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Comprehensive studies on cancer patients with different smoking histories, including non-
smokers, former smokers, and current smokers, remain elusive. Therefore, we conducted
a multi-omics analysis to explore the effect of smoking history on cancer patients. Patients
with smoking history were screened from The Cancer Genome Atlas database, and their
multi-omics data and clinical information were downloaded. A total of 2,317 patients were
included in this study, whereby current smokers presented the worst prognosis, followed
by former smokers, while non-smokers showed the best prognosis. More importantly,
smoking history was an independent prognosis factor. Patients with different smoking
histories exhibited different immune content, and former smokers had the highest immune
cells and tumor immune microenvironment. Smokers are under a higher incidence of
genomic instability that can be reversed following smoking cessation in some changes. We
also noted that smoking reduced the sensitivity of patients to chemotherapeutic drugs,
whereas smoking cessation can reverse the situation. Competing endogenous RNA
network revealed that mir-193b-3p, mir-301b, mir-205-5p, mir-132-3p, mir-212-3p,
mir-1271-5p, and mir-137 may contribute significantly in tobacco-mediated tumor
formation. We identified 11 methylation driver genes (including EIF5A2, GBP6, HGD,
HS6ST1, ITGA5, NR2F2, PLS1, PPP1R18, PTHLH, SLC6A15, and YEATS2), and
methylation modifications of some of these genes have not been reported to be
associated with tumors. We constructed a 46-gene model that predicted overall
survival with good predictive power. We next drew nomograms of each cancer type.
Interestingly, calibration diagrams and concordance indexes are verified that the
nomograms were highly accurate for the prognosis of patients. Meanwhile, we found
that the 46-gene model has good applicability to the overall survival as well as to disease-
specific survival and progression-free intervals. The results of this research provide new
and valuable insights for the diagnosis, treatment, and follow-up of cancer patients with
different smoking histories.
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1 INTRODUCTION

Smoking is extremely harmful to human health, resulting in more cardiovascular diseases, chronic
obstructive pulmonary disease, and different types of cancers (Kulhánová et al., 2020; Stang et al.,
2021). It has been reported that smoking can increase the incidence of many diseases as well as lead to
a poor prognosis and even increase the recurrence risk of cancer patients (Parsons et al., 2010; Rieken
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et al., 2015; Foerster et al., 2018). Indeed, according to the global
burden of disease in 2019, smoking ranks second among the most
important risk factors for death attribution in the whole
population, accounting for 8.71 million people, only after high
systolic blood pressure (GBDRF Collaborators, 2020). Studies
have shown that smoking is detrimental not only to active
smokers but also to passive smokers (Eriksen et al., 1988;
Dugué et al., 2020). The carcinogenic effects of smoking
mainly include the following aspects. First, the free radicals
produced by smoking directly damage the cell components,
leading to DNA damage and tumor formation. Second,
smoking can induce mutations in a variety of genes, causing
continuous proliferation of cells and malignant transformation.

Third, it can cause the transformation of the inflammatory
response to malignant transformation (Husgafvel-Pursiainen
et al., 2000; Vähäkangas et al., 2001; Taioli, 2008; Takahashi
et al., 2010). Previous studies have established that cancer patients
who had smoked lived shorter compared with those who had
never smoked, while smoking cessation can increase the survival
time of smokers, and the earlier they quit, the longer they live
(Doll et al., 2004). Elsewhere, a meta-analysis of smoking status
on colorectal cancer (CRC) prognosis showed a poor overall
survival (OS) rate for current smokers than non-smokers,
whereas Cox regression analysis revealed that current smokers
had a higher risk of poorer prognosis. In comparison, quitting
smokers can improve their OS compared with current smokers,

FIGURE 1 | The process of this study.
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thus exhibiting a higher specific survival (Ordóñez-Mena et al.,
2018). Given this background, this study integrated multiple-
omics data from The Cancer Genome Atlas (TCGA) database to
explore possible underlying molecular mechanisms among non-
smokers, former smokers, and current smokers. A flow chart of
this study is provided in Figure 1.

2 METHODS AND MATERIALS

2.1 Data Downloading and Processing
Patients with a past smoking history (including non-smokers,
former smokers, and current smokers) were screened from the
TCGA database were included in our study, as well as
downloaded their level 3 RNA-seq expression, DNA
methylation (Illumina Human Methylation 450), miRNA
expression, somatic copy number variations (CNVs, masked
copy number segment), and simple nucleotide variations
(SNVs, VarScan2 Variant Aggregation and Masking) from
TCGA–GDC portal (https://portal.gdc.cancer.gov/). We also
downloaded prognostic indicators such as OS, disease-specific
survival (DSS), progression-free interval (PFI), as well as clinical
characteristics, including gender, age, grade, and stage, among
others. However, we did not include the prognostic marker
disease-free interval in this study because it had too many
missing values. Strawberry Perl (version: 5.30.0.1) (http://
strawberryperl.com/) was used to annotate gene expression
profiles. If multiple probes corresponded to one gene, the
average value was taken as the expression level of the gene
and expression converted by log2 ((transcripts per kilobase of
exon model per million mapped reads) +1). We followed the
TCGA usage rules, and thus approval from the ethics committee
was not required for this work. All databases were up-to-date as of
December 15, 2020.

2.2 Survival and Risk Analyses
Prognostic differences and the hazard ratio (HR) were evaluated
among the three patients with a past smoking history with
different survival indicators (OS, DSS, and PFI). We employed
the Cox regression analysis to evaluate the effects of different
smoking histories (non-smoker, former smoker, and current
smoker were defined as 0, 1, and 2, respectively), with other
clinical characteristics such as gender (females and males were
defined as 0 and 1, respectively), stage and age, on the prognosis
of patients.

2.3 Immunological Content of Patients With
Different Smoking Histories
To quantify immune-related cells, functions, and pathways of
each patient, we used a single-sample gene set enrichment
analysis (ssGSEA), which was implemented using the
R-project packages GSVA and GSEA (Barbie et al., 2009).
Next, the ESTIMATE method was applied to quantify the
tumor immune microenvironment, including stromal score,
immune score, estimate score, and tumor purity (Yoshihara
et al., 2013). Additionally, the B-cell receptor (BCR) diversity

(BCR Richness, BCR Shannon), leucocyte infiltration,
neoantigens, homologous recombination defects (HRD),
cancer testis antigen (CTA), and intratumor heterogeneity of
each patient were obtained from a study by Thorsson et al. (2018).
We subsequently explored the differences in these indicators
among patients with different past smoking histories.

2.4 Analysis of the Difference of Stemness
Indices in Patients With Different Smoking
Histories
The mRNA stemness indices (mRNAsi), DNA methylation
stemness indices (mDNAsi), differentially methylated probes-
based stemness index (DMPsi), enhancer-based stemness index
(ENHsi), RNA expression-based epigenetically regulated-
mRNAsi (EREG-mRNAsi), and DNA methylation-based
(EREG-mDNAsi) of each patient were obtained from the
study by Malta et al. (2018), in which we compared the
differences in these indicators among patients characterized by
different smoking histories. The stemness indices were rated
between 0 and 1, signifying that the closer the stemness
indices were to 1, the lower the level of tumor cell
differentiation as well as the stronger the tumor cell stemness
characteristics.

2.5 Somatic Simple Nucleotide and Copy
Number Variations Analyses
The incidence of SNV events among different smoking
history was compared. tumor mutation burden (TMB),
usually quantified as the number of mutations per
megabases, was defined as the total number of
nonsynonymous mutations in each coding region of the
tumor genome. CNV events (loss or gain) in each sample
were integrated and analyzed using the Genomic
Identification of Significant Targets in Cancer (GISTIC) 2.0
(https://cloud.genepattern.org/) (Mermel et al., 2011). The
reference genome file was BSgenome.Hsapiens.UCSC.hg38,
while segment mean � log2 (copy number/2). In particular,
the value of a segment of mean greater than 0.2 was defined as
gain (recorded as 1), a segment of mean with less than −0.2
was defined as loss (recorded as −1), and a segment of mean
between −0.2 and 0.2 was defined as without CNV (recorded
as 0). Finally, the total number of genes with CNV loss or gain
at the focal or arm levels was defined as CNV loss or gain
burden (Shen et al., 2019). We used R-project maftools
package to visualize the results (Mayakonda et al., 2018).

2.6 Chemotherapeutic Response Prediction
The response to chemotherapy in each patient was predicted with
the Genomics of Drug Sensitivity in Cancer (GDSC) (https://
www.cancerrxgene.org/). The R-project prophet package was
used to perform the prediction, while the half-maximal
inhibitory concentration (IC50) of each patient was predicted
through ridge regression. Based on the GDSC training set, the
precision of prediction was verified by 10 cross-validations
(Geeleher et al., 2014).
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2.7 Pathways Enrichment of Patients With
Different Smoking Histories
Gene Set Enrichment Analysis (GSEA) was applied to identify the
enrichment of oncogenic signature in patients with different
smoking histories, which was performed using the GSEA
software (http://software.broadinstitute.org/gsea/downloads.jsp)
(version: 4.0.3). The criteria for enrichment difference
included: |normalized enrichment score (NES)| > 1, the
nominal p-value (NOM p-value) < 0.05, and the false
discovery rate q-value (FDR q-value) ≤ 0.25.

2.8 Identification of Differentially Expressed
Genes and Construction of Competing
Endogenous RNA Regulation Network
The R-project package edgeR was used to screen the
differentially expressed mRNAs (DEmRNAs), differentially
expressed lncRNAs (DElncRNAs), and differentially
expressed miRNAs (DEmiRNAs), according to the screening
criteria p-value < 0.05 (Robinson et al., 2010). Afterward, the
competing endogenous RNA (ceRNA) network was established
using DEmRNAs, DElncRNAs, and DEmiRNAs. LncRNA-
miRNA links were estimated by the use of miRcode (http://
www.mircode.org/), while the target genes of miRNAs were
predicted with miRDB (version:6.0) (http://www.mirdb.org/),
mirTarBase (version:8.0) (https://mirtarbase.cuhk.edu.cn/
~miRTarBase/miRTarBase_2022/php/index.php), and
TargetScan (version:7.2) (http://www.targetscan.org/vert_72/).
We defined the predicted target genes in at least two databases.
Next, we used Cytoscape (version:3.8.1) (https://cytoscape.org/)
to visualize the ceRNA network.

2.9 DNA Methylation Driver Gene Analyses
Differentially expressed methylated genes between any two of the
three smoking histories were screened according to the screening
criteria p-value < 0.05. Spearman correlation analysis was applied
to calculate the correlation coefficient (R) between methylation
level and its mRNA expression. A R < -0.4 and p < 0.05 was
considered as a DNA methylation driver gene.

2.10 Establishing and Assessing a
Smoking-Related Prognostic Model for
Patients
Univariate Cox analysis was used to identify differentially
expressed genes associated with OS of patients with p-value <
0.05. The R-project glmnet package was used for lasso regression
analysis to prevent the over fitting of the model (alpha � 1)
(Friedman et al., 2010). Upon constructing a multivariate Cox
proportional hazards regressionmodel, we obtained the risk score
of each sample using the regression coefficient and expression of
the gene as follows: Risk score
� ∑n

i�1 Coefficient (genei)*expression (genei).
Moreover, we used R-project survival and survminer packages

to examine the difference in OS between different risk score
groups. Then, the Cox regression analysis was employed to assess

the effects of the model along with other clinical characteristics on
OS. The R-project survival ROC package was used to draw the
receiver operating characteristic curve (ROC) as well as calculate
the area under the curve (AUC) to determine the predictive
ability of the model (Heagerty et al., 2000).

Nomogram was established to diagnose or predict the
progression or prognosis of the disease by combining multiple
clinical indicators. Harrell’s concordance index (C-index) and
calibration diagram were used to estimate the consistency
between the predictive results of the nomogram and the actual
occurrence of events. Further, R-project rms, survival, and
survcomp packages were used to draw the calibration diagram
and calculate the C-index (Schröder et al., 2011). Lastly, we
assessed the applicability of the model to other clinical
outcome indicators (DSS and PFI).

2.11 Statistical Analysis
The R-project (version: 3.6.3) (https://www.r-project.org/) and
bio conductor packages (http://bioconductor.org/) were used for
statistical analysis and visualization. Then, χ2 and p-values were
calculated using the Chi-square or Fisher’s exact tests. The linear
correlation between the two variables was analyzed using the
Spearman correlation coefficient. Differences between the two
sets were compared using the Wilcoxon rank-sum test, while
those between multiple groups were compared using
Kruskal–Wallis test. All statistical tests were two-sided and a
value of p < 0.05 was considered statistically significant. “*,” “**,”
“***” and “ns” indicates p < 0.05, p < 0.01, p < 0.001, and p > � 0.
05, respectively.

3 RESULTS

3.1 Smoking Exerts a Negative Effect on the
Prognosis of Patients
In this study, we collected 2,317 patients with various smoking
histories from seven cancer types, namely, bladder urothelial
carcinoma (BLCA), cervical squamous cell carcinoma and
endocervical adenocarcinoma (CESC), esophageal carcinoma
(ESCA), head and neck squamous cell carcinoma (HNSC),
kidney renal papillary cell carcinoma (KIRP), lung
adenocarcinoma (LUAD), and lung squamous cell carcinoma
(LUSC). The detailed information is summarized in
Supplementary Table S1. The Sankey diagram of cancer
type, smoking history, and survival status was depicted in
Figure 2A.

The results of survival analysis of patients with different
smoking histories revealed that non-smokers enumerated the
best OS and DSS, followed by former smokers, while on the other
hand, current smokers exhibited the worst OS and DSS (p < 0.05).
Besides, current smokers also have a higher risk for poor OS and
DSS, followed by former smokers, whereas non-smokers have a
lower risk (Figures 2B,C).

For PFI, we observed no significant difference (p > 0.05)
among patients with different smoking histories, but the 10-
,15-years PFI was the highest for non-smokers, followed by
former smokers, while that of the current smokers was the
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lowest. However, there was no statistical difference in the risk of
PFI among patients with different smoking histories
(Figures 2B,C).

The Cox regression analysis results demonstrated that
smoking history was an independent factor for OS and DSS in
patients. Notably, current smoking was an independent risk

FIGURE 2 | Influence of different smoking histories on the prognosis indicators of cancer patients. (A) The Sankey diagram of cancer type, smoking history, and the
survival status of the included samples. (B) KM curves showed differences in OS, DSS, and PFI among patients with different smoking histories. (C) The smoothed
hazard estimates of OS, DSS, and PFI in different smoking history patients. (D,E) The Cox regression analysis evaluated the influence of different smoking histories on
OS, DSS, and PFI along with other clinical features.
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FIGURE 3 | ssGSEA of patients with different smoking histories. (A) The landscape of 29 immune indicators among patients with different smoking histories. (B)
Differences in 29 immune indicators among patients with different smoking histories. (C) Differences in the stromal score, immune score, estimate score, and tumor
purity among patients with different smoking histories.
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factor for OS and DSS. Nevertheless, the effect of smoking history
on PFI was not statistically different (Figures 2D,E).

3.2 Differences in Immune Indicators Among
Patients With Different Smoking Histories
We found higher immune levels as well as lower tumor purity in
former smokers (Figure 3). Antigen-presenting cell co-
inhibition, antigen-presenting cell co-stimulation, B cells,
CD8+ T cells, checkpoint, follicular helper T cells, natural
killer (NK) cells, T cell co-inhibition, and tumor-infiltrating
lymphocyte were the highest in former smokers, lowest in

current smokers, and moderate in non-smokers. In addition,
the levels of dendritic cells (DCs), chemokine receptor (CCR),
cytolytic activity, immature dendritic cells, inflammation-
promoting, macrophages, mast cells, neutrophils, para
inflammation, plasmacytoid dendritic cells, regulatory T cells,
T cell co-stimulation, type 1 T helper cells, type 2 T helper cells,
type I interferon (IFN) response, type II IFN response was higher
in former smokers and current smokers than those in non-
smokers, while there was no difference between former
smokers and current smokers. The levels of the immune score
and ESTIMATE score were higher in former smokers than those
in non-smokers and current smokers, while there was no

FIGURE 4 | Shows differences in BCR diversity [(A) BCR Shannon, (B) BCR Richness], (C) leukocyte fraction, (D) neoantigens, (E) intratumoral heterogeneity, (F)
HDR, (G) CTA scores, (H) mRNAsi, (I) DMPsi, (J) ENHsi, (K) EREG-mRNAsi, (L) mDNAsi, (M) EREG-mDNAsi, and (N) TMB among patients with different smoking
histories.
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difference between non-smokers and current smokers. The
stromal score was the highest in former smokers, followed by
current smokers, and the lowest in non-smokers.

For BCR diversity (BCR Shannon and BCRRichness), leukocyte
fraction, neoantigens, and intratumoral heterogeneity, we
identified that smokers were markedly higher than non-
smokers, but there was no significant difference between former
smokers and current smokers. Next, we observed that theHRD and
CTA scores were the highest in current smokers, followed by
former smokers, and lowest in non-smokers (Figures 4A–G).

3.3 Smoking can Induce Tumor Cell
Stemness Formation
Compared with former smokers and non-smokers, current
smokers exhibited higher mRNAsi, and there was no
difference between former smokers and non-smokers. For
DMPsi, ENHsi, and EREG-mRNAsi, smokers were
considerably higher compared with non-smokers. In addition,
mDNAsi and EREG-mDNAsi were the highest in current
smokers, followed by former smokers, and the lowest in non-
smokers. These findings indicate that the stimulation of smoking
can induce tumor cell stemness formation, whichmay be reversed
following smoking cessation in some indicators (Figures 4H–M).

3.4 Smoking Induces More Somatic
Mutations and Copy Number Variations That
Remain the Same After Smoking Cessation
We herein recorded that the TMB of non-smokers was lower than
that of smokers, but there was no difference in TMB between

former smokers and current smokers (Figure 4N). Figure 5 and
Supplementary Figure S1A shows the genes with higher SNV
incidence in patients with different smoking histories.
Importantly, the SNV incidence of multiple genes, including
TP53, TTN, MUC16, CSMD3, RYR2, LRP1B, USH2A, SYNE1,
ZFHX4, FLG, XIRP2, and PCLO, among others, in smokers were
markedly increased compared with non-smokers. Except for
DNAH5 and NAV3, there was no statistical difference in SNV
incidence of other genes between current smokers and former
smokers.

Our results, based on GISTIC2.0, revealed that chromosomes 3,
8, 1, 5, 17, and 20 exhibited a higher incidence of CNV gain events,
while chromosomes 8, 9, 19, 17, 3, 4, and 5 had a higher incidence of
CNV loss events (Figure 6A). Figure 6 presents the fragment for the
most frequent CNV events among patients with different smoking
histories. We identified that the CNV gain of non-smokers occurred
primarily in 3q26.2, 3q28, 3q26.33, 8q24.21, 8q24.21, 20q11.21, and
8q24.3, while loss occurred mainly in 8p23.2, 9p21.3, and 18q21.2
(Figure 6B). For former smokers, CNV gain occurred
predominately in 8q24.21, 3q26.2, 5p15.33, 3q26.33, 3q28, 5p15.2,
and 8q22.3, whereas CNV loss occurred mainly in 3p14.2, 9p21.3,
and 3p13 (Figure 6C). For current smokers, CNV gain prevalently
occurred in 8q24.21, 3q26.2, 3q26.33, 3q28, 3q29, and 3p14.2, while
loss occurred primarily in 3p14.2, 3p24.1, 3p12.3, 9p21.3, 3p25.2,
and 8p23.2 (Figure 6D). Upon many chromosome segments, such
as 8q24.21, 3q26.2, 3q26.33, and 8q22.3, current smokers displayed
the highest incidence of CNV events, followed by former smokers,
while non-smokers had the lowest.

In comparison, non-smokers have a lower burden of gain and
loss at the focal and arm levels than smokers. For arm level gain
burden, the level of former smokers was higher when compared

FIGURE 5 | Landscape of the top 30 genes with higher SNV incidence in patients with different smoking histories.
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FIGURE 6 |Copy number profiles of patients with different smoking histories. (A) Gene fragments are placed on chromosomes ranging from chromosome
1 to 22, in which gain is dark red while loss is dark blue. Differences in the gene fragment distribution of CNV events in patients with different smoking histories
[(B): non-smoker, (C): former smoker, (D): current smoker]. (E) Differences in CNV gain and loss burden at focal and arm in patients with different smoking
histories.

Frontiers in Molecular Biosciences | www.frontiersin.org November 2021 | Volume 8 | Article 7049109

Wang et al. Effects of Smoking on Tumors

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


with that of current smokers. Nonetheless, there were no
statistical differences in the focal level gain and loss burden,
and the arm level loss burden, between former smokers and
current smokers (Figure 6E).

We also identified the top 30 genes characterized by a higher
incidence of CNV events (Figure 7 and Supplementary Figures
S1B,C). The CNV gain predominantly occurred in FNDC3B
(3q26.31), GHSR (3q26.31), TNFSF10 (3q26.31), PLD1
(3q26.31), ECT2 (3q26.31), TNIK (3q26.2−q26.31), NCEH1
(3q26.31), TP63 (3q28), and SLC2A2 (3q26.2) (Figure 7A).
On the other hand, CNV loss mainly occurred in CDKN2A
(9p21.3), CDKN2B (9p21.3), RP11−145E5.5 (19q13.42), MTAP
(9p21.3), CSMD1 (8p23.2), DMRTA1 (9p21.3), ARHGEF10
(8p23.3), DLGAP2 (8p23.3), MYOM2 (8p23.3), CLN8 (8p23.3),
and KBTBD11 (8p23.3) (Figure 7B).

We observed that the incidence of the multiple gene CNV gain
was the highest in current smokers, followed by former smokers,
and the lowest in non-smokers (Supplementary Figure S1B). In
terms of CNV loss, the incidence of multiple genes, including
CDKN2A, CDKN2B, RP11-145E5.5, MTAP, and DMRTA1, was
the highest in current smokers, followed by former smokers, and
lowest in non-smokers (Supplementary Figure S1C), suggesting
that smoking cessation could reverse CNV events in some genes.

3.5 Chemotherapeutic Response Prediction
Among a variety of small molecule compounds, including
AS601245 (JNK inhibitor), AZD6244 (MEK inhibitor),
bicalutamide (androgen receptor competitor), bortezomib
(proteasome inhibitor), bryostatin.1 (protein kinase C
activator), CHIR.99021 (glycogen synthase kinase-3 selective
inhibitor), EHT.1864 (Rac family small GTPases inhibitor),
Nutlin.3a (Mam2 inhibitor), PAC.1 (procaspase-3 activator),
PD.0325901 (MEK inhibitor), PHA.665752 (c-Met kinase
inhibitor), rapamycin (mTOR inhibitor), roscovitine (cyclin-
dependent kinase inhibitor), and tipifarnib (farnesyltransferase
inhibitor), current smokers depicted the highest IC50, followed
by former smokers, whereas non-smokers exhibited the lowest
IC50 (Figures 8A–N).

For ABT.888 (poly ADP-ribose polymerase inhibitor),
CI.1040 (MEK inhibitor), CMK (ribosomal s6 kinase-2
inhibitor), cyclopamine (hedgehog pathway antagonist), and
MS.275 (histone deacetylase inhibitor), IC50 was largely
reduced in non-smokers compared with smokers. However, we
noted no substantial difference between former smokers and
current smokers (Figures 8O–S).

3.6 Gene Set Enrichment Analysis
For oncogenic signatures, VEGF AUP. V1 DN, E2F3 UP. V1 DN,
and MTOR UP. V1 UP were significantly enriched in smokers
than non-smokers. These pathways were also largely enriched in
current smokers relative to reformer smokers (Supplementary
Table S2, Sheet 1).

3.7 Construction of a ceRNA Network
We further screened DEGs between patients with different
past smoking histories, that is, non-smokers vs. former
smokers, non-smokers vs current smokers, and former

smokers vs. current smokers (Supplementary Table S2,
Sheet 2). After integrating the above results, we obtained
1956 DEmRNAs (1,064 upregulated and 892
downregulated), 507 DElncRNAs (233 upregulated and 274
downregulated), and 80 DEmiRNAs (74 upregulated and 6
downregulated) (Supplementary Table S2, Sheet 3).
Furthermore, CeRNA network indicated that mir-193b-3p,
mir-301b, mir-205-5p, mir-132-3p, mir-212-3p, mir-1271-
5p, and mir-137 may play an indispensable role in tobacco-
related tumor formation (Figure 9A).

3.8 Multiple DNA Methylation Drivers Genes
Have Been Identified Associated With
Smoking
Here, we identified 67 up-regulated and 416 down-regulated
differentially expressed methylated genes (Supplementary
Table S2, Sheet 4). Using the Spearman correlation
analysis, we obtained 11 methylation driver genes, including
EIF5A2 (R � −0.53), GBP6 (R � −0.68), HGD (R � −0.52),
HS6ST1 (R � −0.48), ITGA5 (R � −0.49), NR2F2 (R � −0.47),
PLS1 (R � −0.47), PPP1R18 (R � −0.53), PTHLH (R � −0.52),
SLC6A15 (R � −0.55), and YEATS2 (R � −0.51) (Figure 9B).

3.9 Establishment and Validation of a
Smoking-Related Prognostic Model
Using the univariate Cox regression analysis, we found that 1,404
genes were associated with OS (Supplementary Table S2, Sheet 5).
As a result, a 46-gene smoking-related prognostic model was
constructed (the 46 genes included in the smoking-related
prognostic model are outlined in Table 1). Risk scores for all
samples obtained via the prognostic model are detailed in
Supplementary Table S2, Sheet 6. Afterward, we uncovered that
current smokers have the highest risk scores, lowest in non-smokers,
and between the two were former smokers (Figure 10A). Patients
with poor staging (stage III and IV) had higher risk scores compared
with patients with better staging (stage I and II) for all cancer types
except for ESCA (Figure 10B). Moreover, KM curves demonstrated
that the OS of patients in the high-risk score group was worse
compared with the low-risk score group in each cancer type
(Figure 10C and Supplementary Figure S2). It is to be noted,
the independent prognostic analysis elucidated that the 46-gene
smoking-related model was an independent risk factor for the OS of
patients in each cancer type (Figures 10D,E and Supplementary
Figure S2). More interestingly, ROC shows that the 46-gene
smoking-related model exhibited effective predictive power for 1-,
3-, and 5-year OS of patients in each cancer type. Furthermore,
compared with other clinical indicators, the 46-gene smoking-
related model possesses the superior predictive ability for the OS
(Figures 10F–H and Supplementary Figure S3). To predict the OS
for each type of cancer, we then constructed nomograms by
combining the 46-gene smoking-related model with other clinical
characteristics, including age, sex, stage, and so on (Figure 10I and
Supplementary Figure S4). Both the calibration diagrams (Figures
10J–L and Supplementary Figure S4) and C-indexes (Table 2)
showed that the nomograms have better predictive abilities.
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Next, we explored the applicability of the 46-gene smoking-
related model for DSS and PFI. Our findings demonstrated that the
model has good applicability for other cancer types except for
ESCA. Patients with high-risk scores displayed poor DSS and PFI,
while risk scores were independent risk factors for DSS and PFI
(Supplementary Figures S5, S6). Remarkably, ROC analysis
shows that the 46-gene smoking-related model had better
predictive power for 1-, 3-, and 5-year DSS and PFI of patients
in each cancer type (Supplementary Figure S7). Similarly, we

constructed nomograms to predict the DSS and PFI of patients.
The calibration diagrams and C-indexes show that the nomograms
have high accuracy (Supplementary Figures S8, S9).

4 DISCUSSION

Smoking has been shown to cause the occurrence of a variety of
diseases. Currently, there is a dearth of information regarding

FIGURE 7 | The landscape of the top 30 genes in the incidence of (A) CNV gain and (B) CNV loss in patients with different smoking histories.
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non-smokers, former smokers, and current smokers. In this
present investigation, we explored the underlying possible
molecular mechanisms of smoking history on the occurrence

and development of tumors based on multi-omics analysis of
smoking-related tumors in the TCGA database. We uncovered
that smoking history exerted an effect on the prognosis of cancer

FIGURE 8 | IC50 of response to chemotherapeutic drugs in patients with different smoking histories. Red, blue, and green represent current smokers, former
smokers, and non-smokers, respectively.
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FIGURE 9 | Construction of ceRNA network and identification of methylation driver genes. (A) CeRNA network shows the associations between the targeted
lncRNAs (oval) and mRNAs (triangle) of miRNAs (rectangular) related to the tumor pathogenesis of smoking, in which red denotes up-regulation while blue indicates
down-regulation. (B) Correlation analysis of gene expression and its methylation level.
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patients. Additionally, patients with different smoking histories
showed differences in immune content, tumor cell stemness,
genome stability, and sensitivity to chemotherapy drugs.
Multiple miRNAs that may be associated with the
pathogenesis of smoking-related tumors were identified. We
also built a smoking-related model to predict the prognosis of
patients, which was characterized by high accuracy and wide
clinical applicability.

We studied the difference in prognosis among patients with
different smoking histories. The results showed that non-smokers
had better OS and DSS than smokers. Importantly, quitting
smoking could improve the prognosis and prolong survival
time. Smoothed hazard estimates demonstrated that current
smokers exhibited the highest risk for poor OS and DSS,
followed by former smokers, while non-smokers had the
lowest risk. Notably, the Cox regression analysis identified that
current smoking was an independent risk factor for OS and DSS,
which agrees with previous research results that, compared with
non-smokers, smokers have a poor prognosis. Also, smoking
cessation can improves the prognosis of smokers, whereas
smoking history was an independent prognostic factor for
cancer patients (Vineis et al., 1988; Manjer et al., 2000; Sardari
Nia et al., 2005; Tsao et al., 2006; Zhou et al., 2006; Vladimirov
and Schiodt, 2009; Kenfield et al., 2011).

It has been reported that smoking can lead to changes in
innate and acquired immune systems, as well as changes in the
number and function of immune indicators, promote the
production of a variety of pro-inflammatory factors, and
inhibit the production of anti-inflammatory factors (Arnson
et al., 2010). In terms of leukocyte infiltration, intratumoral
heterogeneity, and neoantigens, smokers were significantly
higher relative to non-smokers. Therefore, it is apparent

that smoking cessation does not lead to any immediate
change in this status. This is probably because tobacco can
induce more leukocyte infiltration as well as neoantigens in the
body (Inamura et al., 2017; Ahmad et al., 2019). Another
reason for drug resistance is intratumor heterogeneity,
which can be caused by tobacco (Salk et al., 2010;
Alexandrov et al., 2016). Through ssGSEA, we found
considerable differences in multiple immune indicators
among patients with different smoking histories.
Inflammation and immune regulation due to smoking are
potentially important mechanisms in the development of
cancer. Tobacco smoke contains a wide variety of
mutagenic and carcinogenic compounds, including carbon
monoxide, nicotine, nitrogen oxides, and cadmium, among
others. Smoking has been established to cause many systemic
immune changes, changes in the number of macrophages,
neutrophils, eosinophils, mast cells, and DCs, as well as
alterations in the function of macrophages and neutrophils
(Shiels et al., 2014). Li et al. (2018) found that the abnormal
activation of mast cells plays a vital role in abnormal
pulmonary immune function caused by smoking, which
may lead to tumorigenesis and development. Smoking may
increase inflammation by increasing the number and function
of DCs and can lead to a sharp increase in the number of DCs
and Langerhans cells (Soler et al., 1989). Smoking can
upregulate the expression of CCR7 and CD86, and
significantly promote the transport and response of DCs in
the airway of mice to promote allergic airway inflammation
(Robays et al., 2009). Tobacco did not induce inflammation or
immune response in CD8 knockout mice (Maeno et al., 2007).
The IFN-γ-inducible protein-10 derived from CD8+ T cells
promotes the production of elastin in macrophages, leading to
elastin fragmentation and lung damage. In addition to
activating the expression of CD8+T cells, cigarette smoke
also induces CD8+ T cells to produce more toll-like
receptor proteins and thereby increasing the expression of
cytokines (Nadigel et al., 2011). Current smokers have a
significantly higher risk of acute prostatitis than former
smokers and non-smokers (Moreira et al., 2015), and
smoking can induce B-cell signatures of prostatitis and
prostate cancer in current smokers, leading to
immunoglobulin expression (Prueitt et al., 2016). Tobacco
exposure increased the expression of IFN-γ and CD107a in
the NK cells of mice and enhanced the NK cells response (Motz
et al., 2010). Cigarette smoke also caused mouse NK cells to
express more T helper cell-17 cytokine (Bozinovski et al.,
2015). Levels of a variety of immune indicators were higher
in former smokers than current smokers, possibly due to
continuous tobacco stimulation resulting in a decrease in
immune function, which can be reversed after quitting
smoking (Cui and Li, 2010).

In this work, we found that smokers presented higher tumor
cells stemness relative to non-smokers. Tobacco is well known to
promote tumor resilience through the Akt-mediated ABCG2
activity to increase the proportion of lung cancer and HNSC
tumor stem-like cells (An et al., 2012). Besides, it can also trigger
the activation of the Sonic hedgehog pathway, which contributes

TABLE 1 | The regression coefficient of 46 genes in the 46-gene
prognostic model.

Gene Coefficient Gene Coefficient

GABRA3 0.071003831 HSF1 0.214233106
C10orf90 0.337893216 AC022382.1 −0.447575475
CRB3 −0.144275548 MYOCD 0.237116989
ZNF684 −0.351124244 USP4 −0.230517617
CRYZ 0.160012324 AC113346.1 −0.160210204
CHST5 0.528328195 NOP58 0.1158533
ZNF44 −0.123742252 AP000487.1 0.252927534
CYTL1 0.128171571 SCRG1 0.285617483
KRT77 0.152914276 LRP4−AS1 0.410745213
STARD4 0.14767866 LINC00539 −0.668719512
ANGPT2 0.147853794 ZCWPW1 −0.124585536
MYL2 0.077509337 KRT79 0.070985841
CXCL8 0.058884281 AC021016.2 −0.152691067
PDK2 −0.12905015 TTBK1 −0.46897621
SLCO1B1 0.2525273 RUNDC3B −0.530468579
CCDC88C −0.170320954 AC127521.1 0.383902578
PTCSC2 −0.168894593 TYRO3 0.15695226
BCR −0.215305015 COL17A1 −0.04768134
SRP68 0.26087884 KRT82 −2.734361081
MARK2 0.325791745 NOS1 0.110625126
TUBD1 −0.198357131 MFHAS1 −0.171772138
KBTBD2 0.178448729 AC015908.3 −0.356104779
MIR193BHG 0.142822324 VAX1 0.215776961
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FIGURE 10 | Establishment and validation of a 46-genes prognostic model for KIRP patient’s OS. (A) Differences in risk scores among all patients with different
smoking histories. (B) Differences in risk scores among patients with different stages. (C) KM curves showed a difference in OS among KIRP patients with different risk
scores. (D) Univariate and (E) multivariate Cox regression analyses were applied to analyze the effects of risk scores on OS along with other clinical features. The ROC
curves of the ability of the smoking-related model and other clinical features to predict KIRP patient’s (F) 1-, (G) 3- and (H) 5-years OS. (I) A nomogram was
constructed by combining the smoking-related model with age, gender, and stage to predict 1-, 3- and 5-years OS of KIRP. Calibration diagrams were applied to assess
the consistency of nomogram prediction of KIRP’s (J) 1-, (K) 3- and (L) 5-years OS with real results.
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significantly to the maintenance of stemness in kidney cancer and
BLCA cells (Qian et al., 2018; Sun et al., 2020). Nicotine induces
the expression of the embryonic stem cell factor SOX2 via the
NACHR-YAP1-E2F1 signaling axis that maintains the
characteristic of NSCLC tumor stem cells (Schaal et al., 2018).

Moreover, tobacco can induce more incidence of SNV,
including TP53, TTN, MUC16, SYNE1, CSMD13, RYR2,
USH2A, and FLG, which may play a pivotal role in
mediating cell malignancy and tumor progression that
cannot be reversed even after quitting smoking in a certain
gene. We noted that non-smokers were substantially more
sensitive to multiple chemotherapeutic drugs than smokers.
Similarly, previous studies have found that smoking can
induce mutations in multiple genes, which in turn can
induce patients to become resistant to chemotherapy drugs
(Alexandrov et al., 2016; Shang et al., 2020). For instance,
TP53-mutations type can interact with BCAR1 to promote
tumor cell invasion, leading to poor prognosis (Guo et al.,
2020). In comparison, the incidence of TP53 mutation was
higher in smokers than in non-smokers. It was also observed
that the frequency of TP53 mutation increased with the
increase of smoking amount (Halvorsen et al., 2016). A
study by Yu et al. (2019) analyzed somatic mutations in 100
cases of NSCLC, whose results revealed that a variety of gene
mutations such as TTN, CSMD3, RYR2, USH2A, and ZFHX4
were different in patients with different smoking histories, and
thus the mutation incidence was higher in smokers than that in
non-smokers. Likewise, Shang et al. found that the mutation
frequency of CDKN2A, FAT1, FGFR1, NFE2L1, CCNE1,
CCND1, SMARCA4, KEAP1, KMT2C, and STK11 was
higher in smokers compared with non-smokers (Shang
et al., 2020). According to the literature, chromosome
instability can lead to CNV and genetic heterogeneity,
which may trigger the occurrence of cancer (Myllykangas
et al., 2008). In this study, we unearthed that tobacco causes
a higher incidence of CNV, mainly occurring on chromosomes
3, 8, 1, 5, 9, 19, and 4. The gain of the 3q26 locus was
remarkably related to the occurrence of human squamous
cell carcinoma, including LUSC and HNSC. Hence, the gain
of 3q26 was significantly associated with smoking (Li et al.,
2020a). CDKN2A (9p21.3) encodes P16 protein that is a tumor
suppressor. Studies have shown that CDKN2A loss and
abnormal expression of P16 are associated with the
occurrence of various malignant tumors (Kettunen et al.,
2019). Smoking-related HNSC tumors indicated a large

number of CDKN2A losses, suggesting that smoking may
induce CDKN2A CNV loss (Cancer Genome Atlas, 2015).
In oral cancer, TP63 CNV was significantly associated with
smoking history, while the incidence of TP63 CNV gain was
considerably increased among smokers (Pattle et al., 2017). A
recent study by Tom et al. reported that loss of 19q13.42
occurred at a significantly higher rate in recurrent anal cancer
than in primary tumors, implying that a loss of 19q13.42 may
promote tumor recurrence (Cacheux et al., 2018). The loss of
chromosome segment 8p23.3 is markedly associated with the
development and progression ofBLCA, resulting in poor
tumor staging (Muscheck et al., 2000). In another study,
Joseph et al. (2020) found that loss of ARHGEF10 was
found in more than 30% of pancreatic cancers (PC), whose
loss led to enhanced subcutaneous tumor growth in the mouse
model as well as increased proliferation, invasion, and motility
of PC cell lines in vitro, and also enhanced tumor metastatic
spread in the mouse model. The gain of PLD1, which is
prevalent in LUSC, is considered as a new biomarker for
LUSC (Mendez and Ramirez, 2013).

Smoking is associated with the induction of chemical
resistance in different types of cancers, namely, CRC (Lee
et al., 2016), HSNC (Shen et al., 2010), PC (Lee et al., 2016),
and BLCA (Chen et al., 2010). In particular, smoking promotes
chemotherapy-resistant and anti-apoptotic effects on breast
cancer cells by signaling cascades of STAT3, galectin-3, and
nicotine acetylcholine receptors (Guha et al., 2014). Tobacco
may also alter the pharmacodynamics of anti-cancer drugs
(Willey et al., 1997; Villard et al., 1998). For example, in lung
cancer, smokers who were treated with chemotherapeutic
drugs showed more rapid elimination than non-smokers,
requiring an increase in dose to achieve the same
therapeutic effect (O’Malley et al., 2014). Nicotine has been
established to promote XIAP protein stabilization and
surviving transcriptional induction through the Akt
pathway, thereby inhibiting the apoptosis effects of
chemotherapeutic drugs on NSCLC tumor cells (Dasgupta
et al., 2006). The components pyrazine, 2-ethylpyridine, and
3-ethylpyridine in tobacco can induce multi-drug resistance in
LUAD tumor cells. The induction is enhanced in hypoxia (Liu
et al., 2015). In BLCA, smoking induces tumor growth and
mTOR inhibitor resistance through activation of the PI3K/
Akt/mTOR signaling pathway (Yuge et al., 2015). Jin et al.
(2004) demonstrated that nicotine-induced multisite
phosphorylation of BAD may be the cause of resistance to
PKC and MEK inhibitors in human lung cancer.

Nicotine, the major component of cigarette smoke, can
stimulate the expression of VEGF in endothelial cells, thereby
promoting endothelial cell proliferation, migration, and
angiogenesis (Zhang et al., 2015). In addition, smoking can
activate the combination of VEGF promoter and MZF1 to
induce VEGF expression (Krüger et al., 2020). Yuge et al.
pointed that smoking activates the PI3K/Akt/mTOR signaling
pathway in BLCA to promote tumor cell growth and develop
resistance to chemotherapeutic drugs (Yuge et al., 2015).

In addition, we identified several core genes that may
contribute to tobacco-related tumors by constructing a ceRNA

TABLE 2 | The C-index of the nomograms was used to predict the prognostic
indicators in each cancer type.

Cancer type OS DSS PFI

BLCA 0.728 0.745 0.683
CESC 0.748 0.789 0.726
ESCA 0.784 0.819 0.653
HNSC 0.700 0.732 0.668
KIRP 0.906 0.934 0.868
LUAD 0.726 0.746 0.658
LUSC 0.639 0.718 0.662
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network. Mir-301b targets FOXF2, PTEN, and COL2A1,
regulating the proliferation, colony formation, cell migration,
invasion, chemotherapy resistance, and tumor growth of ductal
invasive breast cancer cells without lymph node metastasis (Shi
et al., 2011). Mir-301b is found to be upregulated in certain
cancers, such as PC, lung cancer, oral cancer, and liver cancer
(Miko et al., 2009; Lu et al., 2012; Wang et al., 2016). For ESCA,
mir-205-5p was largely higher in smokers (Stánitz et al., 2015).
For chronic lung disease, the mir-132-3p was significantly
upregulated in smokers, thus inducing increased
concentrations of inflammatory cytokines (interleukin-1β and
tumor necrosis factor-α) (Diao et al., 2018). Furthermore,
cigarette tobacco extract can induce the expression of mir-132-
3p (Singh et al., 2020). Numerous studies have highlighted that
mir-1271-5p and mir-137 may be associated with tumor
proliferation, infiltration, and drug resistance, which may form
a new target of cancer therapy (Liu et al., 2017; Lu et al., 2017;
Jiang et al., 2018; Qiu et al., 2019; Wang et al., 2019; Wu et al.,
2019; Dang et al., 2020; Li et al., 2020b).

Epigenetic disorders are associated with the occurrence and
progression of cancer. In gastric cancer, levels of GBP6
methylation are negatively correlated with their mRNA
expression. Consequently, patients with high levels of GBP6
methylation are significantly associated with poor prognoses
(Peng et al., 2020). Also, GBP6 is associated with oral cancer
and HNSC therefore can be used as a prognostic marker (Liu
et al., 2020; Wu et al., 2020). ITGA5 has been reported to mediate
the initial adhesion process in ovarian and CRC (Ohyagi-Hara
et al., 2013; Yoo et al., 2016). In breast cancer, the increased levels
of ITAG5 promoter methylation led to the decrease of ITAG5
expression, thus inhibiting the growth, development, and cell
migration of breast cancer cells (Fang et al., 2010). However, a
high ITGA5 expression was associated with malignant
characteristics of BLCA and HNSC (Deng et al., 2019; Yan
and Ye, 2019). In oral cancer, it has been found that NR2F2 is
hypermethylated in cancer tissue compared to normal tissue,
which may play a critical role in oral cancer. In glioma, NR2F2
hypermethylation is a differentially expressed methylated gene
between glioma patients with better prognosis and poor
prognosis, which is enriched in diseases and disorders in both
molecular and cellular aspects (Shinawi et al., 2013). Additionally,
PPP1R18 encodes a defense protein that is tightly localized to
cytoskeleton proteins. Significant reductions in PPP1R18
methylation have been recorded in patients with severe liver
fibrosis, suggesting that epigenetic disorders are involved in the
progression of the disease (Zeybel et al., 2016). SLC6A15
methylation level was significantly higher in CRC, although
there was no significant correlation between the SLC6A15
methylation level and its mRNA expression level (Kim et al.,
2011; Mitchell et al., 2014). Meanwhile, the SLC6A15 mRNA
expression was significantly reduced in ovarian cancer cell lines
with a chemotherapy-resistant phenotype. Up to now, there are
few reports on the association between EIF5A2, HGD, HS6ST1,
PLS1, PTHLH, and YEATS2 methylation modification and
tumor. The overexpression of EIF5A2 was associated with
invasion, metastasis, and other malignant phenotypes of
various cancers, suggesting that EIF5A2 may be a potential

therapeutic target (Chen et al., 2018; Ba et al., 2019; Dong
et al., 2019). In addition, EIF5A2 regulates the resistance of
gastric cancer cells to cisplatin by mediating epithelial–stromal
transformation (Sun et al., 2018). The downregulation of HGD
expression was found to be associated with less metastasis, as well
as better prognosis, pathological grade, and clinical stage of
cholangiocarcinoma patients (Aukkanimart et al., 2015). The
PLS1 was overexpressed in CRC patients and associated with
lymph node metastasis and a poor prognosis. The PLS1 can also
induce the migration and invasion of CRC cells as well as the
metastasis to the liver and lung. In addition, the PLS1 also
enhanced the expression of matrix metalloproteinases 9 and 2,
which were key factors in CRC metastasis (Zhang et al., 2020).
Compared with the normal tissue, PTHLH was significantly
overexpressed in HNSC and was associated with poor
prognosis in HNSC. Meanwhile, the increased expression of
the PTHLH can induce the cell cycle progression of tumor
cells and actively regulate the expression of core proteins
(Chang et al., 2017). The increased expression of HS6ST1
mRNA during the progression of cartilage tumors suggests
that HS6ST1 may promote the formation of malignant
phenotypes of cartilage tumors (Waaijer et al., 2012). The
inhibition of YEATS2 mRNA expression can reduce the
proliferation and migration of PC cells. Meanwhile, the
hypoxia-inducible factor 1α (HIF1α) regulates the expression
of YEATS2 mRNA by binding to the hypoxia response
element of YEATS2. HIF1α was co-expressed with YEATS2 in
PC. In turn, overexpressed YEATS2 can block the inhibitory effect
of HIF1α silencing on PC cell proliferation and migration under
hypoxia (Zeng et al., 2021).

Next, we developed a prognostic model for tumor patients.
Our findings elucidated that the OS of patients in the high-risk
score group was poor compared with that of patients in the
low-risk score group. It is to be noted, the high-risk score was
an independent risk factor for OS. The results of ROC showed
that the model has good ability to predict OS. We further
constructed a nomogram for each cancer type, including the
prognostic model and clinical features, to predict OS. Both
calibration diagrams and C-indexes confirmed that the
nomograms were reliable and highly accurate. Moreover,
the prognostic model has a wide clinical applicability for
predicting the DSS and PFI of cancer patients. We also
drew the nomograms and verified that they had good ability
in forecasting the DSS and PFI of patients.

Nevertheless, despite these intriguing results, this study has
some shortcomings. First, we did not analyze the influence of
smoking time and the number of cigarettes on the study.
Second, we did not evaluate the influence of different
durations of quitting smoking on the study. Finally, we did
not validate the results in vivo and vitro experiments.

In summary, we systematically studied the molecular level
differences among non-smokers, former smokers, and current
smokers. We found that smoking cessation can reduce the risk
of poor prognosis in patients. However, at the same time,
tobacco induces SNVs and CNVs, which are changes that can
be reversed by smoking cessation. Furthermore, smoking can
activate the immune function of patients, while continuous
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smoking may induce a decline in immune indicators.
Therefore, based on this, we recommend that further
functional experiments are needed to verify our findings.
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Supplementary Figure 9 | Construction of nomograms for predicting PFI of each
cancer patient as well as evaluation of its accuracy. Nomograms were constructed
by use of the smoking-related model and other clinical indicators to predict the PFI of
each cancer patient. Calibration curves were used to evaluate the consistency of
nomogram prediction patient PFI with real results.

Supplementary Table 1 | Information about the included samples.

Supplementary Table 2 | The results of GSEA between patients with any two
smoking histories (Sheet 1). Identification and Intersection of differentially expressed
genes between any two smoking histories in patients with various smoking histories
(lncRNA & mRNA: Sheet 2, miRNA: Sheet 3, methylated genes: Sheet 4). Genes
associated with OS were obtained through cox regression analysis (Sheet 5). Risk
scores for all samples were obtained via the prognostic model (Sheet 6).
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GLOSSARY

AUC area under the curve

BCR B-cell receptor

BLCA bladder urothelial carcinoma

CCR chemokine receptor

CeRNA competing endogenous RNA

CESC cervical squamous cell carcinoma and endocervical adenocarcinoma

C-index concordance index

CNVs copy number variations

Cor correlation coefficient

CRC colorectal cancer

CTA cancer testis antigen

DCs dendritic cells

DElncRNAs differentially expressed lncRNAs

DEmiRNAs differentially expressed miRNAs

DEmRNAs differentially expressed mRNAs

DMPsi differentially methylated probes-based stemness index

DSS disease-specific survival

ENHsi enhancer-based stemness index

EREG-mDNAsi DNA methylation-based epigenetically regulated-
mDNAsi

EREG-mRNAsi RNA expression-based epigenetically regulated-
mRNAsi

ESCA esophageal carcinoma

FDR q-value false discovery rate q-value

GDSC genomics of drug sensitivity in cancer

GISTIC genomic identification of significant targets in cancer

GSEA gene set enrichment analysis

HNSC head and neck squamous cell carcinoma

HR hazard ratio

HRD homologous recombination defects

HIF1α hypoxia-inducible factor 1α

IC50 half maximal inhibitory concentration

IFN interferon

KIRP kidney renal papillary cell carcinoma

LUAD lung adenocarcinoma

LUSC lung squamous cell carcinoma

mDNAsi DNA methylation stemness indices

mRNAsi mRNA stemness indices

NES normalized enrichment score

NK natural killer

NOM p-value nominal p-value

OS overall survival

PC pancreatic cancer

PFI progression-free interval

ROC receiver operating characteristic

SNVs simple nucleotide variations

ssGSEA single-sample gene set enrichment analysis

TCGA the cancer genome atlas

TMB tumor mutation burden
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