significance regions given in (2.6).) In this application, the genomic
distance is calculated as the nucleotide basepair distance between the center of the gene and the SNP, the
Wilcoxon test of association between gene expression and the allele at each SNP is used, and the p-values
of such tests are obtained. We emphasize that the difference in the p-value histograms for the six strata
shown in Figure 1a shows that a functional null proportion π0(z) is more appropriate.

4.2. Background on the RNA-seq study

A common goal in gene expression studies is to identify genes that are differentially expressed across
varying biological conditions. In RNA-seq based differential expression studies, this goal is to detect
genes that are differentially expressed based on counts of reads mapped to each gene. The null hypothesis
is “no differential expression (for a gene) between the two conditions”, and the functional null proportion
denotes the prior probability that the null hypothesis is true. For an RNA-seq study, the quantile normalized
per-gene read depth is the informative variable Z that we utilized, which affects the power of the involved
test statistics (Tarazona and others, 2011) or the prior probability of differential expression (Robinson and
others, 2015).

We utilized the RNA-seq data studied in Bottomly and others (2011), due to its availability in the
ReCount database (Frazee and others, 2011) and because it had previously been examined in a comparison
of differential expression methods (Soneson and Delorenzi, 2013). The data set, referred to as the “RNA-
seq dataset”, contains 102.98 million mapped RNA-seq reads in 21 individuals from two inbred mouse
strains. As proposed in Law and others (2014), we normalized the data using the voom R package, fitted
a weighted linear least squares model to each gene expression variable, and then obtained a p-value for
each gene based on a t-test of the coefficient corresponding to mouse strain.

4.3. Estimating the functional null proportion in the two studies

We applied to these two data sets our estimator π̂0(z; λ) of the functional null proportion π0(z) utilizing the
GLM, GAM, and Kernel methods. Figure 2 shows π̂0(z; λ) for these two data sets, and the tuning parameter
λ has been chosen to be the one that minimizes the mean integrated squared error of the function π̂0(z; λ);
see Section 2 of the supplementary material available at Biostatistics online for details on choosing λ. In
both data sets, π̂0(z; λ) based on the GAM and Kernel methods give very similar estimates, with the one
based on the GLM method more distinct, likely because the latter puts stricter constraints on the shape of
π0(z). By comparing Figure 2 to the results in Figure 4 (for estimating a constant π0) of the supplementary
material available at Biostatistics online, we see that in this RNA-seq study the read depths appear to
affect the prior probability of differential expression, π0(z).

As expected, the estimator π̂0(z; λ) for the eQTL data set increases with genomic distance, indicating
that a distal gene–SNP association is less likely than local association. Using the GAM and Kernel methods,
π̂0(z; λ) ranges from about 0.54 for very local associations to about 0.82 for distant gene–SNP pairs. In
the RNA-seq data set, π̂0(z; λ) obtained by the GAM and Kernel methods decreases from around 0.97 to
around 0.47 as read depth increases.

In the eQTL data set, λ values from 0.4 to 0.8 led to very similar shapes of π̂0(z; λ) (see Figure 2),
and the integrated bias of π̂0(z; λ) is always low compared with its integrated variance, leading to the
choice of λ = 0.4 for all three methods. This likely indicates that the test statistics implemented in this
experiment have high power, leading to low bias in estimating π0(z). In contrast, in the RNA-seq data set,
the integrated bias of π̂0(z; λ) does decrease as λ increases, leading to a choice of a higher λ. While the

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz010#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz010#supplementary-data
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Fig. 2. Estimate π̂0(z; λ) of the functional null proportion π0(z) for the eQTL and RNA-seq studies, using the GLM,
GAM, or Kernel method. Each plot shows the estimate π̂0(z; λ) for different values of the tuning parameter λ, where
the solid curve corresponds to the chosen tuning parameter value. The tuning parameter is chosen to balance the
trade-off between the integrated bias and variance of the function π̂0(z; λ); details on how to choose λ are given in
Section 2 of the supplementary material available at Biostatistics online.

choice of λ for π̂0(z; λ) may deserve further study, it is clear from these applications that the choice of
λ has a small effect on π̂0(z; λ) and that it is beneficial to employ a functional π0(z) of the informative
variable rather than a constant π0.

4.4. Application of fFDR method in the two studies

For the eQTL analysis described in Section 4.1, π̂0(z; λ) based on the GAM method is used (see Figure 2),
and the fFDR method is applied to the p-values of the tests of associations and the quantile normalized
genomic distances. At the target FDR of 0.05, the fFDR method found 7579 associated gene–SNP pairs,
the standard FDR method 5655, and the two methods shared 5450 discoveries. Figure 3a shows that, at
all target FDR levels, the fFDR method has higher power than the standard FDR method. In addition,
Figure 3b reveals that the significance region of the fFDR method is greatly influenced by the gene–SNP
distance, as the p-value cutoff for significance is higher for close gene–SNP pairs and lower for distant
gene–SNP pairs. This, together with Figure 3c, means that some q-values q(pi, zi) for the fFDR method
can be larger than the q-values q(pi) of the standard FDR method. Thus, the use of an informative variable
by the fFDR method changes the significance ranking of the null hypotheses and increases the power of
multiple testing at the same target FDR level.

For the RNA-seq analysis, the estimator π̂0(z; λ) based on the GAM method is used (see Figure 2), and
the fFDR method is applied to the p-values of the tests for differential expression and the quantiles of the
read depths. Similar to the eQTL analysis, the fFDR method has a larger number of significant hypothesis
tests at all target FDR levels; see Figure 3a. At the target FDR of 0.05, the fFDR method found 1392
genes to be differentially expressed, while the standard FDR method found 1231, and the two methods
shared 1202 discoveries. In this RNA-seq analysis, the fFDR method has a smaller improvement in power
(see Figure 3a), the differences between the q-values for the fFDR method and those for the standard

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz010#supplementary-data
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(a)

(b)

(c)

Fig. 3. The fFDR method applied for multiple testing in the eQTL and RNA-seq analyses. (a) Number of significant
hypothesis tests at various target FDRs. The fFDR method (func FDR) has more significant tests than the standard
FDR method (std FDR) at all target FDRs. (b) The significance regions of the fFDR method for various target FDRs,
indicated by scatter plots of the p-values and informative variable. The horizontal lines indicate the significance
thresholds that would be used by the standard FDR method at the same target FDRs. Clearly, these lines do not take
the informative variable into account. (c) A scatter plot comparing the q-values for the standard FDR method (x axis)
to the q-values for the fFDR method (y axis), colored based on the informative variable Z with reference line x = y
in red. It is clear that the fFDR method re-ranks the significance of hypotheses tests.

FDR method are smaller (see Figure 3c), and the significance region of the fFDR method is less affected
by the informative variable Z (see Figure 3b). This may be because the total number of differentially
expressed genes in the RNA-seq study was small or the test statistics applied in this experiment were
already powerful.
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5. DISCUSSION

We have proposed the fFDR methodology to utilize additional information on the prior probability of a
null hypothesis being true or the power of the family of test statistics in multiple testing. It employs a
functional null proportion of true null hypotheses and a joint density for the p-values and informative
variable. Our simulation studies have demonstrated that the fFDR methodology is more accurate and
informative than the standard FDR method, that the former does not perform worse than the latter when
the informative variable is in fact non-informative, and that the fFDR methodology is more powerful than
the IHW method. (see Section 1 of the supplementary material available at Biostatistics online).

Besides the eQTL and RNA-seq analyses demonstrated here, the fFDR methodology is applicable to
multiple testing in other studies. For example, it can be applied to genome-wide association studies such
as those conducted in Dalmasso and others (2008) and Roeder and others (2006), where an informative
variable can incorporate differing minor allele frequencies or information on the prior probability of a
gene–SNP association obtained from previous genome linkage scans. It can also be used in brain imaging
studies, e.g., those conducted or reviewed in Benjamini and Heller (2007) and Chumbley and Friston
(2009), to integrate as the informative variable spatial-temporal information on the voxel measurements.

We recommend using domain knowledge to determine and choose an informative variable. In essence,
any random variable that does not affect the null distribution of p-value is a legitimate candidate for an
informative variable. On the other hand, when the informative variable is actually non-informative on the
prior of a null hypothesis being true or the power of an individual test, the fFDR method reduces to the
standard FDR method, and there is no loss of power employing the fFDR method (compared with the
standard FDR method). It would also be useful to develop a formal statistical test to check if a random
variable is informative.

Finally, the fFDR methodology can be extended to the case where p-values or the status of null hypothe-
ses are dependent on each other. In this setting, the corresponding decision rule may be different from that
obtained here. On the other hand, the methodology can be extended to incorporate a vector of informative
variables. This could be especially appropriate when additional information cannot be compressed into
a univariate informative variable. Briefly, let Z̃ be a d-dimensional random vector. We can transform Z̃
into Z such that Z is approximately uniformly distributed on the d-dimensional unit cube [0, 1]d . Assume
Z ∼ Uniform

([0, 1]d
)

and maintain the notation for p-value and status of a hypothesis used in Section
2. Then the extended model has the following components: (i) (H | Z = z) ∼ Bernoulli (1 − π0 (z)),
where the function π0(z) ranges in [0, 1]; (ii) when the null hypothesis is true, (P|H = 0, Z) ∼
Uniform(0,1) regardless of the value of Z; (iii) when the null hypothesis is false, the conditional den-
sity of (P|H = 1, Z = z) is f1 (·|z). Consequently, the conditional density of P given Z = z is
f (p|z) = π0 (z) + (1 − π0 (z))f1 (p|z), and the joint density f (p, z) = f (p|z) for all (p, z) ∈ [0, 1](1+d).
The estimation procedures and significance rule we have proposed can be extended accordingly.

6. SOFTWARE

The methods described in this article are available in the fFDR R package, available at
https://github.com/StoreyLab/fFDR (most recent version), which will also be made available on CRAN.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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