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Cellular functions are established through biological evolution,
but are constrained by the laws of physics. For instance, the
physics of protein folding limits the lengths of cellular polypep-
tide chains. Consequently, many cellular functions are carried
out not by long, isolated proteins, but rather by multiprotein
complexes. Protein complexes themselves do not escape physi-
cal constraints, one of the most important being the difficulty
of assembling reliably in the presence of cellular noise. In order
to lay the foundation for a theory of reliable protein complex
assembly, we study here an equilibrium thermodynamic model of
self-assembly that exhibits 4 distinct assembly behaviors: diluted
protein solution, liquid mixture, “chimeric assembly,” and “mul-
tifarious assembly.” In the latter regime, different protein com-
plexes can coexist without forming erroneous chimeric structures.
We show that 2 conditions have to be fulfilled to attain this
regime: 1) The composition of the complexes needs to be suffi-
ciently heterogeneous, and 2) the use of the set of components
by the complexes has to be sparse. Our analysis of publicly avail-
able databases of protein complexes indicates that cellular protein
systems might have indeed evolved so as to satisfy both of these
conditions.

self-assembly | protein complex

Protein complexes are assembled with high compositional
accuracy, evidenced, for example, by the possibility of crys-

tallization of complexes as large as the ribosome (1). This is
remarkable, because, during assembly, a growing complex has
to discriminate its specific components from a multicompo-
nent mixture of hundreds of different protein species that are
part of the proteome. Failure to solve this discriminatory task
could result in assembly of chimeric structures composed of
fragments from different complexes, impairing normal cellular
function (2).

Assembly of protein complexes can also be viewed as a second
stage of creating functional cellular structures, the first being the
assemblage of amino acids into proteins, achieved by ribosomes.
A modest alphabet of 20 amino acids encodes thousands of dif-
ferent proteins. Proteins typically contain all 20 amino acids, so
that the amino acid usage by proteins is “dense” rather than
“sparse.” Nature, furthermore, reuses amino acids many times
within the same protein, which makes the compositional het-
erogeneity of each protein low. This can be contrasted with the
assembly of complexes, which seem to use proteins sparsely, so
that each complex contains only a small fraction of the avail-
able proteome. At the same time, complexes are often highly
heterogeneous, that is, composed of many different protein
species (3).

The sparsity and heterogeneity of complexes should come as a
surprise, as they imply that the proteome might not be exploited
in combinatorial manner. Indeed, the vast repertoire of hun-
dreds of proteins is combined to result in a comparable number
of complexes (Fig. 1). This suggests that “combinatorial expan-
sion” of proteins into complexes does not occur generically, and
may instead be restricted to particular functions, such as regu-
lation or signaling (4, 5). In these cases, proteins participate in
several complexes; for example, cyclin-dependent kinases can be

part of several cell cycle regulatory complexes (6). Proteins can
have specific interactions with many partners, a phenomenon
known as promiscuity. The promiscuity of proteins may poten-
tially result in the formation of disordered chimeric structures.
For example, a single point mutation is sufficient to create a
novel protein–protein interaction, which can result in chimeric
assembly of proteins (7). Notwithstanding these challenges, pro-
tein complexes typically assemble from their constituents accu-
rately and carry out cellular functions with remarkable speed and
precision (8).

Elucidating the characteristics of protein complexes that
enable them to assemble reliably, and studying how these char-
acteristics affect the organization of the proteome, can be
viewed as fundamental goals of cell biology. Recently, there
have been significant advances toward achieving these goals,
due to the progress in experiments (7, 9, 10), bioinformatics
(11, 12), and molecular dynamics simulations (13). However,
a general theoretical framework to understand protein com-
plex formation and usage is still lacking. One major difficulty in
developing such a framework is the large diversity of cellular pro-
tein complexes. Some complexes, such as microtubules, exhibit
unbounded growth (14). Others, such as ribosomes, have a well-
defined finite size (1). To complicate matters further, the latter
complexes can be further divided among those that exhibit strong
symmetries, such as the bacterial flagellar motor (15), and those
that are fully asymmetric, such as ribosomes (1). Whereas the
principles of assembly of many symmetric complexes have been
studied (12), the same is not true for asymmetric complexes.

Significance

In order to carry out their functions, most proteins assemble
into multicomponent complexes. In the process of assem-
bly, complexes need to discriminate their specific components
from a mixture of hundreds of different proteins present in
the cell. To assess some of the implications of this require-
ment, we develop a minimal model of self-assembly based
on equilibrium statistical physics. We argue that the need
to assemble reliably imposes fundamental constraints on the
characteristics of complexes, which we support with analysis
of available structural and compositional data. Our work con-
stitutes only a step toward future theory of protein complex
assembly, which will have to incorporate also nonequilib-
rium and kinetic aspects of this fundamental and rich, yet
theoretically neglected, problem.

Author contributions: P.S. and S.L. designed research; P.S. performed research; and P.S.
and S.L. wrote the paper.y

Reviewers: C.J., University of Maryland; and J.P., Harvard University.y

The authors declare no competing interest.y

This open access article is distributed under Creative Commons Attribution-NonCommercial-
NoDerivatives License 4.0 (CC BY-NC-ND).y
1 To whom correspondence may be addressed. Email: psartori@rockefeller.edu or
livingmatter@rockefeller.edu.y

This article contains supporting information online at https://www.pnas.org/lookup/suppl/
doi:10.1073/pnas.1911028117/-/DCSupplemental.y

First published December 23, 2019.

114–120 | PNAS | January 7, 2020 | vol. 117 | no. 1 www.pnas.org/cgi/doi/10.1073/pnas.1911028117

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:psartori@rockefeller.edu
mailto:livingmatter@rockefeller.edu
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1911028117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1911028117/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1911028117
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1911028117&domain=pdf


BI
O

PH
YS

IC
S

A
N

D
CO

M
PU

TA
TI

O
N

A
L

BI
O

LO
G

Y

Fig. 1. Usage of amino acids by proteins, and of proteins by complexes. The
typical length of proteins (∼ 300 residues) is largely limited by folding (38).
Twenty amino acids (geometric shapes) potentially thus encode∼ 20300 pro-
teins (black lines). Although the observed repertoire of proteins (gray lines)
is much smaller, for example, ∼ 104 for Saccharomyces cerevisiae (39), there
is a clear combinatorial expansion from amino acids to proteins. Contrary
to this, the observed number of complexes, with the reported average of 4
different proteins per complex (40) (colored shapes), is comparable to the
number of proteins, without a trace of combinatorial expansion.

The aim of this article is to begin to develop a theoretical
framework, which could ultimately be applied to (asymmetric)
protein complexes, by extending a recent model of self-assembly
(16). As will be elaborated in Discussion, cellular assembly of
protein complexes can be a highly controlled, nonequilibrium
kinetic process. Still, we will constrain our present theoretical
study to equilibrium statistical physics alone and explore what
constraints thermodynamics imposes on assembly of complexes.
Interestingly, we shall see that these constraints alone can—at
least partly—explain the observed heterogeneity of asymmet-
ric complexes and their sparse usage of the proteome. We will
also analyze existing structural, compositional, and interaction
data of protein complexes to further evaluate some biological
implications of our theoretical findings.

Results
Multifarious Mixtures of Components Exhibit 4 Assembly Regimes.
In our model, protein-like components form a multicomponent
mixture. When 2 components are in close proximity, they can
interact specifically. We specify the interactions of components
via the complexes of which the components are part. In par-
ticular, if 2 components are bound to each other as part of
the same complex, we assume they can interact specifically with
binding energy E . Conversely, we assume that components not
forming part of the same complex have a null binding energy.
Such components still can interact nonspecifically, provided their
concentration, p, is large. This model has been formulated and
studied previously in ref. 16. We extend its analysis to allow for
variable heterogeneity and sparsity. A detailed account of the
model is presented in Materials and Methods.

Just like changing the temperature and pressure of a gas can
turn it into a liquid, changing the binding energy, E , and the
chemical potential, µ, of the component mixture can fundamen-
tally alter its properties. For an ideal dilute mixture, the chemical
potential µ is given by µ= kBT log(p), where p is the concentra-
tion of the components relative to the solvent, kB is Boltzmann’s
constant, and T is the temperature (hereafter, we express energy
in units of kBT ). As shown in Fig. 2 (which describes a lattice
implementation of our model; see also SI Appendix, section A),
for low negative values of the chemical potential, the mixture is
in a dilute solution (DS) regime, in which components interact

only transiently with each other. This is the regime in which bio-
chemical reactions have been traditionally studied (17). If, on the
other hand, the chemical potential is high but the binding energy
is low, the mixture increases its density and behaves as a liquid
(L). The properties of this liquid are somewhat similar to those
of droplets observed at cellular scale (18, 19). These droplets are
membraneless organelles composed, among other components,
of many proteins, and are believed to form by simple liquid–
liquid phase separation. Finally, if both the chemical potential
and the binding energy are high, the liquid mixture changes into
a “chimeric” (Ch) regime, in which fragments of several protein
complexes bind in an unruly manner to each other. This regime
can evoke cellular inclusion bodies, where overexpressed recom-
binant proteins form disordered solid aggregates (20). These 3
regimes are conceptually close to phases of inert materials, and
will not be discussed here further (see, however, SI Appendix,
sections A to D).

We shall rather focus our attention on a regime more relevant
for understanding protein complexes, which arises when the val-
ues of binding energy and chemical potential are comparable. In
this “multifarious assembly” (MA) regime, a large protein com-
plex can self-assemble accurately, for example, starting (nucle-
ating) from a small fragment of such complex (nucleation seed)
(Fig. 2A) (16). As shown in Fig. 2 E and F, the MA regime is
bounded by the L and Ch regimes. The range of concentrations
pmax/pmin in which reliable assembly is possible is given by (SI
Appendix, section B)

pmax/pmin≈ exp (E +µ0), [1]

where E is the binding energy used to discriminate between
specific and nonspecific interactions, and µ0< 0 is a reference
chemical potential that depends on the characteristics of the mix-
ture. Eq. 1 implies that a binding energy of a few kBT is sufficient
to ensure reliable assembly in a range of concentrations spanning
several orders of magnitude. The parameter µ0 depends loga-
rithmically on the number of different complexes, K , and the
number of component types, or “species,” Ntot. Furthermore, it
also depends on the characteristics of a typical complex c and
a typical component species α. For a complex c, these charac-
teristics are the total number of components that the complex
contains (i.e., its size), Mc , and the number of different species
among the components of the complex, Nc ≤Mc . We simply
characterize a component of species α by the number of “bind-
ing links” that it can establish, zα. For the sake of simplicity, we
will limit ourselves in the following to the case zα=4, in which
each component can establish 4 binding links (this is well suited
for numerical simulations on a squared lattice). However, our
results can be generalized to other values of zα; see SI Appendix,
section C.

Heterogeneity and Sparsity Constrain Reliable Assembly. The accu-
rate assembly of complexes is a daunting discriminatory task.
Proteins accomplish this task because their interactions and the
composition of complexes they form are the result of “con-
strained evolution.” That is, the characteristics of complexes
have evolved to ensure their cellular function, while, at the same
time, they have been constrained to assemble reliably. As argued
above, an important quantity, which is closely related to the reli-
ability of the assembly process, is protein promiscuity: If the
promiscuity of a protein were exceedingly high, undesired pro-
tein species could interfere with this protein during the assembly
process, which would then result in the formation of “chimeric
structures.” Therefore, we expect that evolution tuned protein
promiscuity so that proteins do not form such nonfunctional
chimeras.

In our model, the promiscuity of a protein-like component is
related to the number of different complexes, K , and to their
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Fig. 2. Four regimes of a multicomponent mixture. In our simplified equilibrium statistical mechanics model, individual different components, Ntot = 400
(small, unit cell-sized, squares), have specific interactions with their neighbors and can form K = 8 different complexes (large squares) of size Mc = 400, each
represented by a different color (see color bar). Colors of complexes are assigned to individual components based on whether their neighbors in the lattice
are also neighbors in the given complex. Random colors are assigned to resolve ambiguities, and white lattice sites denote absence of any component (see
SI Appendix, section A for a detailed description of the coloring algorithm). (A) In the MA regime, a small fragment of a complex (small brown square at
t = 0) can be used to nucleate the assembly of the whole complex (c = 1, large brown square). (B) In the Ch regime, the same small fragment nucleates
a disordered aggregate from fragments of many complexes. (C) In the L regime, a whole well-assembled complex will be unstable and will “melt” into a
dense fluid-like mixture, in which small fragments of complexes are constantly being rearranged (unlike in Ch, where there are no rapid rearrangement
dynamics). (D) In the DS regime, the initial full complex dissolves quickly into a set of separate proteins. Only very small transient clusters of proteins can
form. (E and F) The 4 regimes observed in A–D correspond to distinct values of the chemical potential and binding energy, and can be determined by the
assembly error (portion of the correctly assembled complex) and the density of components. In SI Appendix, section B, we characterize the boundaries that
separate the regimes. Note that each circle in these graphs corresponds to separate Monte Carlo simulations, in which the error of assembly is evaluated.
See Materials and Methods for detailed description of the parameters used in this and other figures.

characteristics, such as their compositional heterogeneity, hc ≡
Nc/Mc , and their sparsity, ac ≡ (Ntot−Nc)/Ntot, that is, the
fraction of their proteome usage. One can show that the promis-
cuity of a component species α scales as (see SI Appendix, section
C for a detailed derivation)

πα≈K (1− ac)/hc . [2]

One can then express the evolutionary constraint of reliable self-
assembly by relating the probability of the formation of chimeric
structures to component promiscuity, and requiring that this
probability is negligible. By doing so, we find that the number
of possible coexisting complexes, their heterogeneity, their size,
and their sparsity obey an important constraint relation,

K . h3/2
c M 1/2

c (1− ac)
−3/2, [3]

where the values of the exponents are given for zα=4; see SI
Appendix, section C for generalization. Eq. 3 provides the scaling
for the surface of transition between the MA regime, in which
chimeric structures are avoided, and the Ch regime, in which they
readily form (depicted in Fig. 3A). Although this relation holds
in the limit Mc→∞, our analysis of Monte Carlo simulations is
compatible with Eq. 3 (however, to unequivocally determine the
scaling would require a much larger range of complex sizes; SI
Appendix, section D).

The key determinants of the transition from the MA regime
to the Ch regime, predicted by the constraint of Eq. 3, have
direct implications for the composition of complexes and orga-
nization of their components. Eq. 3 can be understood as a
trade-off between the number of coexisting complexes, their het-
erogeneity, and their sparsity: More complexes can coexist if they
are more heterogeneous, and if they make a sparser usage of
the proteome. To see that this is indeed the case, let us first
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Fig. 3. Characteristics of complexes shape the MA regime. (A) Schematic
representation of how the different regimes depend on the number of
complexes K, their heterogeneity hc, and their sparsity ac. Sparsity greatly
increases the number of complexes that can be reliably assembled by
expanding MA. (B) As the heterogeneity of a complex increases, its assembly
error decreases (normalized by a saturation error). The system thus transi-
tions from Ch to MA. (C) Data collapse of the data in B using hcM1/3

c ; see
also SI Appendix, section D. (D) Cross-section of the phase diagram sketched
in A. As the sparsity increases, the number of coexisting complexes diverges
algebraically.

consider a single complex type (K =1) prepared in a mixture
that contains only its constituent components, so that Ntot =Nc

and ac =0. Eq. 3 constrains the heterogeneity of the complex
to be larger than a quantity that scales as a power of its size,
hc &M

−1/3
c . Therefore, by increasing the heterogeneity of the

complexes, one crosses a transition from the Ch regime to the
desired MA regime, as shown in Fig. 3 B and C. This mecha-
nism might thus explain the observed high heterogeneity among
cellular protein complexes as the means of avoiding assembly of
incorrect chimeric structures.

Next, let us consider the possibility of combinatorial usage
of components in different complexes. In the case of a dense
usage of the set of components, that is, ac =0, the reliable
assembly constraint, Eq. 3, implies that the number of possi-
ble coexisting complexes is K . hcN

1/2
tot . Such increase of the

number of complexes with increasing number Ntot of compo-
nent species implies that combinatorial usage of components
in complexes is indeed possible (16). However, the reliability
constraint makes the combinatorial aspect only sublinear, and
therefore weak: An increase by a factor of 100 in the number of
component species merely increases by 10 the number of possi-
ble complexes. Therefore, from a biological perspective, reliable
assembly introduces a constraint that vastly reduces the possi-
bilities of combinatorial expansion from proteins into protein
complexes.

In order for many complexes to coexist, an alternative to this
weak combinatorial usage is needed. This alternative is achieved
by letting complexes make a sparse usage of the set of compo-
nents, that is, ac . 1. To see this, note that the number of possible
coexisting complexes, K , diverges in Eq. 3 as the component
usage becomes more and more sparse, ac→ 1; see also Fig. 3D.
An important consequence of such behavior is that the number
of coexisting complexes scales superlinearly with the number of
component species when a sparse usage is allowed,

K ≈N
3/2
tot M−1

c . [4]

From a biological perspective, due to the previously evoked spar-
sity of the proteome usage, an increase by a factor of 100 in the
number of component species results thus in an increase by a fac-
tor of a 1,000 in the number of complexes. Therefore, a sparse
usage of the proteome may indeed help to insure the observed
coexistence of many different types of protein complexes within
the cell.

Overall, we have shown that, in order to avoid chimeric assem-
bly, the composition of complexes and organization of their
components must be such that Eq. 3 is satisfied. This implies
that many complexes can coexist only if they have a heteroge-
neous composition and make a sparse usage of their components.
In the following, we discuss the biological implications of these
findings.

Structural and Compositional Data Point toward High Heterogeneity
of Protein Complexes. How relevant are the theoretical argu-
ments presented above for cellular protein complexes? It is clear
that the proteome usage is generically sparse: Even a complex
with as many different protein species as the ribosome, for which
Nc . 102, contains only a small fraction of the proteome, Ntot &
103. This gives a lower bound for the sparsity of complexes:
ac > 0.9.

To address the issue of heterogeneity, in particular, whether
highly heterogeneous complexes might coexist more easily,
we analyzed a publicly available database of protein com-
plexes (21). The resulting histogram of the heterogeneity of
these complexes, separated by their size (see SI Appendix, sec-
tion H for details), is depicted in Fig. 4A. The histogram
reveals a large abundance of high-heterogeneity complexes,
hc ∈ [0.8, 1.0], which supports the arguments presented in this
work. From Fig. 4A, it is also apparent that a significant num-
ber of complexes have intermediate values of heterogeneity,
hc ∈ [0.4, 0.6).

Given that our theory applies to structures without any geo-
metrical symmetry (as described in Materials and Methods), we
can ask whether geometrical symmetry underlies the low het-
erogeneity of these complexes. For example, a complex with
precisely 4 copies of the same protein, hc =1/4, may be reli-
ably assembled if the proteins are wedged so that they lock in
a symmetric ring-like structure (Fig. 4B). The constraints that
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Fig. 4. Heterogeneity of symmetric and asymmetric complexes. (A) His-
togram of complex heterogeneity using data from ref. 21. Most com-
plexes are highly heterogeneous, but a small peak is also present for
intermediate values of the heterogeneity. This distribution is preserved
across complexes in different size ranges (different colors; see legend).
(B and C) Structure of a complex with dihedral symmetry, Hpa2 (Pro-
tein Data Bank [PDB] ID code 1QSM), and an asymmetric complex,
Pol-III (PDB ID code 5FJ9). The first has low heterogeneity, hc = 1/4,
whereas the second is completely heterogeneous, hc = 1. (D) We cross-
referenced data from ref. 21 with structural data taken from the PDB
database (22). We then separated symmetric and asymmetric complexes.
The high heterogeneity peak is only present for asymmetric complexes,
and the peak at intermediate heterogeneities is only present for symmetric
complexes.

limit assembly reliability in this type of complexes are likely to
be different from those for asymmetric complexes (Fig. 4C). To
estimate the role of symmetry in the heterogeneity of complexes,
we classified them into those for which the crystal structure
exhibits symmetry and those for which it does not (22). In
Fig. 4D, we plot the corresponding heterogeneity histograms,
which clearly show that asymmetric complexes have a very large
heterogeneity bias, whereas symmetric complexes exhibit a large
peak for intermediate heterogeneity values. We thus corroborate
that high heterogeneity is indeed widespread among asymmetric
complexes, to which we have limited our model. These con-
clusions should be taken with a grain of salt, however, since,
generally speaking, the databases of protein complexes are in
their infancy, and are prone to many possible methodologi-
cal biases and ambiguities (see also discussion in SI Appendix,
section G).

Discussion
Additional Mechanisms to Prevent Chimeric Assembly. Within the
cell, assembly of complexes takes place in a dense mixture of
proteins. At the basis of successful assembly lays the discrimina-
tion of the particular proteins of a complex among many others
present in the mixture. Here, we argued that thermal physics
puts strong constraints on the characteristics of complexes so that
they assemble reliably. In particular, to keep protein promiscuity
low, the heterogeneity and sparsity of complexes is constrained
to high values. Clearly, within the cell, there are additional mech-
anisms that may help avoid chimeric assembly, some of which we
describe now.

First, cellular protein concentrations can be spatially and tem-
porally controlled to increase assembly precision and yield. In
particular, cellular liquid droplets can provide local environ-
ments of high concentration of certain proteins, which may
increase the assembly yield of corresponding complexes. A well-
known example of cellular “compartmentalization” is the assem-
bly of ribosomes inside the nucleolus, where ribosomal proteins
are synthesized (23). Similarly, the temporal aspects of pro-
duction and transport of proteins can be regulated to facilitate
and optimize complex assembly (24). Second, it is highly plau-
sible that the energy landscape for protein–protein interactions
itself might have evolved to facilitate the kinetics of protein
complex assembly. This is similar to the arguments given for
other classical discrimination phenomena in biology, such as the
discrimination of correct initiation DNA sites by transcription
factors (25, 26). A third possible mechanism to prevent forma-
tion of chimeric structures is the usage of nonpairwise protein
interactions, for example, allostery. For instance, it was sug-
gested, in ref. 5, that different tetrameric receptor complexes
of the bone morphogenic protein pathway assemble upon bind-
ing of particular ligands. Furthermore, because only 7 different
species of proteins are involved in forming these receptors, the
usage made of these proteins is dense, rather than sparse, which
suggests that allostery provides a means to make a dense usage of
proteins and enable combinatorial expansion. Finally, the geom-
etry of complexes itself might have also evolved to optimize
assembly. The presence of a peak at intermediate values of the
heterogeneity in Fig. 4A, which can be ascribed to the symmetry
of complexes, strongly suggests that the heterogeneity constraint
that we derived may be avoided by means of geometric con-
straints to the structure of the complex, in line with the findings in
refs 7 and 12.

Two organizational principles of cellular protein assembly
explored in our theoretical model, namely the high heterogene-
ity of protein complexes and the sparse usage they make of the
proteome, should be already functional at thermal equilibrium.
So should be also the 4 additional mechanisms described above;
therefore, they could be incorporated and studied within future
extensions of our model. Going beyond equilibrium considera-
tions, it is important to stress that the accuracy and the speed
in protein assembly can be enhanced by a number of out-of-
equilibrium mechanisms (27–29). For example, more than 200
nonribosomal proteins are involved in ribosomal biogenesis (30).
Many of these are energy-consuming enzymes and have a vari-
ety of roles, for example, stabilizing protein–RNA interactions.
At the same time, in vitro studies have shown that it is pos-
sible to assemble ribosomal complexes in the absence of such
enzymes (9, 31, 32), albeit with a smaller yield. This evokes a
possible analogy with the process of protein folding, which is
typically facilitated and sped up by energy-consuming chaper-
ones, but also can take place in their absence (33). It is tempting
to propose that just as evolution had selected foldable proteins
from the vast space of possible amino acid chain sequences, it
might have also selected reliably self-assembling cellular com-
plexes from the vast space of all possible multiprotein assemblies
(Fig. 1).
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Broad Distribution of Protein Participation in Complexes and
Dynamic Control. An additional role of out-of-equilibrium pro-
cesses is to control the dynamics of protein complexes. Indeed,
many complexes are assembled in a contextual manner, that is,
only when they carry out a function that is needed. Such highly
dynamic complexes are often involved in regulatory and sig-
naling functions (4, 5), and they can be contrasted with other
more stable complexes (such as the ribosome), on which we have
focused our attention here. The complexes including cyclins,
which participate in the regulation of the cell cycle, provide an
example of such highly dynamic complexes (6). The temporal
sequence of assembly and disassembly events observed in this
system is correlated with phosphorylation/dephosphorylation of
the cell cycle components. Remarkably, the heat release in this
out-of-equilibrium process has also been recently measured (34).

A possible footprint of regulated out-of-equilibrium phe-
nomena is the existence of proteins that participate in many
complexes, such as cyclin-dependent kinases, which have the
potential to act as dynamic controllers. In order to assess the
prevalence of such proteins, we analyzed several databases
that contained information on protein participation in com-
plexes (SI Appendix, section I). Our analysis suggests that the
number of complexes, qα, in which a given protein species
α participates has a broad distribution, depicted in Fig. 5.
Notably, this distribution cannot be simply explained by ran-
domly grouping proteins into sets with the observed composition
of complexes, unlike in other systems with shared compo-
nents (35). The “excess” of highly participatory proteins can be
viewed as an indication that this broad distribution might have
evolved to carry out a particular function. One such function
could be to assure an appropriate dynamic control of different
assemblies (provided, of course, that this broad distribution is
confirmed by future analysis of larger databases). A fascinat-
ing topic for future research should be, therefore, to extend
our theoretical framework to allow dynamic, out-of-equilibrium
control of complexes, and to verify whether the latter could
indeed correlate with the observed excess of highly participatory
proteins.

Protein Complexes as a Distinct Regime of Matter. Reliable self-
assembly of protein complexes within the noisy cellular environ-
ment is intriguing not only from the point of view of cell biology
but also from that of material science. Typical materials contain
only a handful of different sorts of atoms, and the possible set of
interactions between components is small. This results in states

Fig. 5. Protein participation in complexes is not explained by null random
model. In blue is the histogram for the participation of proteins in com-
plexes (i.e., in how many complexes a given protein takes part) using the
“core” dataset from ref. 40 (SI Appendix, section I). In green is the the
same histogram for a dataset constructed by randomly grouping protein
species into sets with the empirical composition of complexes. The null ran-
dom model largely deviates from the data, and does not account for the
prevalence of highly participatory proteins.

of matter that are easily reproducible: All crystals of salt are
formed by Na and Cl atoms arranged in the same way. A differ-
ent scenario is that of glassy materials, such as silicate glasses, in
which the set of effective interactions among constituents is large
due to spatial disorder. The large number of interactions makes
the state of a glass unique and irreproducible: In each piece of
glass, the arrangement of atoms is different.

Protein complexes combine similarities with both types of
materials. Like glasses, they present a large number of effec-
tive interactions, although the origin of these interactions is not
disorder but the large number of different specifically inter-
acting components. As in crystals, the arrangements of these
components may be highly reproducible: All ribosomes in a cell
are made of many different proteins, yet the arrangement of
the core ribosomal proteins is basically the same. This unusual
combination of properties is rarely considered in physical theo-
ries of matter, with the closest analogue being “programmable
materials” of biological origin, such as DNA origami (36) or
self-assembling colloidal particles (37). One of the directions of
future studies could be to further explore underlying principles of
reliable equilibrium and nonequilibrium assembly for synthetic
materials inspired by biology.

Materials and Methods
Model. Consider a set of Ntot component species labeled α= 1, . . . , Ntot,
which form the “proteome” of our theory. By establishing “binding links”
with each other, components can assemble into K different complexes
labeled c = 1, . . . , K. We index, by δα = 1, . . . , zα, the binding links of a
component of species α, where zα is the valence of that species. How 2
components of different species, α and β, interact when their binding links
δα and δβ are in proximity is characterized by the binding energy tensor
Uαβδαδβ . If these 2 components are part of the same complex c in which
they are bound to each other by linking δα to δβ , they will interact strongly
with an energy E, and so Uαβδαδβ =−E. Conversely, if the components α
and β are not bound together in any complex (or they are, but not by link-
ing δα to δβ ), their interaction energy will be assumed null: Uαβδαδβ = 0.
However, even when the interaction energy between 2 components is null,
these may still bind to each other through nonspecific interactions, provided
that their concentration, p, namely, their chemical potential µ= log(p), is
large enough. One important quantity that characterizes the interactions
of a component species α is its promiscuity, πα =

∑
βδαδβ

Θ(−Uαβδαδβ ),

which is the total number of different species with which it has specific inter-
actions. We also define the participation of the species, qα, as the number
of different complexes in which it takes part.

Note that we have made the simplifying assumptions that the strength
of all interactions and the concentrations of all components are the same;
these assumptions are relaxed in SI Appendix, section F. In addition, we will
assume that the valence of all species is the same, zα = z. For the lattice
implementation, we will further assume that the valence is given by the
coordination number of the lattice, z = 4, while our analytical arguments
are also valid for other values of z (SI Appendix, section C).

Although the structural or enzymatic characteristics of complexes largely
define their function, here we are only interested in the characteristics
that determine self-assembly. We quantify these characteristics through a
small set of parameters. For each complex c, we define its heterogeneity,
hc ≡Nc/Mc, as the ratio of the number of different component species in
the complex, Nc, to the total number of components in the complex or com-
plex size, Mc ≥Nc (we have made the assumption that all complexes have
the same number of components, relaxed in SI Appendix, section G). We also
define the sparse usage that a complex makes of the available components,
that is, its sparsity, as ac ≡ (Ntot−Nc)/Ntot. For the lattice implementation,
we have made the assumption that all complexes are perfect squares. This
is an important simplification, which may particularly affect certain com-
plexes, for which the assembly is strongly tied to their geometry (12). Note
that the model in ref. 16 corresponds to the case hc = 1 and ac = 0 (in
addition to fixing the ratio µ/E). Here, we relax these constraints, which
allows us to explore the biologically relevant regime of protein complex
assembly.

Figure Parameters. In Fig. 2, we considered Nc = Mc = Ntot = 202 and K = 8.
The initial state corresponds to a fragment of the complex containing its
central components (a nucleation seed). The fragment is of size 7× 7, in
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Fig. 2 A and B, and 20× 20 (whole complex) in all other panels. In Fig. 2 E
and F, each point reports the average of 3 replicate simulations (randomized
complexes). Each simulation is run for a duration of 106 latt in a 40× 40
lattice, with 1 latt corresponding to one lattice sweep. In Fig. 3 B and C, the
parameters are as in Fig. 2, with E = 7, µ=−12.6, and K = 1. In Fig. 3D, the
parameters are as in Fig. 3 B and C, with hc = 1 and variable K.

Data Availability. All data used in the paper were obtained from publicly
available resources. See SI Appendix, Table S1 for a summary of the corre-

sponding data sources. Details on the analysis are provided in SI Appendix,
sections H and I.
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4. A. Stein, R. A. Pache, P. Bernadó, M. Pons, P. Aloy, Dynamic interactions of proteins in
complex networks: A more structured view. FEBS J. 276, 5390–5405 (2009).

5. Y. E. Antebi et al., Combinatorial signal perception in the BMP pathway. Cell 170,
1184–1196 (2017).

6. A. W. Murray, Recycling the cell cycle: Cyclins revisited. Cell 116, 221–234 (2004).
7. H. Garcia-Seisdedos, C. Empereur-Mot, N. Elad, E. D. Levy, Proteins evolve on the edge

of supramolecular self-assembly. Nature 548, 244–247 (2017).
8. M. Johansson, J. Zhang, M. Ehrenberg, Genetic code translation displays a linear

trade-off between efficiency and accuracy of trna selection. Proc. Natl. Acad. Sci.
U.S.A. 109, 131–136 (2012).

9. A. M. Mulder et al., Visualizing ribosome biogenesis: Parallel assembly pathways for
the 30s subunit. Science 330, 673–677 (2010).

10. A.-C. Gavin et al., Proteome survey reveals modularity of the yeast cell machinery.
Nature 440, 631–636 (2006).

11. E. D. Levy, J. B. Pereira-Leal, C. Chothia, S. A. Teichmann, 3D complex: A structural
classification of protein complexes. PLoS Comput. Biol. 2, e155 (2006).

12. S. E. Ahnert, J. A. Marsh, H. Hernández, C. V. Robinson, S. A. Teichmann, Principles of
assembly reveal a periodic table of protein complexes. Science 350, aaa2245 (2015).

13. J. R. Perilla et al., Molecular dynamics simulations of large macromolecular complexes.
Curr. Opin. Struct. Biol. 31, 64–74 (2015).

14. J. Howard, Mechanics of Motor Proteins and the Cytoskeleton (Sinauer Associates,
Sunderland, MA, 2001).

15. H. C. Berg, The rotary motor of bacterial flagella. Annu. Rev. Biochem. 72, 19–54
(2003).

16. A. Murugan, Z. Zeravcic, M. P. Brenner, S. Leibler, Multifarious assembly mixtures:
Systems allowing retrieval of diverse stored structures. Proc. Natl. Acad. Sci. U.S.A.
112, 54–59 (2015).

17. T. L. Hill, Free Energy Transduction and Biochemical Cycle Kinetics (Dover, Mineola,
NY, ed. 2, 1989).

18. C. P. Brangwynne et al., Germline P granules are liquid droplets that localize by
controlled dissolution/condensation. Science 324, 1729–1732 (2009).

19. R. P. Sear, J. A. Cuesta, Instabilities in complex mixtures with a large number of
components. Phys. Rev. Lett. 91, 245701 (2003).

20. R. R. Kopito, Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol.
10, 524–530 (2000).

21. B. H. M. Meldal et al., Complex portal 2018: Extended content and enhanced visu-
alization tools for macromolecular complexes. Nucleic Acids Res. 47, D550–D558
(2018).

22. H. M. Berman et al., The protein data bank. Nucleic Acids Res. 28, 235–242 (2000).
23. V. Sirri, S. Urcuqui-Inchima, P. Roussel, D. Hernandez-Verdun, Nucleolus: The

fascinating nuclear body. Histochem. Cell Biol. 129, 13–31 (2008).
24. S. Kalir et al., Ordering genes in a flagella pathway by analysis of expression kinetics

from living bacteria. Science 292, 2080–2083 (2001).
25. A. Tafvizi, L. A. Mirny, A. M. van Oijen, Dancing on DNA: Kinetic aspects of search

processes on DNA. ChemPhysChem 12, 1481–1489 (2011).
26. M. Cencini, S. Pigolotti, Energetic funnel facilitates facilitated diffusion. Nucleic Acids

Res. 46, 558–567 (2017).
27. J. J. Hopfield, Kinetic proofreading: A new mechanism for reducing errors in biosyn-

thetic processes requiring high specificity. Proc. Natl. Acad. Sci. U.S.A. 71, 4135–4139
(1974).

28. S. Pigolotti, P. Sartori, Protocols for copying and proofreading in template-assisted
polymerization. J. Stat. Phys. 162, 1167–1182 (2016).

29. G. Bisker, J. L. England, Nonequilibrium associative retrieval of multiple stored self-
assembly targets. Proc. Natl. Acad. Sci. U.S.A. 115, E10531–E10538 (2018).

30. D. Kressler, E. Hurt, J. Bassler, Driving ribosome assembly. Biochim. Biophys. Acta Mol.
Cell Res. 1803, 673–683 (2010).

31. S. Mizushima, M. Nomura, Assembly mapping of 30s ribosomal proteins from e. coli.
Nature 226, 1214–1218 (1970).
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