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Abstract: Foreground detection has been used extensively in many applications such as
people counting, traffic monitoring and face recognition. However, most of the existing
detectors can only work under limited conditions. This happens because of the inability
of the detector to distinguish foreground and background pixels, especially in complex
situations. Our aim is to improve the robustness of foreground detection under sudden
and gradual illumination change, colour similarity issue, moving background and shadow
noise. Since it is hard to achieve robustness using a single model, we have combined
several methods into an integrated system. The masked grey world algorithm is introduced to
handle sudden illumination change. Colour co-occurrence modelling is then fused with the
probabilistic edge-based background modelling. Colour co-occurrence modelling is good in
filtering moving background and robust to gradual illumination change, while an edge-based
modelling is used for solving a colour similarity problem. Finally, an extended conditional
random field approach is used to filter out shadow and afterimage noise. Simulation results
show that our algorithm performs better compared to the existing methods, which makes it
suitable for higher-level applications.
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1. Introduction

Foreground detection algorithms have been implemented in many applications such as people
counting, face recognition, license plate detection, crowd monitoring and robotic vision. The accuracy of
those applications is heavily dependent on the effectiveness of the foreground detection algorithm used.
For example, some people counting systems will not work well when the surrounding illumination is low,
such as during rainy days or inside dark rooms. Such a system will not be able to give a correct count
because of the inability of the algorithm to distinguish between foreground and background objects. It is
very important for the background modelling algorithm to be robust to a variety of complex situations.
However, it is almost impossible to make such a system robust to all situations and conditions such as low
variation in illumination change, reasonable movement speed and high contrast between background and
foreground object. In fact, a majority of previous papers such as [1–3] only function well within limited
conditions and constraints. Any slight deviation from the required conditions significantly degrades
performance. Algorithms such as face recognition fail to perform properly once the constraints are
violated. The aims of our work are to improve accuracy and robustness of background modelling
to (1) sudden as well as gradual illumination change; (2) small movements of background objects;
(3) colour similarity between foreground and background; and (4) shadow and afterimage noise. This
paper is part of Zulkifley’s [4] PhD thesis.

Illumination change is one of the key issues when robust video analytics are developed. The issue
can be divided into the subcategories of local and global on one hand, while sudden and gradual on
the other. Learning capability can be incorporated into background modelling to enable the algorithm
to adapt to the surrounding change either instantaneously or gradually. However, to find a single good
model that fits both slow and fast learning rate is a difficult task and too dependent on the situation.
An example of algorithm developed for gradual illumination change is by Jimenez-Hernandez [5]. His
works used independent component analysis by utilizing spatio-temporal data to classify the foreground
and background pixels. Our approach to cope with sudden/gradual illumination change as well as the
problem of small movements of background objects is to fuse good background modelling with a colour
constancy algorithm. By using colour co-occurrence based background modelling [1], we are able
to achieve good foreground detection even under moving background noise and gradual illumination
change. The background learning constant is set to a slow rate for handling gradual illumination change.
Prior to this, the colour constancy approach is used to transform each input frame into a frame as seen
by a canonical illuminant. This step allows the algorithm to be robust to sudden illumination change.
We improve the grey world algorithm [6] by introducing adaptive mask and statistical grey constants.
We also modify the method by Renno et al. [7] to filter out noise due to variation in grey constant values
modelled by a Gaussian distribution.
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Other flaws in the method of [7] are the degradation in its performance both under low ambient
illumination and where there is colour similarity between background and foreground. We exploit higher
level information such as gradient and edge to solve these problems. However, we argue that gradient
information alone is not enough to provide robustness to the system. We propose a method which
fuses both gradient and intensity information for better detection. The colour co-occurrence method
will provide the intensity aspect while improved edge-based background modelling by using a fattening
algorithm and temporal difference frame edge will provide the gradient aspect. A Gaussian distribution is
used to realize the probabilistic edge-based background modelling. Both intensity and gradient methods
are combined before final filter is applied to remove noise, especially shadows. A Conditional random
field (CRF) approach is used to remove shadow and afterimage probabilistically. The algorithm of
Wang [3] is improved by using a new shadow model and by incorporating previous neighbourhood
values for decision making. As a result, algorithms that depend on foreground detection will produce
sharper foreground which contributes to overall accuracy improvement.

This paper is organized into 9 sections. A literature review will be explained in Section 2. Section 3
will discuss a brief overview of the system. The details of the algorithms will be explained in
Sections 4–7. Then, simulation results and discussion are presented in Section 8. Finally, conclusions
are drawn in Section 9.

2. Literature Review

The most cited work for background modelling is the mixture of Gaussian (MoG) approach
introduced in 1999 by Stauffer and Grimson [2]. The method has proven to be effective in handling
gradual illumination change for indoor and outdoor situations, but it still lacks in terms of robustness,
especially for the problems of sudden illumination changes, moving background objects, low ambient
illumination and shadows. Lee and Chung [8] then combined MoG with weighted subtraction method
for health care surveillance system. Another method by Varcheie et al. [9] also implemented MoG
through a region-based updating by using colour histogram, texture information and successive division
of candidate patch. Instead of using a mixture of Gaussian distributions, Ridder et al. [10] predict and
smooth out the mode of the pixel value by using Kalman filter. This algorithm suffers the same problem
as both methods only use temporal information for their decision making. In [11], Wang et al. used
alpha-stable distribution instead of Gaussian distribution to detect background clutter. Synthetic aperture
radar is used to detect the presence of a ship, and they obtained less spiky image or reduced fluctuation in
the image due to improved modelling. They found that the ship detection is less spiky based on synthetic
aperture radar image. In order to reduce intensity fluctuations due to noise, Bozzoli et al. [12] and
Yu et al. [13] applied intensity gradient in their background modelling. Their approaches were found
to be good in suppressing intensity value fluctuations but tend to produce wrong detection when the
background object is moving, as in the case of an escalator or shaking tree.

The most popular method of gathering statistical information for each pixel is to use a colour
histogram approach as in [14,15]. Li et al. [16] introduced the colour co-occurrence method, invoking the
relationship between two pixels in consecutive frames for background modelling. Their approach uses
Bayes rule for classifying each pixel as either moving foreground or moving background. This approach
performs well in handling gradual illumination changes and moving background noise. However, the
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image obtained is not crisp and the method failed under sudden illumination changes. Crispness of the
image is the quality of the object boundary, whether the edge is clear or blurred. In 2005, Zhao and
Tao [17] used a colour correlogram which relates two pixel values within a certain distance inside the
same frame. The algorithm performs well as the input for tracking non-deformed objects. The weakness
of this approach is that it cannot handle non-rigid objects, especially in human detection algorithms
where human foreground shapes change continuously as they walk. Another two popular methods
of gathering statistical information are the fuzzy histogram approach [18] and colour ratio histogram
approach [19].

Robust foreground detection is hard to achieve if each pixel is treated separately from its neighbours
and from corresponding pixels in preceding frames. In order to improve the accuracy of background
modelling, more information should be incorporated for decision making. Instead of making decisions
based on a single pixel value; spatio-temporal information is used for better detection. Each of these
approaches is further classified into deterministic or probabilistic. Temporal information is obtained by
including previous data in the determination of the current pixel value or label. Haritaoglu et al. [20] is
one of the first papers to apply deterministic temporal information. The paper constructs the background
model by using minimum and maximum intensity values, and the maximum intensity difference between
consecutive frames during the training period. Some examples of probabilistic approaches can be found
in the papers by Li et al. [16], Bozzoli et al. [12] and Barandiaran et al. [21]. Deterministic approaches
normally employ fixed thresholds for decision making. Spatial information is important as it correlates
each pixel with its neighbours. Spatial techniques assume that any pixel will have higher probability to
be a foreground if the majority of its neighbours are foreground. The algorithm by Hsu et al. [22] is an
example of a deterministic spatial information approach, while Kumar and Hebert [23] and Paragios and
Ramesh [24] implement a probabilistic approach of background modelling using Markov random fields.
Spatio-temporal methods combine both spatial and temporal information, and most such algorithms are
more robust to complex situations. Deterministic spatio-temporal approaches such as the algorithm of
Zhao et al. [25] achieve good foreground detection even during the night, and that of Pless [26] is suitable
for robust outdoor surveillance applications. Examples of probabilistic spatio-temporal approaches
that provide effective foreground detection are the work of Kamijo et al. [27] and Wang et al. [28].
Both algorithms use Markov random fields to model spatio-temporal information. In 2007, Wang [3]
introduced CRF in background modelling to classify each pixel into foreground, background or cast
shadow. This approach provides sharper foreground detection, especially for a scene that contains a lot
of cast shadow noise.

Few works [29,30] have implemented colour constancy approaches to adapt their algorithms to
illumination changes. Most of the existing colour constancy algorithms are built for image processing
applications and will not perform well for video analytics applications. This is due to the complexity
of video scenes, which poses a tough challenge to estimate the reflectance dynamics in consecutive
frames. As the scenes evolve, the estimated reflectance will also vary. Thus fixed reflectance values in
image processing are no longer accurate. The most popular colour constancy method is the grey world
algorithm, which was introduced by Buchsbaum [6] in 1980. Since then, the algorithm has evolved
rapidly into several forms. However, the main idea remains the same, namely to estimate the illuminant
by using average intensity values. The major weakness of the original grey world algorithm is that it
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cannot distinguish moving objects for grey constant calculation. In [31], Finlayson et al. applied the grey
world algorithm to comprehensive image normalization, whereby two images with different illuminants
are transformed into their canonical form. Their algorithm iterates until it reaches a stable state. In 2003,
Ebner [32] combined the white patch retinex and grey world approaches for producing the canonical
image. Reflectances are obtained by applying both approaches in parallel. Local space average colour
and maximum deviation are used to find the required adjustment. Renno et al. [7] have implemented
the grey world assumption for video processing to both indoor and outdoor situations. Their algorithm
performs well if the moving object in the scene is considerably small compared to the frame size. If the
moving object is relatively large, it occupies most of the frame, which leads to bad grey constant values
because moving pixels are used to determine the values.

Figure 1. Block diagram of the overall system.

3. Overview of the System

The goals of our algorithm are to improve background accuracy and modelling robustness to
(1) sudden and slow illumination changes; (2) colour similarity between foreground and background
objects; (3) shadows and afterimages; and (4) moving background objects. First, all input frames
are transformed into canonical frames to solve the sudden illumination change problem. We then
apply the grey world assumption and modify the algorithm by Renno et al. [7] to handle for more
complex situations. The algorithm is improved by introducing a 2-stage mask and a probabilistic
approach to determine grey parameter values used to exclude moving objects from inclusion in grey
parameter calculations. Then, probabilistic gradient-based background modelling is fused with the
colour co-occurrence algorithm by Li et al. [1]. Gradient information is used to address the problem



Sensors 2012, 12 5628

of colour similarity between foreground and background objects. A combination of temporal difference
frame edge and current input frame edge is found to be effective in distinguishing colour similarity. A
colour co-occurrence approach also handles the problem of gradual illumination change and movement
of background objects. Finally, shadow and afterimage removal is performed to obtain sharper
foreground objects. The method by Wang [3] is improved by introducing a new shadow model, which is
applied to a extended CRF model for decision making. This removal algorithm is applied only to pixels
with label equal to 1 prior to the test. An overview of the whole system is shown in Figure 1.

4. Masked Grey World Colour Constancy

This method was first introduced in [4,33] by Zulkifley and Moran. The aim of this section is to
transform each frame into a canonical frame using the masked grey world algorithm. The motivation
for applying colour constancy approach is to overcome sudden illumination change issue. Learning
rate for background modelling can be set to lower value, which is good for handling slow change in
the scene as any sudden change will be handle by colour constancy approach. The grey world algorithm
assumes that the spatial average of surface reflectance in a scene is achromatic. Therefore, it is constant if
there is no illumination change. This is true for outdoor environments where strong global illumination
from sunlight will make other sources of light insignificant. However, the single average assumption
is inaccurate for indoor environments, which usually have multiple sources of illumination. Previous
grey world algorithms such as [6,31,32] are built for image processing applications, which assume no
object movement between images. Some adjustments and alterations are required for video processing
implementations because of the increased complexity of video content. In consequence, a 2-stage
masking was introduced to improve the transformation accuracy of the algorithm by Renno et al. [7].
Figure 2 shows the simplified block diagram of the masked grey world algorithm.

Figure 2. Block diagram of the masked grey world colour constancy algorithm.

The mask Mp is introduced to filter out moving objects from the grey world parameter calculation
since the foreground object has no significant role in parameter calculation. This is done so that only
stagnant pixels from both the reference frame Fc and the current input frame will be used in calculating
the grey world parameters. Since grey world algorithm take the average values of the pixels in the
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frame, moving object is an inaccurate representation of the grey constant value. By removing the
moving foreground, better estimation of grey constant can be obtained, which leads to better colour
adjustment. In addition, the mask also plays a role in detecting overcrowded scenes. For this, we
use the whole frame to achieve better average values when the normal grey world algorithm fails to
adjust appropriately to a scene overcrowded with foreground objects. We propose using a mask to
filter out moving object pixels as well as to detect global illumination changes. The reason foreground
pixels are not included in the grey constant calculation is that the canonical frame does not contain their
information. The first frame is designated as the canonical frame Fc and becomes the reference frame
for the grey world parameter calculation. The first stage of calculating the mask involves classification
of each pixel as belonging to a moving object or not. A Gaussian distribution is used to model the
probability distribution of the temporal difference between the input frame, F t,x,y(R,G,B) and the
preceding frame, F t−1,x,y(R,G,B). Variances (σ2

R, σ
2
G, σ

2
B) are assumed to be identical for all colour

channels of RGB space. This assumption is applied throughout this chapter. Let x and y be the spatial
coordinates of a pixel at a time instant t.

P1(F
t,x,y, F t−1,x,y) ∼ NP (F t,x,y

j ;F t−1,x,y
j , σ2

1), j ∈ {R,G,B} (1)

Then, the label of each pixel is obtained by comparing the temporal differences with a threshold value,
T1, to classify it into a moving object or background pixel. The assigned label, Lt,x,y

1 of each pixel is set
high if it belongs to a foreground object and low otherwise.

Lt,x,y
1 =

{
0 if P1(F

t,x,y, F t−1,x,y) ≥ T1

1 if P1(F
t,x,y, F t−1,x,y) < T1

(2)

In order to filter out noise, the spatial correlation (St,x,y) of each pixel and its neighbouring labels are
used to determine the mask. A k × l kernel size is applied as the pixel neighbourhoods (Kr1) as shown
in Figure 3.

St,x,y = T1L
t,x,y
1 +

∑
∀(x,y)∈Kr1

(1− T1)L
t,x,y
1 (3)

This is then compared with a threshold value T2 for assignment of the final label of the first-stage
mask. Each pixel label remains high if a majority of the neighbouring labels are high and low otherwise.
This is based on the assumption that a moving pixel should belong to a connected foreground region.

Mpt,x,y
1 =

{
1 if St,x,y > T2

0 if St,x,y ≤ T2

(4)

Once the initial mask is obtained, hypothesis testing based on the Neyman–Pearson method is
performed to detect global illumination changes. If a change is detected, the mask (Mp2) will be the
whole frame, which means every pixel will be considered in the grey world parameters calculation. This
step is important in solving the problem of very crowded scenes with many moving objects. Usually,
the first-stage mask will consist of only a small number of pixels, and this may lead to a wrong grey
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parameter value. For each pixel, the null hypothesis (H0) is modelled by the same Gaussian distribution
as in Equation (1), while an alternative hypothesis (H1) is modelled as in Equation (6).

P2(H
t,x,y
0 ) ∼ NP (F t,x,y

j ;F t−1,x,y
j , σ2

2), j ∈ {R,G,B} (5)

P2(H
t,x,y
1 ) = 1− P2(H

t,x,y
0 ) (6)

Detected changes in global illumination will be represented by the alternative hypothesis while
the null hypothesis will represent no global illumination change. Both probabilities P2(H

t,x,y
0 ) and

P2(H
t,x,y
1 ) are multiplied throughout the whole frame for finding the frame’s P2(H

t
0) and P2(H

t
1).

P2(H
t
0) =

∏
∀(x,y)∈F

P2(H
t,x,y
0 ) (7)

P2(H
t
1) =

∏
∀(x,y)∈F

P2(H
t,x,y
1 ) (8)

Figure 3. Example of 5 × 5 neighbourhood kernel of Kr1, Kr2, Kr3 and Kr4.

Then, hypothesis testing based on Neyman–Pearson is performed to get the final mask. The null
hypothesis will be rejected if Equation (9) is true.

P2(H
t
1) > η1P2(H

t
0) (9)

Using the resulting mask, the grey world parameters Gc(R,G,B) are calculated for both the current
input frame and the canonical frame. For every colour channel, the grey parameter is the intensity
averaged over the masked pixels. Each channel is treated separately, so each channel has its own grey
parameter values and let Tn denote the total number of masked pixels.

Gc(R,G,B) =

∑
∀(x,y) F

t,x,y(R,G,B)

Tn
, (x, y) ∈ Mpt,x,y

2 = 1 (10)

The colour adjustment ratio, Ar(R,G,B) between the grey world parameters of the canonical frame
and the input frame is the ratio by which each colour channel will be scaled. In order to guarantee that
the difference between the grey parameters of the current input frame and the canonical frame is not due
to noise, the difference between those frames is modelled as a Gaussian distribution as in Equation (11).
If the likelihood of the difference P3 is less than the threshold value (T3), the colour adjustment ratio is
reset to 1; if it is not, the original ratio will be retained.

P x,y
3 ∼ NP (GctF t,x,y

j ;GctF x,y
j,c , σ

2
3), j ∈ {R,G,B} (11)

Art,x,y(R,G,B) =

{
Gct if P x,y

3 > T3

1 if P x,y
3 ≤ T3

(12)
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Final output of the masked grey world algorithm F t,x,y
o1 (R,G,B) is obtained by taking the dot product

of the original input frame and colour adjustment ratio. Then the adjusted image is passed to both colour
co-occurrence and probabilistic edge-based background modelling.

F t,x,y
o1 (R,G,B) = F t,x,y(R,G,B).Art,x,y(R,G,B) (13)

Maintenance of Canonical Frame

It is important for the canonical frame to be updated continuously because of the “noise” between
frames. An example of the “noise” is when the canonical frame was first captured with some parts
blurred. The frame will be updated with a better value when later frames contain less blurred image. A
fixed canonical frame gives wrong grey constant values when a background object leaves the scene, for
example when an object is removed from the scene. The canonical frame is maintained using an infinite
impulse response filter where T4 is a small positive value. Only masked pixels will be updated. T4 should
be given a larger value to increase the pace of learning if the scene contains many moving background
objects.

F x,y
c (R,G,B) = (1− T4)F

x,y
c (R,G,B) + T4F

t,x,y
o1 (R,G,B) (14)

Figure 4. Block diagram of colour co-occurrence background modelling.

5. Review of Colour Co-Occurrence Background Modelling

As shown in Figure 1, the transformed frame is fed to both colour co-occurrence modelling [1] and
our edge-based foreground detection [34]. Both methods run concurrently so that they can compensate
for each other’s weaknesses. The reason for choosing the colour co-occurrence algorithm as the basis
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for foreground detection is its ability to distinguish between moving background and moving foreground
pixels. A detailed explanation of the original algorithm can be found in [1] and [16]. The algorithm
utilizes inter-frame colour co-occurrence as the input to a Bayesian decision rule so that each moving
pixel can be classified either as moving background bc or moving foreground fc. Block diagram of the
subsystem is shown in Figure 4.

Simple background subtraction is used to find both moving foreground and moving background
pixels. Colour co-occurrence statistics are applied to filter out the moving background. Let F t,x,y

o2 be
the output of colour co-occurrence algorithm. Initial background frame (F t,x,y

bd ) is obtained by using
frame subtraction with respect to F t,x,y

r . A global threshold is applied to classify the pixel either as a
moving object or static object. Using a similar method, a temporal difference frame (F t,x,y

td ) is obtained
by frame subtraction between F t,x,y

o1 (R,G,B) and F t−1,x,y
o1 (R,G,B). For each pixel where F t,x,y

td is
bigger than zero, a colour co-occurrence (ct, ct−1) pair is extracted, which is then compared with the
values stored in the table of colour co-occurrence statistics, St,x,y

cc .

St,x,y
cc :=


pt,x,ycc = p(ct, ct−1|x, y)
pt,x,yccb = p(ct, ct−1|bc, x, y)
cj,x,y = (Rj,x,y, Gj,x,y, Bj,x,y), where j = 0 or 1

(15)

A Bayesian decision approach is used to classify which probabilities of background change (Pbc) and
foreground change (Pfc) are modelled as follows

P (bc|ct, ct−1, x, y) =
P (ct, ct−1|bc, x, y)P (bc|x, y)

P (ct, ct−1|x, y)
(16)

P (fc|ct, ct−1, x, y) =
P (ct, ct−1|fc, x, y)P (fc|x, y)

P (ct, ct−1|x, y)
(17)

Moving background is recognized if the probability of background change is bigger than the
probability of foreground change:

P (bc|ct, ct−1,x,y) > P (fc|ct, ct−1,x,y) (18)

The universal set of colour co-occurrence changes between the frames can only be caused either by
moving foreground or moving background.

P (ct, ct−1|x, y) = P (ct, ct−1|bc, x, y)p(bc|x, y) + P (ct, ct−1|fc, x, y)P (fc|x, y) (19)

The decision rule will be further simplified by substituting Equations (16)–(18) into Equation (19):

2P (ct, ct−1|bc, x, y)P (bc|x, y) > P (ct, ct−1|x, y) (20)

Both P (ct, ct−1|x, y) and P (ct, ct−1|bc, x, y) are obtained from the table of colour co-occurrence
statistics while P (bc|x, y) is extracted from F t,x,y

o1 (R,G,B). If F t,x,y
td is bigger than zero, the colour

co-occurrence (ct, ct−1) of that pixel is extracted, which will be compared with the stored statistical
values. If a match is found, the corresponding probabilities are retrieved and inserted into Equation (20)
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for detecting moving background. If no match is found, both probabilities are assumed to be zero. The
labelling for temporal inter frame change (F c,t,x,y

td ) is classified as in Equation (21).

F c,t,x,y
td =


0 if F t,x,y

td = 0

1 if moving background

2 if moving foreground

(21)

The final label for both backgrounds and temporal differencing are as follows

F fc,t,x,y
bd =

{
0 if F t,x,y

bd = 0 or F c,t,x,y
td = 1

1 otherwise
(22)

F fc,t,x,y
td =

{
0 if F c,t,x,y

td ≤ 1

1 if F c,t,x,y
td = 2

(23)

The output frame for colour co-occurrence algorithm is obtained by using a pixel-wise OR operator
between F fc,t,x

bd and F fc,t,x,y
td . Finally, OPEN and CLOSE operators are performed to clean up the output.

F t,x
o2 = F fc,t,x,y

bd ∨ F fc,t,x,y
td (24)

6. Probabilistic Edge-Based Background Modelling

Our probabilistic edge-based background modelling is constructed primarily to deal with the colour
similarity issue between background and foreground objects. The method proposed by Li et al. [1] alone
is not sufficient to produce good detection in the case of colour similarity because many foreground
pixels are miscategorized as background pixels. We approach this problem by exploring higher-level
information, especially edges. Edge information is known to be more robust to illumination change [35],
leading us to explore the effect of manipulating moving edges. The basis of our edge-based background
modelling is the fusion between the temporal frame’s edge (F t,x,y

tde ) and the current frame’s edge (F t,x,y
ie ).

Figure 5 shows the framework of the proposed subsystem.

Figure 5. Block diagram of probabilistic edge-based background modelling.

All edge detections are performed based on the Sobel edge operator [36]. The temporal difference
frame (Ftd) that relates the current frame to previous frame is modelled by Gaussian distribution. The
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acquired probability P4(F
t,x,y, F t−1,x,y) is then checked against a threshold value T5. The pixel is set to

high if the corresponding probability is bigger than T5 and vice versa.

P4(F
t,x,y, F t−1,x,y) ∼ NP (F t,x,y

j ;F t−1,x,y
j , σ2

4), j ∈ {R,G,B} (25)

F t,x,y
tde =

{
1 if P4(F

t,x,y, F t−1,x,y) > T5

0 if P4(F
t,x,y, F t−1,x,y) ≤ T5

(26)

After that, the temporal frame edge and current input frame edge are extracted. Both edge frames are
then fed into an AND operator to remove noise and afterimage. Let Lt,x,y

2 be the binary map which will
be set high if both F t,x,y

tde and F t,x,y
ie are high.

Lt,x,y
2 =

{
1 if F t,x,y

tde = F t,x,y
ie = 1

0 otherwise
(27)

Since the output obtained from Lt,x,y
2 will only add fine lines to the foreground detection, dilation

is applied to increase the detection accuracy. The additional noise from the dilation process will be
filtered out by Equation (31). Thus, the additional noise is kept at the minimum. This step proved
to be critical in increasing detection accuracy for situations where foreground and background colour
are similar. Dilation is performed using the decision rule given by Equation (28) where the size of the
neighbourhood kernel Kr2 is k × l pixel.

Lt,x,y
3 =

{
1 if any Lt,x,y

2 = 1, ∀(x, y) ∈ Kr2

0 otherwise
(28)

From the temporal difference frame in Equation (27), spatial correlation is added to smooth out the
noise. Later, it will be convolved with u× u kernel (Kr3) before being compared with a threshold value,
T6. Let (ai, aj) be the kernel anchor. The sum of all kernel elements should be equal to one.∑

∀(x,y)∈Kr3

kx,y = 1 (29)

Lt,x,y
4 =

u−1∑
i=0

u−1∑
j=0

Lt,x,y
3 (x+ i− ai, y + j − aj)Kr3 (30)

Lt,x,y
5 =

{
1 if Lt,x,y

4 > T6

0 if Lt,x,y
4 ≤ T6

(31)

Dilation and erosion operations are performed to remove excess noise. The final output (Fo3) of the
probabilistic edge algorithm is obtained by combining cleaned Lt,x,y

3 and Lt,x,y
5 with an AND operator.

F t,x,y
o3 =

{
1 if Lt,x,y

3 = Lt,x,y
5 = 1

0 otherwise
(32)

Combining Both Outputs of Background Modelling

Since both methods of Sections 2.5 and 2.6 run concurrently, their outputs are independent of each
other. In order to make full use of both detections, an OR operator is used so that the detection
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algorithms can compensate for each other’s errors. For each pixel, the output, F t,x,y
o4 is set to high if

any of the method’s label is high as shown in Equation (33).

F t,x,y
o4 =

{
0 if F t,x,y

o2 = F t,x,y
o3 = 0

1 otherwise
(33)

Figure 6. Block diagram of extended CRF shadow & afterimage removal algorithm.

7. Extended Conditional Random Field Shadow & Afterimage Removal

This section describes the suppression of “noise” added during earlier processes by removing the
shadow and afterimage. Only pixels recognized as foreground pixel based on F t,x,y

o4 undergo the removal
test. Usually for fast moving objects, the detected foreground is not crisp because of the afterimage noise.
In addition, dynamic shadows are also detected as foreground, which creates a double counting problem
in people counting systems. The fundamental idea in our approach is the use of conditional random
fields as described by Wang [3], which has been improved in [34]. The improved method introduces a
fusion of Neyman–Pearson hypothesis testing with extended CRF and a new shadow model. Figure 6
shows a block diagram of the extended CRF shadow and afterimage removal algorithm.

The observation and label for the random field are denoted by gt,x,y and lt,x,y, respectively. Each label
is modelled by ek, a k-dimensional unit vector with its kth component equal to one. Those vectors are
used to segment the label into a real foreground pixel or cast shadow/afterimage pixel. A field can be
classified as CRF if it fulfills these two requirements:

1. If the random field, L is conditioned on the observed data, G.
2. If the random field obeys Markov property:

P (Lx1,y1 |G,Lx2,y2 , (x2, y2) ̸= (x1, y1)) = P (Lx1,y1|G,Lx2,y2), (x2, y2) ∈ Kri,j4

where Kri,j4 is neighboring sites of pixel at (i, j).
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Based on the Hammersley–Clifford theorem, a Markov based random field can be shown to be
equivalent to a Gibbs random field [3]. In our case, Fo4 is taken as the observation field (Gt), while
the random field for the label is denoted as Lt. Only single potentials V x1,y1 and pairwise potentials
V x1,y1,x2,y2 will be considered for our algorithm.

P (Lt|Gt) ∝

−
∑

(x1,y1)∈F

V x1,y1(lt,x1,y1 |Gt) +
∑

(x2,y2)∈Kr4

V x1,y1,x2,y2(lt,x1,y1 , lt,x2,y2 |Gt) (34)

Both the 1-pixel potential and pairwise pixel potential can be broken into two components, either
dependent or independent of the observations.

V x1,y1(lt,x1,y1 |Gt) = V x1,y1
l (lt,x1,y1) + V x1,y1

l|g (lt,x1,y1 |Gt) (35)

V x1,y1,x2,y2(lt,x1,y1 , lt,x2,y2 |gt) = V x1,y1,x2,y2
l (lt−1,x1,y1 , lt−1,x2,y2)

+ V x1,y1,x2,y2
l (lt,x1,y1 , lt,x2,y2

+ V x1,y1,x2,y2
l|g (lt,x1,y1 , lt,x2,y2 |Gt)

(36)

The independent component of a single pixel potential is modelled as V x1,y1
l (lt,x1,y1) =

−T7lt,x1,y1 .lt−1,x1,y1 , while the dependent component of single pixel potential can be further reduced
to − lnP (gt,x1,y1 |lt,x1,y1). Since we are using Neyman–Pearson hypothesis testing, it will be represented
by the likelihood of H0 and H1. The probability of detecting a region that is not a shadow, P5(H0),
is modelled as a Gaussian distribution, which compares the difference between the observation frame
F t,x,y(R,G,B) and the reference frame F t,x,y

r (R,G,B).

P5(H0) ∼ NP (F t,x,y
j ;F t,x,y

r,j , σ2
5), j ∈ {R,G,B} (37)

On the other hand, the probability of the alternative hypothesis (P (H1)) is obtained by modelling the
difference between the observation frame and modified reference frame with Gaussian distribution. Each
channel will have its own difference value—in this case, (d1, d2, d3) ∈ D for RGB. By using these three
difference values, three modified reference frames are established.

(dt,x,y1 , dt,x,y2 , dt,x,y3 ) = ((F t,x,y
R − F t,x,y

r,R ), (F t,x,y
G − F t,x,y

r,G ), (F t,x,y
B − F t,x,y

r,B )) (38)

All three cases are investigated separately, and the minimum output probability is chosen as the null
hypothesis probability.

P6(H1) ∼ min
dth∈D

NP (F t,x,y
j ; di, σ

2
6), j ∈ {R,G,B}, d ∈ D (39)

The 1-pixel potential only contains temporal information, neglecting the spatial variation. This
weakness is overcome by using pairwise pixel potentials where both past and current neighbouring data
are taken into consideration for decision making. Let Kr5 be the kernel of the neighbourhood with size
of k × l. Thus independent component can be modelled as shown in Equations (40) and (41). The
first equation represents the spatial relationship between each pixel with its current neighbours while the
second equation represents the relationship between each pixel with its past neighbourhood label. All
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these equations are derived from the assumption that each pixel label will have a higher likelihood to
retain its previous label.

V x1,y1,x2,y2
l (lt−1,x1,y1 , lt−1,x2,y2) = T8lt,x1,y1 .lt,x2,y2 (40)

V x1,y1,x2,y2
l (lt,x1,y1 , lt,x2,y2) = T9lt−1,x1,y1 .lt−1,x2,y2 (41)

The dependent component of the clique potential is the distinguishing factor between a Markov
random field (MRF) and a conditional random field. Neighbourhood observation and label relationship
will be assumed as zero for MRF approach. Here, we adopt the reduced version of the potential by
Wang [3].

V x1,y1,x2,y2
l|g (lt,x1,y1 , lt,x2,y2 |Gt) = T10||gt,x1,y1 − gt,x2,y2 ||lt,x1,y1 .lt,x2,y2 (42)

All probability components are put together to get the final label, Lt,x,y
6 = P (Lt,x,y|Gt,x,y). A high

label is retained from previous subsection if a non-shadow is detected. The pixel will be assigned a low
label value if the shadow potential is higher than the non-shadow.

Lt,x,y
6 =

{
1 if P (shadow) ≤ P (non-shadow)

0 if P (shadow) > P (non-shadow)
(43)

Maintenance of Reference Image

The reference frame needs to be updated so that it can adapt to changes in surroundings and
illumination. Maintenance of the frame is divided into two cases: an illumination change is detected
or it is not. When a global illumination change occurs, the current reference frame will no longer be
accurate. A new reference frame is initialized by taking the next frame after the illumination change
has stabilized.

F t+1,x,y
r (R,G,B) = F t,x,y(R,G,B) (44)

Under constant illumination, the reference frame is updated based on an infinite impulse response filter
as in Equation (45) where T11 is a small positive number.

F t+1,x,y
r (R,G,B) = (1− T11)F

t,x,y
r (R,G,B) + T11F

t,x,y(R,G,B) (45)

8. Simulation Results and Discussions

Our algorithm has been tested on various video scenes to prove that accuracy and robustness
have been improved over prior algorithms. Its performance has been compared with several existing
approaches, including methods by Stauffer and Grimson [2], Li et al. [1], Renno et al. [7], Wang [3]
and Varcheie et al. [9]. The parameters used has been tuned to perform as good as possible for that
particular video where OpenCV library [37] is used as the basis for coding the methods by Li et al. and
MoG. Our algorithm was written in C++ using OpenCV library and run on a 2.66 GHz Intel core 2 Duo
machine. The processor manages to execute the entire algorithm with the minimum speed of two frames
per second for a 960 × 540 frame size. With the help of multicore machines, the algorithm is expected
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to achieve a speed-up to real-time. The parameters for both MoG and method by Li et al. are given in
Tables 1 and 2 respectively.

Table 1. Parameters used for the mixture of Gaussian method.

Parameter Value

Background test threshold 0.7

Standard deviation threshold for Gaussian distribution 2.5

Window size 200

Number of Gaussian distribution 5

Initial weight of each Gaussian 0.05

Initial variance of each Gaussian 30

Minimum number of pixels (for clustering) 15

Table 2. Parameters used for colour co-occurrence background modelling.

Parameter Value

Update parameter for background reference 0.7

Learning constant 0.005

Number of colour vectors (normal background model) 15

Number of colour vectors (after update) 25

Number of colour co-occurrence vectors (normal background model) 25

Number of colour co-occurrence vectors (after update) 40

Minimum number of pixels (for clustering) 15

The value of η for the Neyman–Pearson hypothesis test is initialized with 0.001 while all variances
for Gaussian distribution are initialized as 5. Kernel neighbourhood size can be any odd number, and we
obtained acceptable results by implementing 3×3 and 5×5 kernel sizes. Three evaluation metrics is used
to assess the performance of foreground detections, which are total error rate (TER), true positive rate
(TPR) and false positive rate (FPR). TER is calculated by taking the ratio between the total number of
error pixels and the total number of pixels (TNP). The ground truth image has been processed manually,
which is the reference for identifying the error pixels. The total number of errors is a combination of the
false positive (fp) and false negative (fn) pixels. False positive is an error where the pixel is detected as
foreground, but it is actually not. False negative occurs due to misdetection where the foreground pixel
is recognized as a background. Total error rate is calculated as follows:

TER =
fp + fn

TNP
× 100% (46)

TPR and FPR are used to indicate the algorithm performance in terms of correct and wrong detection of
foreground pixels respectively. Both metrics gives an output in the range of [0, 1]. A TPR of 1 signifies
the best true detection where no wrong background pixels are detected. On the other hand, a FPR of 0
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indicates that no wrong foreground pixels are detected. Therefore, a good foreground detector should
have high TPR and low FPR values. Both metrics are calculated as follows where tp and tn are true
positive and true negative respectively.

TPR =
tp

tp + fn
(47)

FPR =
fp

fp + tn
(48)

Figure 7. Simulation results: (a) Input (b) Ground truth (c) MoG (d) Method: Li et al.;
(e) Method: Renno et al.; (f) Method: Yang Wang (g) Method: Zulkifley et al.

The analysis is separated into six categories, where we refer our algorithm as Zulkifley et al. The
first and second videos are used to test the overall performance of the algorithms while the third, fourth
and fifth videos are used to verify specific performance improvement of the subsystems. The role of
the third video is to point out the advantage of using the masks in grey world algorithm compared to
Renno et al. [7] algorithm. The purpose of the fourth video is to demonstrate the advantage of fusing
probabilistic edge algorithm compared to using the Li et al. [1] algorithm alone. The fifth video will test
the performance difference between our shadow model and the Wang [3] shadow model. The last test
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compares our algorithm performance with respect to the state-of-the-art method, which is based on the
algorithm by Varcheie et al. [9]. Videos 1, 4 and 5 will demonstrate performance improvement of using
our method compared to the method by Varcheie et al.

The first video contains a scene where global illumination has changed from a bluish to a more reddish
illumination because of a lighting change. Some frames of the scene are shown in Figure 7, which is
taken directly after sudden illumination change occurred. The learning rate for both MoG and colour
co-occurrence methods is set to normal, which has been tuned for good performance in sudden and
gradual illumination change. The video also contains some afterimage noise because of fast movement
of the hand. The performance comparison between the algorithms is shown in Figure 8. Only the
methods by Zulkifley et al. and Renno et al. [7] managed to maintain an acceptable error rate after a
sudden illumination change, which occurs at frame number 35. After 15 frames have lapsed, the MoG
method manages to retrieve an acceptable error rate while the Wang [3] and Li et al. [1] algorithms still
fail to obtain an acceptable error rate. We selected an acceptable error rate below 10% as most of the
papers [1,3,7] reported their error rate as less than 10%. Table 3 shows the total error rate which clearly
indicates that our algorithm performed better than all the others. Note that every algorithm includes
small component removal.

Figure 8. Rate of response of the algorithms under sudden illumination change.

The result supports our earlier argument that it is hard to choose a single background learning rate
to accommodate both sudden and gradual illumination changes. Our method lets colour constancy react
to sudden illumination changes while the background learning rate is set to handle gradual change. Our
2-stage masked grey world managed to stabilize the input image, especially during the abrupt change in
the illumination. This allows our background modelling to be more accurate as not much difference is
detected due to good normalized input image. We also found that the methods by Li et al. and Wang had
a higher TPR compared to us, which indicate better true positive detection. However, their FPR values
are also high while ours is only 0.035. A high FPR value signifies that many background pixels are
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detected as foreground. This explains the reason why our TER is the lowest, which is supported by good
TPR and FPR values. Therefore, our algorithm performs the best compared to the others, especially
during the illumination change scene.

Table 3. Performance comparison between the methods for the first video.

Method TER TPR FPR

Mixture of Gaussian 54.14% 0.805 0.635

Li et al. algorithm 78.43% 0.998 0.999

Renno et al. algorithm 8.71% 0.950 0.097

Wang algorithm 78.47% 0.998 0.999

Zulkifley et al. algorithm 3.87% 0.950 0.035

Figure 9. Simulation results: (a) Input (b) Ground truth (c) MoG (d) Method: Li et al.;
(e) Method: Renno et al.; (f) Method: Yang Wang; (g) Method: Zulkifley et al.

Samples of the second video scene are shown in Figure 9. It contains a complex situation in which the
moving object appears similar to the background colour. The moving person took off her jacket and left



Sensors 2012, 12 5642

it on the rostrum. She then walked in front of a white board in a white t-shirt. This poses a challenge for
any algorithm that is dependent on colour information alone where the information will be quite similar.
There is also an afterimage and shadow effect, which contributes to additional noise. Table 4 shows that
the method by Zulkifley et al. has the lowest TER, which is just 1.49%, while MoG performs the worst
at 6.79% error rate. The result also shows that we have the highest TPR value at 0.844. This proves
that we managed to increase foreground detection in challenging situations, especially for the colour
similarity issue. Our FPR is 0.011, not the lowest but still a good value. This small increment in false
detection rate is a worthy trade-off for higher true detection. Note that MoG has the highest error rate
since it only utilized colour information for detection where the shirt data has been recognized as the
background data.

Table 4. Performance comparison between methods for the second video.

Method TER TPR FPR

Mixture of Gaussian 6.79% 0.726 0.062

Li et al. algorithm 1.71% 0.548 0.005

Renno et al. algorithm 1.67% 0.588 0.006

Wang algorithm 1.58% 0.678 0.008

Zulkifley et al. algorithm 1.49% 0.844 0.011

For the third video, the foreground object is a marble with variable speeds, as shown in Figures 10
and 11. Initially, the marble moves slowly and then after a sudden illumination change occurred, the
marble rolls faster, creating some afterimage noise. Accuracy comparison is calculated between the
methods by Zulkifley et al. and Renno et al. The result shows that our algorithm manages to react better
to sudden illumination change as shown in Table 5 by introducing a mask in the grey world algorithm.
Our method manages to reduce the error rate of foreground detection from 5.055% to 0.047%. In this
video, misdetection is a critical issue since the object is very small. Our TPR is worse than the method
by Renno et al. but our FPR value is better. This signifies that we managed to reduce false detection
even for such a small object due to our good shadow and afterimage removal. Another reason why
our algorithm produced better detection is due to foreground information subtraction while calculating
grey constants. Therefore, more accurate normalization constants are obtained to lessen the effect of
illumination change.

Figure 10. Simulation results for the grey world algorithm. (a) Input (b) Ground truth
(c) Method: Renno et al. (d) Zulkifley et al.
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Figure 11. Simulation results for the grey world algorithm. (a) Input (b) Ground truth (c)
Method: Renno et al. (d) Zulkifley et al.

Table 5. Performance comparison between Renno et al. method and Zulkifley et al.
algorithm.

Method TER TPR FPR

Renno et al. 5.055% 0.891 0.053

Zulkifley et al. 0.047% 0.699 0

The fourth video is chosen to show the advantage of fusing edge and intensity information for
background modelling. The foreground object in the test video is a moving human with dark grey
trousers. He walked in front of a black colour background as shown in Figures 12 and 13. The
performance of our algorithm is compared with the method by Li et al., which depends on colour values
alone for background modelling. As shown in Table 6, the average error rate is reduced from 1.039% to
0.880%. Although the error reduction appears small quantitatively, in terms of qualitative analysis our
algorithm managed to get more accurate outer appearance of the moving object. This is very important,
especially for people counting systems in a complex scene where the bounding box size is used to
determine the number of people. Our algorithm manages to increase the true detection as shown by a
higher TPR value compared to the method by Li et al. Although our FPR has a higher value of 0.004
compared to 0.003 from the method by Li et al., this small increment can be neglected as better detection
of true positive is obtained.

Figure 12. Simulation results for the colour similarity case. (a) Input (b) Ground truth
(c) Method: Li et al; (d) Method: Zulkifley et al.
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Figure 13. Simulation results for the colour similarity case. (a) Input (b) Ground truth
(c) Method: Li et al.; (d) Method: Zulkifley et al.

Table 6. Performance comparison between Li et al. method and Zulkifley et al. algorithm.

Method TER TPR FPR

Li et al. 1.039% 0.528 0.003

Zulkifley et al. 0.880% 0.655 0.004

The fifth video scenes shown in Figures 14 and 15 are used to compare the performance of the shadow
model between Wang’s [3] method and our algorithm. The scenes contain a moving hand where shadows
are formed at the bottom of the frame. Figure 15 is quite a challenging scene since the shadow can still
be seen at the bottom of the frame even though the hand is already out of the scene. Table 7 shows the
error analysis of the scenes. There is no significant performance difference as algorithm 2(d) performs
slightly better with 0.5486% error rate compared to 0.5538% for Wang’s algorithm. Our TPR value is
lower by 0.001 while our FPR value is higher by 0.0001. We can conclude that additional information
from the past neighbourhoods did not improve shadow removal capability for this particular video.

Figure 14. Simulation results for the shadow modelling comparison. (a) Input (b) Ground
truth (c) Method: Wang (d) Method: Zulkifley et al.

Figure 15. Simulation results for the shadow modelling comparison. (a) Input (b) Ground
truth (c) Method: Wang (d) Method: Zulkifley et al.
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Table 7. Performance comparison between Wang’s method and Zulkifley et al. algorithm.

Method TER TPR FPR

Wang 0.5538% 0.535 0.0042

Zulkifley et al. 0.5486% 0.534 0.0041

The last results are meant to compare our algorithm performance with the state-of-the-art method.
Method by Varcheie et al. was selected as the benchmark. This method is a derivative of mixture of
Gaussian approach where selective updating is used. The frame is divided into variable size of boxes.
The histogram and variance of each box are generated where the background model is based on the first
frame data. It will be updated with the current information if any boxes are deemed to be the background.
If the certain threshold of histogram and variance difference are met, the boxes are considered as the
foreground region. This particular region is then updated by using the mixture of Gaussian method. This
approach will not increase the detection of foreground pixels since the foundation is still MoG, yet it
will reduce false detection since it filtered out any small region noise that has size of less than 4 × 3

pixels. For all three tested video, our TER values are less than the method by Varcheie et al. as shown
in Table 8. Same conclusion can be made to our TPR values, which are higher for the tested videos. It
shows that in the presence of sudden illumination change, shadow noise and colour similarity between
foreground object and background, our algorithm performed better than the method by Varcheie et al.
For the FPR values, Varcheie et al.’s method produced a better result for video 4 only compared to our
algorithm. This is because our algorithm detected more foreground pixels, especially in challenging
situations. Thus, more false positive is generated but the number is kept at the minimum through our
shadow removal process. Basically, the method by Varcheie et al. will suffer the same problem as MoG
but with reduced false detection. Some output samples of the algorithm by Varcheie et al. can be found
in Figure 16.

Table 8. Performance comparison between the methods by Varcheie et al. and
Zulkifley et al.

Method Video TER TPR FPR

Varcheie et al. Video 1 35.36% 0.792 0.391

Zulkifley et al. Video 1 3.87% 0.950 0.035

Varcheie et al. Video 4 1.318% 0.296 0.002

Zulkifley et al. Video 4 0.880% 0.655 0.004

Varcheie et al. Video 5 3.815% 0.462 0.027

Zulkifley et al. Video 5 0.549% 0.534 0.004
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Figure 16. Samples of simulation results for the method by Varcheie et al. (a) Video 1
(b) Video 4 (c) Video 5.

9. Conclusions

We have presented a novel approach to enhance the robustness and accuracy of foreground detection.
The integrated algorithm has been tested and proven to be robust to (1) colour similarity between
background and foreground objects; (2) shadows and afterimages noise; and (3) sudden and gradual
illumination changes. The main novelties of the algorithm are the introduction of 2-stage mask for
grey world algorithm, probabilistic approach to edge-based background modelling and extended CRF
shadows removal. Our algorithm is suitable to be applied in systems that require robust foreground
detection such as face recognition, people counting, traffic monitoring and robotic vision. This work
can be further improved in the future by using faster processor such as Field Programmable Gate Array
(FPGA) [38]. Moreover, a more integrated modelling can be used to reduce the redundancy in some of
the detections.
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