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Abstract: The microwave drying process has a wide application in industry, including drying
polymer foams after the impregnation process for sealings in the construction industry. The objective
of the drying process is to reach a certain moisture in the foam by adjusting the power levels of the
microwave sources. A moisture controller can be designed to achieve this goal; however, a process
model is required to design model-based controllers. Since complex physics governs the microwave
drying process, system identification tools are employed in this paper to exploit the process input and
output information and find a simplified yet accurate model of the process. The moisture content of
the foam that is the process output is measured using a designed electrical capacitance tomography
(ECT) sensor. The ECT sensor estimates the 2D permittivity distribution of moving foams, which
correlates with the foam moisture. Experiments are conducted to collect the ECT measurements
while giving different inputs to the microwave sources. A state-space model is estimated using one
of the collected datasets and is validated using the other datasets. The comparison between the
model response and the actual measurements shows that the model is accurate enough to design a
controller for the microwave drying process.

Keywords: microwave drying; modeling; system identification; industrial tomography; electrical
capacitance tomography

1. Introduction

The microwave drying process is a promising technology for drying dielectric materi-
als because of volumetric and selective heating, resulting in fast water evaporation [1,2].
Considerable energy and time efficiency are important features of this technology and
are acquired by applying a high-power microwave (MW) to materials with high moisture
content [3,4].

One of the main objectives of the microwave drying process is to reach a desired
moisture content in the drying material after the process [3,5]. A moisture controller can
be designed for the microwave oven to adjust the power level of the microwave sources
accordingly. However, one of the requirements for developing a control system for this
process is a mathematical model that simulates the process behavior with high accuracy.

The physics behind the microwave drying process is very complex as the equations
governing the process depend on both time and position [6]. These types of systems are
called distributed parameter systems (DPS), and they are typically modeled with partial
differential equations (PDEs). Two coupled PDEs are required to model the heat and
moisture transfer in the microwave drying process, making the modeling more challenging.
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Several studies have tried to apply the Luikov heat and moisture transfer model to a
batch microwave drying process [7–9]. In [10,11], a pair of parabolic PDEs describing
the heat and mass transfer were presented for the microwave drying of woods, and
in Hosseini et al. [10], an LQR control method was designed for the simulated microwave
drying process. However, a drawback of the proposed models is the unavailability of the
exact model parameters for different materials. Furthermore, finding a dynamic model for
the microwave drying process becomes more challenging when a conveyor belt system is
studied instead of a batch process.

An alternative technique to avoid the complexity of the physics in modeling the
process and overcome the unknown parameters is to employ system identification tools
to model the process. System identification is a technique for obtaining a mathematical
model of a system by processing the collected input and output data of the system [12–14].
System identification has been investigated in modeling several drying [15–17] and heating
processes [18,19]. In Krishna Murthy and Manohar [15], the authors used experimental data
from a microwave drying process with different power levels to choose the best thin-layer
drying model among 15 candidates. The collected data were employed to estimate the
chosen model parameters. In Li et al. [16], a recurrent self-evolving fuzzy neural network
(RSEFNN) predictive control method was proposed for the microwave drying process. The
advantage of this method was that the control algorithm employed the prediction of the
microwave drying process behavior, and there was no longer a need for a mathematical
model of the process.

Most research studies on the microwave drying process have studied a batch process,
and the material moisture was rarely used as the system output. In Lutfy et al. [20], a
conveyor belt electric dryer for paddy grains was modeled. In this paper, the moisture
of the dried grains was used as the system output, while the speed of the conveyor belt
was the corresponding input signal. However, the moisture measurement device in this
study could only measure the moisture in a stationary state, so the authors could not run a
continuous process. The input–output data were collected in several separate experiments,
with the moisture measurements at the end of each experiment. The authors in Lähivaara
et al. [21] studied microwave tomography to estimate the moisture distribution in the
microwave drying process using the simulated data.

In this research, the microwave drying of polymer foams, a continuous process in
the heat insulation industry, is studied. This process involves a polymer foam passing on
a conveyor belt into a microwave oven equipped with several microwave sources. The
power level of the microwave sources can be adjusted to control the moisture content of
the polymer foams after the drying process. An electrical capacitance tomography (ECT)
sensor was successfully developed in Hosseini et al. [22] to estimate the 2D permittivity
distribution of polymer foams. Since the permittivity correlates strongly with moisture,
the moisture of the foam can be estimated using a calibration map. The benefit of using
the ECT sensor in this process is that it can estimate the moisture distribution of the
material, unlike the common moisture measurement methods, where the point or average
measurements are conducted. Furthermore, the material does not need to stay still during
the measurement with the ECT sensor, and the moisture can be estimated while the material
is moving on the conveyor belt.

The focus of the research presented in this paper is to estimate the polymer foam
permittivity at different power levels of the microwave sources to model the microwave
drying process. Furthermore, the effect of the input foam moisture (before entering the
oven) on the output foam permittivity is also modeled. The first aim of this research is
to find a single-input single-output (SISO) model of the process, and in future studies, a
multi-input multi-output (MIMO) model will be derived.

Electrical capacitance tomography is a contactless, non-intrusive sensor that measures
the electrical capacitances between electrodes mounted around the target material. A recon-
struction algorithm is then used to estimate the permittivity distribution inside the imaging
area. The efficiency of the ECT sensor in estimating the moisture content of materials in
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both stationary and dynamic measurements has been proven in several studies [22–25].
The ECT measurements are fast and can be employed for output signal collection in a
continuous process. The process-specific requirements distinguish the ECT sensor used in
this research from the conventional sensors. Since the foam has a rectangular cross-section
and a large width, the non-neighboring electrodes on the ECT sensor are far apart, and as
a result, the measured electrical capacitances between those electrodes are very low (less
than 5 fF). However, the designed sensor has shown high enough accuracy in estimating
the moisture content of the polymer foams in a microwave drying process [22].

Several experiments are designed in this study with different input signals for the
power levels to collect the input foam moisture and the output foam permittivity. The
collected data are employed to find a state-space model of the microwave drying process
using the system identification tools.

2. Microwave Drying Process

Microwave ovens can have different designs in terms of the number of microwave
sources (magnetrons) installed, and the length and geometry of the oven. They also differ
in terms of employing batch drying or continuous drying with a conveyor belt. This
research studies a conveyor belt microwave oven named HEPHAISTOS, located at the
Karlsruhe Institute of Technology (KIT), Germany. The HEPHAISTOS microwave oven is
shown in Figure 1a. There are three cavity modules, each of 100 cm in length and equipped
with six magnetrons operating at 2.45 GHz with 2 kW power [19]. The magnetrons are
the sources of energy or the actuators in this system. Figure 1b illustrates a schematic of
one of the modules and its hexagonal shape. Additionally, two microwave filters with a
length of 150 cm are installed at the entrance and exit of the microwave system to prevent
possible microwave leakage. The length of the whole microwave system is 729 cm. The
HEPHAISTOS microwave oven is a combination oven with convective heating, meaning
that the circulating hot air allows the transport of the evaporated water.
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Figure 1. The microwave drying oven: (a) The HEPHAISTOS microwave system operating at KIT, 
Germany. (b) A schematic of one of the cavity modules with six microwave sources.

The test material in this study is a polymer foam with a density of 23 ± 2 kg/m3 that 
has application in the heat insulation industry. The microwave drying of polymer foams is 
a part of the impregnation process in which the polymer foams are first dipped into a bath 
of water and chemicals to form new features suited for sealing purposes. The wet foam then 
passes on a moving conveyor belt into the microwave oven, where 18 magnetrons provide 
volumetric heating, resulting in moisture evaporation from the foam. The process aims to 
keep the moisture level of the foam at a certain level and as homogenous as possible when 
it exits from the other side of the oven. The surface foam temperature can be monitored 
during the drying process using three IR cameras installed in the oven cavity modules.

Figure 1. The microwave drying oven: (a) The HEPHAISTOS microwave system operating at KIT,
Germany. (b) A schematic of one of the cavity modules with six microwave sources.

The test material in this study is a polymer foam with a density of 23± 2 kg/m3 that
has application in the heat insulation industry. The microwave drying of polymer foams is
a part of the impregnation process in which the polymer foams are first dipped into a bath
of water and chemicals to form new features suited for sealing purposes. The wet foam then
passes on a moving conveyor belt into the microwave oven, where 18 magnetrons provide
volumetric heating, resulting in moisture evaporation from the foam. The process aims to
keep the moisture level of the foam at a certain level and as homogenous as possible when
it exits from the other side of the oven. The surface foam temperature can be monitored
during the drying process using three IR cameras installed in the oven cavity modules.
However, we cannot use the temperature data to estimate the internal moisture of the foam,
and there is no information on the foam moisture throughout the process.
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3. Materials and Methods
3.1. Electrical Capacitance Tomography

Electrical capacitance tomography (ECT) is a contactless, non-invasive measurement
technology that can estimate dielectric material moisture distribution. In this research, the
ECT sensor was installed at the exit of the oven and used to estimate the permittivity distri-
bution of polymer foams after the drying process. Since the foam permittivity correlates
with the foam moisture, a calibration map between the actual moisture values and the
estimated permittivity can be used to obtain the foam moisture.

In general, the ECT sensor contains several electrodes installed on a structure around
the target material. The measurement procedure starts by exciting one of the electrodes
while the rest are electrically grounded. The capacitances between the exciting electrode
and the other electrodes are measured, and the same procedure is repeated for all electrodes
until one set of measurements is completed. With Nel electrodes, m = Nel(Nel − 1)/2
measurements are collected at each sample time. Each round of measurements takes less
than 1 s.

Figure 2 shows the design of the ECT sensor developed for this research. Because
of the small thickness of the foam (3 cm), no electrodes were installed on the sides of the
sensor. Six electrodes were mounted on the top surface and six electrodes on the bottom
surface of the sensor. Additionally, a thin, electrically grounded electrode was mounted
between every adjacent electrode to increase the sensitivity of the measurements. However,
these guard electrodes were not involved in the measurement procedure.

Figure 2. The ECT sensor design: six measuring electrodes and six grounded guard electrodes on the
top surface and the same number of electrodes on the bottom surface.

The polymer foam 2D cross-section had a rectangular domain with a width of 49.3 cm,
which dictated a wide rectangular shape for the ECT sensor structure, while most developed
ECT sensors are round [25–27]. This unusual structure imposed a considerable distance
between non-neighboring electrodes, resulting in a weak measurement signal. Moreover,
since the foam should easily pass through the sensor, a 1 cm air gap was maintained
between the foam and the top surface electrodes. These practical limitations required a
sensor design that minimized their effect on the measurement signal.

Several simulations and experiments with different numbers of electrodes and dif-
ferent electrode sizes resulted in our final design [22], as shown in Figure 2. The size of
the whole sensor was 87 cm× 25 cm× 4 cm with an adjustable height. The measurement
electrodes were 10 cm× 8.1 cm, and the guard electrodes were 10 cm× 0.3 cm. The ECT
sensor built according to the described design is shown in Figure 3, while it was installed
at the exit of the microwave oven, estimating the foam permittivity after the drying pro-
cess. The sensor was connected through cables to a measurement device manufactured
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by Rocsole Ltd., Kuopio, Finland. The role of the measurement device was to apply AC
voltage to the ECT electrodes and measure the inter-electrode capacitances.

Figure 3. The ECT sensor installed at the exit of the microwave oven. After the drying process, the
foam enters and passes through the ECT sensor while the ECT estimates its moisture distribution.

The measured electrical capacitances were employed in a reconstruction algorithm to
estimate the permittivity distribution of the target material. The reconstruction algorithm
in ECT includes solving both the forward problem and the inverse problem. The forward
problem refers to a well-posed problem that connects the measured capacitances to the
material permittivity. Our research uses the complete electrode model [26,28] to formulate
the forward problem, and the equations corresponding to this model can be found in
Hosseini et al. [22]. The finite element method is employed to solve the forward model
numerically. By stacking the models for each measurement, the observation model for the
ECT can be determined as

C = H(ε) + v, (1)

where C = [C1, . . . , Cm]
T is the vector of the measured inter-electrode capacitances,

ε = [ε1, . . . , εn]
T denotes the discretized permittivity distribution, n is the number of

the discretization points, H(ε) = [h1(ε), . . . , hm(ε)]
T is the map between the permittiv-

ity distribution and capacitances, and the additive measurement noise is represented by
v = [v1, . . . , vm]

T .
The inverse problem is an ill-posed problem that aims to determine the permittivity

distribution with measured capacitances. There are different techniques used to solve the
inverse problem [29–32]. These methods include linear and nonlinear methods as well as
recursive and non-recursive methods. Furthermore, the accuracy and the computational
time of the methods can vary. In this study, the difference imaging method is adopted
to solve the inverse problem and to estimate the 2D permittivity distribution [26]. The
real-time application and the need for a low computational time were the reasons for
choosing the difference imaging method as it is a linear and computationally inexpensive
method.

The first step in the difference imaging technique is to linearize the observation
model (1) by the first-order Taylor polynomial. Two sets of measurements are collected
in this method: the capacitance measurement while the dry material is placed inside the
sensor, Cref, and the capacitance measurement with the wet foam, CM. The approximated
linear model can then be calculated using these two sets of measurements as

∆C = CM − Cref = J∆ε + ∆v, (2)

where ∆ε = ε − εref is the permittivity change between the wet and the dry material,
εref is the dry foam permittivity, J(ε∗) = ∂H(ε∗)/∂ε is the Jacobian matrix, and ε∗ is the
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linearization point which is the best homogeneous (one value) estimate of the dry foam
permittivity.

The inverse problem aims to calculate ∆ε by having the information on ∆C and
solving an optimization problem. The final solution of the difference imaging technique
can be stated as

∆ε = K(CM − Cref), (3)

where K is the reconstruction matrix calculated as [33]

K =
(

JTΓ−1
∆v J + Γ−1

∆ε

)−1
JTΓ−1

∆v , (4)

where Γ∆v is the covariance matrix of the measurement noise term ∆v and Γ∆ε is the
covariance matrix of the smoothness promoting prior. For a more detailed description,
see [22] and references therein.

3.2. Input–Output Data Collection

The microwave drying process operated in the heat insulation industry is a continuous
process, meaning that a very long polymer foam sheet passes first through the impregnation
bath and then enters into the microwave oven. However, we did not have a long foam
available to simulate a continuous process, as used in the industry. Instead, several polymer
foam sheets with a length of 150 cm were available. These foams had a thickness of 3 cm
and a width of 49.3 cm. The experiments aimed to use these sheets right after each other to
form a quasi-continuous foam.

Figure 4 shows a schematic of the foam sequence entering the oven. At any time,
there were five foams between the entrance point and the center of the ECT sensor. The
conveyor belt speed was 40 cm/min, meaning that it took 1129 s for any point of the foam
to travel from the entrance of the microwave oven to the middle of the ECT sensor. This
way, when the foam sheet i reached the middle of the ECT sensor, the foam sheet i + 5
entered the oven.

Microwave oven

i + 5 i + 4 i + 3 i + 2 i + 1 i
ECT

∆t = 1129 s

Filter Filter
Foam mov-
ing direction

Figure 4. The schematic of the continuous drying process of polymer foams. The gray rectangles
indicate the polymer foams with a length of 150 cm and thickness of 3 cm while passing first through
the oven and then the ECT sensor with a speed of 40 cm/min. It took 1129 s for every foam to travel
from the entrance point and reach the ECT sensor.

In this research, the system identification aims to find a dynamic model for the
microwave drying process that connects the system inputs to the system outputs. Input–
output data collection is the first step of system identification. Sections 3.3 and 3.4 specify
the inputs and outputs of the system and their recording procedure. The sample time in
input–output data collection was selected as 1 s, which is an appropriate value considering
the slow belt speed.

3.3. System Inputs

The sources of heating energy in the microwave drying process were 18 installed
magnetrons. The microwave system was operated by software named SIMPAC developed
by the manufacturing company Weiss Technik GmbH, Germany. The power percentage of
the magnetrons, among some other parameters, can be adjusted using SIMPAC. Moreover,
there was an interface developed at KIT that provided the possibility of interacting with
SIMPAC through MATLAB.
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The magnetrons had a maximum power of 2 kW and could be activated by giving
their input a percentage level between 0% and 100%. However, any power lower than 15%
was the same as 0% since magnetrons need a minimum power of about 15% to become
activated. Thus, it was recommended to choose a minimum of a 15% power level as the
inputs to the magnetrons. Since this research aimed to obtain a SISO model, the same
power level (Pl = P, l = 1, . . . , 18) was given to all magnetrons at all times in the following
experiments. The power percentage of the magnetrons, P, was taken as the first system
input (u1 = P).

Choosing an appropriate input signal to model a process is very important [34]. In
this research, three different standard signals were selected to be applied as the power
percentage of the microwave sources [35]. The first signal was a pseudorandom binary
sequence (PRBS) signal, the second signal was an amplitude-modulated pseudorandom
binary sequence (APRBS) signal, and the third was a step signal with increasing and
decreasing levels (staircase). Figure 5 shows all the three input signals used as the power
percentage of all microwave sources in the input–output data collection. The pulse width,
the minimum, and the maximum power level in these signals were chosen based on the
process time delay and the sample time.

0 2000 4000 6000 8000 10,000
0

20

40

60

(a)

0 2000 4000 6000 8000 10,000
0

20

40

60

(b)

0 1000 2000 3000 4000 5000 6000
0

20

40

60

(c)

Figure 5. Input signals for the system identification: (a) PRBS signal. (b) APRBS signal. (c) Step
signal as staircase.

In addition to the power level of microwave sources, the input foam moisture also
affected the system output. Although the ideal scenario was to keep the input foam
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moisture as constant as possible, there was still a variation in the input foam moisture. The
unwanted change in the input foam moisture was taken as the second input to the process
(u2 = Min) to model its effect on the system output. The sheets of wet foams were weighed
on a digital scale before passing through the microwave oven, and their moisture content
on a wet basis was calculated as

Min =
Ww −Wd

Ww
× 100, (5)

where Wd is the weight of the dry foam and Ww is the weight of the wet foam. Since only the
average moisture was available for each foam sheet, the moisture content throughout the
foam length, equivalent to 225 s of travel time on the conveyor belt, was considered constant.

3.4. System Outputs

The system output is the moisture of the polymer foam during the drying process.
The designed ECT sensor could not be installed inside the microwave oven due to safety
issues, and it was located right after the microwave exit, as shown in Figure 3. Therefore,
the moisture information of the material was only available after the drying process.

As explained in Section 3.1, the ECT sensor estimates the permittivity change of the
foam, and the material moisture can be calculated using a calibration map. However,
to avoid unnecessary calibration errors, it was decided to take the material permittivity
change directly as the system output. Furthermore, the ECT estimates the 2D permittivity
distribution of the target polymer foam. For a SISO model, it was sufficient to use only
the average permittivity change of the material. When obtaining a MIMO model, the
permittivity distribution will be utilized. As in this research the material moisture is studied
on a wet basis, the average permittivity change calculated from (3) can be converted to the
permittivity change in wet basis, ∆εw, by

∆εd =
∆ε

εref
× 100, (6)

∆εw =
∆εd

100 + ∆εd
× 100, (7)

where ∆ε is the average value of ∆ε at the n nodes in the 2D coordinate, and ∆εd is the dry
basis permittivity change (in percentage).

3.5. Analyzing the Collected Data and Identifying the Process Model

Collecting the input–output dataset was the first step in the system identification
process. The collected data often need to be preprocessed before using the dataset in the
system identification algorithms. Some preprocessing methods are standard procedures
that are conducted regardless of the system. However, knowing the physics and principles
of the process can help to choose the suitable preprocessing techniques for that specific
process. In this research, the following preprocessing procedure was conducted on the
collected datasets:

1. The data collected from any sensor are usually accompanied by unwanted measure-
ment noise, which can be resolved by filtering the data. The measurement noise was
trivial with the ECT sensor because of the efficient design and the reconstruction
algorithm. However, since we used foam sheets instead of a very long continuous
foam, the measurements had high peaks corresponding to the edge of foams. As
observed during the experiments, drops of water were usually accumulated on the
edges, resulting in increased moisture recognition. A stopband filter was applied to
the collected dataset to remove high-frequency measurements. Figure 6 shows the
collected and filtered output data.

2. The objective of this research was to find a linear model of the process. Linear
models cannot catch arbitrary differences between the input and output signal levels.
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Therefore, the mean values were removed from the input–output data. Removing the
mean values (constant term) allows the analysis of the other signal contents, resulting
in a more accurate model.

3. Since the ECT sensor was located after the process, it was not straightforward to find
the relation of the input power at each time to the measured output. Any point of the
foam traveling through the ECT sensor was exposed to several power levels while
traveling inside the oven. Therefore, in this study, the system was divided into two
subsystems, SYS1 and SYS2, by introducing a virtual input, as shown in Figure 7. The
new input signal, E, is the overall applied energy to each location of the foam that
was calculated by integrating the power level signal in the travel time corresponding
to that location as

E(t) =
∫ t−t f

t−t f−tc
P(t)dt, (8)

where tc is the travel time inside the oven cavity (three modules) and t f is the travel
time inside the microwave filter. The travel time inside the microwave filter is ex-
cluded in (8) since there is no significant power applied to the foam inside the mi-
crowave filter. The SYS1 is the model between the input power level, P, and the
overall applied energy, E, and the SYS2 models the new input, E, and the input
moisture, Min, to the system output, ∆εw.

0 2000 4000 6000 8000 10,000
0

10

20

30

40

50

ECT measurements

Filtered data

Figure 6. The collected ECT sensor measurements before and after employing a stopband filter.

Microwave oven

SYS1

SYS2

P

Min

E

∆εw

Figure 7. Dividing the microwave oven system into two subsystems.

The preprocessed data were used to find a linear model that fit best for SYS1 and SYS2.
The model representing the microwave oven could then be achieved by connecting these
two models. The MATLAB system identification toolbox 9.10 was employed to fit a linear
model. Different linear models were tested for both SYS1 and SYS2.

Considering the relation between P(t) and E(t) in (8), SYS1 is an integrator over a
specific time interval, so a transfer function with time delay was a reasonable choice for this
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system. Different transfer function models with different numbers of zeros and poles were
tested to find the best model comparing their goodness of fit. Eventually, a discrete-time
transfer function with two poles, one zero, and an input time delay was determined for
SYS1. The identified model can be stated as

E(z)
P(z)

= z−Td1
bz−1

1− a1z−1 + a2z−2 , (9)

where E(z) and P(z) are the Z-transforms of the discrete-time signals E[k] and P[k], respec-
tively, k represents the sample number, and the input time delay is denoted by Td1. The
unknown model parameters b, a1, a2, and Td1 were calculated using the collected values
for E[k] and P[k].

The SYS2 was modeled with a state-space model as most of the intended control
algorithms employ a state-space model of the process. The order of the state vector in
this model (the system order) was determined automatically by the system identification
toolbox given the input and output signals, such that it gave the best goodness of fit with
the lowest system order. The identified model has six states, two input signals, and one
system output. The first input, E, has no time delay as it was defined by us, while the
second input, Min, has a time delay of Td2 since it was measured before passing the foam
into the oven. The equations describing this model are

x[k + 1] = Ax[k] + B1E[k] + B2Min[k− Td2], (10)

y[k] = Cx[k], (11)

where x[k] ∈ R6×1 is the state vector, and the model output y(k) ∈ R is the model
response for the estimated permittivity change percentage, ∆εw. The matrices A ∈ R6×6,
B1, B2 ∈ R6×1, and C ∈ R1×6 are the model parameters estimated using the system
identification toolbox given the collected inputs and output data.

The augmented model of the system can be obtained by connecting SYS1 and SYS2,
resulting in a state-space model as

X[k + 1] = AaugX[k] + B1,augu1[k− Td1] + B2,augu2[k− Td2], (12)

y[k] = CaugX[k], (13)

where X[k] ∈ R8×1 is the state vector of the whole system with eight elements resulting
from the connection of a state-space model with the order of six stated in (10) and (11) to the
transfer function with the degree of two in (9). The input signals are the input power level
to the microwave sources, u1 = P, with Td1 time delay for samples, and the input foam
moisture, u2 = Min, with Td2 time delay for samples. The matrices Aaug, B1,aug, B2,aug, and
Caug, which are the model parameters for the augmented system, can be easily determined
by connecting the state-space model (10) and (11) to the transfer function (9) in MATLAB
software using the connect command. The sample time for all the represented models in
this section was 1 s.

4. Results and Discussion

Different datasets with the input signals shown in Figure 5 were collected while
running the continuous microwave drying of polymer foams. All the recorded inputs
and outputs were preprocessed as described in Section 3.5. In this research, the dataset
with the PRBS input signal was used to estimate the unknown parameters of the transfer
function (9) and the state-space model (10) and (11).

The model parameters in (9), including the input time delay, Td1, were estimated using
the MATLAB system identification toolbox, employing the least square methods. The
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estimated parameters are given in Table 1. The matrices A, B1, B2, and C in the state-space
model (10) and (11) were estimated using the subspace method [36] and are

A =



0.9987 −0.0231 −0.0093 0.0048 −0.0077 −9.623× 10−5

0.0228 0.9984 0.0507 0.0011 −0.0001 1.269× 10−6

0.0098 −0.0499 0.997 −0.0409 −0.0020 0.0002
−0.0047 −0.0035 0.0416 0.9963 0.0753 9.458× 10−5

0.0072 0.0001 −0.0001 −0.0754 0.9919 −0.131
8.531× 10−5 0.0008 0.0008 −0.0038 0.0887 0.8314

, (14)

and

B1 =



−0.0227
−0.0160
0.0841
0.1604
−0.0316
−0.0077

× 10−6, B2 =



0.0015
0.0021
−0.0070
−0.0095
−0.0021
−0.0012

, C =



−154.440
−13.853
−16.738
−16.272

0.070
0.001



T

. (15)

Furthermore, the input time delay for the input moisture, Td2, was measured as 1129 s,
which is the foam’s travel time from the oven entrance to the ECT sensor.

Table 1. The parameters of the transfer function SYS1.

Parameter b a1 a2 Td1

Value 5.109 −1.992 0.992 261

The identified transfer function and the state-space model were connected to form the
augmented model (12) and (13). The accuracy of the augmented model can be evaluated
by applying the same inputs given to the actual microwave oven and then comparing the
model response with the ECT measurements. The cost function used in this study to show
the accuracy of the estimated system output is the normalized mean squared error (NMSE),
which is calculated as

fit =
‖∆εw − y‖2∥∥∆εw − ∆εw

∥∥2 × 100, (16)

where ∆εw is the permittivity change percentage measured by the ECT sensor (the process
output), ∆εw is the average value of this variable over time, and y is the identified model
output from (13) given the same input signals.

The simulation and experimental results with the PRBS dataset are shown in Figure 8.
The top-left subfigure is the applied power level percentage to the magnetrons, which is the
PRBS signal. The minimum level in the PRBS signal was chosen to be 15% of the maximum
power of the magnetrons as the magnetrons do not start working with less power than
that. The maximum power percentage in this figure is 65%, since the risk of over-drying
and burning the foam will increase with more power. The PRBS signal was programmed
in MATLAB software and given to all magnetrons simultaneously through an interface
connected to the oven.

The foam sheets were moisturized in the impregnation tub, containing only water, and
weighed afterward using a digital scale to calculate their actual moisture before sending
them to the oven (see Figure 4). One average moisture percentage on a wet basis was
calculated for each foam sheet. Figure 8a shows the moisture percentages of the foams
before entering the oven in this experiment. Since the foam sheet had a length of 150 cm
and the conveyor belt was moving with a speed of 40 cm/min, the calculated average
moisture value was constant at intervals of 225 s in Figure 8b.

While giving the PRBS signal to the magnetrons, the corresponding process output
(foam moisture after the drying process) was calculated based on the ECT sensor measure-
ments. The experimental measurements are shown in Figure 8c with a solid blue line. As
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mentioned, these data were used to estimate the parameters of the state-space model (12)
and (13). The same inputs as shown in Figure 8a,b were applied to the derived model to
reproduce the process output. The simulated process output is shown with the dashed red
line in Figure 8c. As can be seen, the model output nicely follows the actual measurements.
The time delay for the second input of the model (input foam moisture) was 1129 s, and
this is why, in the first 1129 s of the simulation in Figure 8c, the model output does not fit
the actual measurements well; however, after this interval, the tracking error decreases.
The fit value calculated from (16) and using these data was 96.17%, which is very accurate.
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(c)
Figure 8. The input–output dataset with the PRBS input signal used for estimating the process model:
(a) The applied input power percentage to the microwave sources. (b) The input foam moisture
variations. (c) Comparison between the actual measurements and the model output.

The previous simulation showed that the derived model can reproduce the actual
process measurements very accurately. However, since the same data were used to estimate
the model parameters, the model performance should also be validated with other datasets
called validation data. Two additional datasets with the APRBS and staircase signals as the
input signal for the power levels were used as validation datasets.

Figure 9a shows the APRBS signal applied to the magnetrons in the second experiment.
As with the PRBS signal, the minimum and maximum power levels in this signal were
chosen as 15% and 65%, respectively. The difference from the previous experiment is that
the power level could vary randomly between these limits during the experiment. The
moisture percentages of the wet foams before entering the oven in this experiment are
shown in Figure 9b

While the APRBS signal was given to the magnetrons, the ECT sensor measurements
were collected, as shown in Figure 9c with a solid blue line. The simulated model output
for this experiment is shown in red dashed line in the same figure. As can be seen, the
process output with the APRBS signal showed a different pattern compared to the previous
experiment with the PRBS signal. Nonetheless, the derived model was still able to estimate
the process output with reasonable accuracy. The fit value for this data set was calculated
as 87.8%, which is a great fit for a validation dataset. It should be noted that since the
second model input had a time delay of 1129 s, the first 1129 s in the model verification
showed a higher error compared to the rest of the data. Omitting the first 1129 s of the
model response to evaluate the fit value increases the accuracy to 90.7%.
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The second validation dataset was acquired when the staircase signal shown in
Figure 10a was applied as the input to the magnetrons. The recorded moisture percentages
of the foam sheets before the drying process in this experiment are shown in Figure 10b.
Figure 10c illustrates the comparison between the estimated permittivity change and the
simulated model output in this experiment. As can be seen, only for the first period of
1129 s, which is the second input time delay, is there a large error, and after that, the
model showed a similar response to the sensor measurements. The accuracy of the model
response can be calculated as 68.7% after omitting the first 1129 s from the model response.
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Figure 9. The input–output dataset with the APRBS input signal used for validation of the process
model: (a) The applied input power percentage to the microwave sources. (b) The input foam
moisture variations. (c) Comparison between the actual measurements and the model output.
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Figure 10. The input–output dataset with the staircase input signal used for validation of the process
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5. Conclusions

In this paper, the system identification of a conveyor belt microwave drying process
was investigated. The test material was polymer foam with sealing applications in the
construction industry. An ECT sensor was installed at the exit of a microwave oven to
estimate the polymer foam permittivity, which correlates with the foam moisture. The
prespecified input signal for this process was the power level of the microwave sources,
and the additional recorded input was the input foam moisture. In several experiments
with different input power level signals, the corresponding output foam permittivity was
estimated. The system identification methods were applied to the collected input and
output signals, and a state-space model of the process was estimated. The accuracy of the
obtained model was validated with different datasets. The estimated linear model can be
employed with good accuracy for the design of a moisture controller for the microwave
drying process with various linear control methods. Furthermore, the designed ECT sensor
can estimate the moisture distribution of the material, and is thus suitable for deriving a
MIMO model of the process.
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In this paper, the system identification of a conveyor belt microwave drying process
was investigated. The test material was polymer foam with sealing applications in the
construction industry. An ECT sensor was installed at the exit of a microwave oven to
estimate the polymer foam permittivity, which correlates with the foam moisture. The
prespecified input signal for this process was the power level of the microwave sources,
and the additional recorded input was the input foam moisture. In several experiments
with different input power level signals, the corresponding output foam permittivity was
estimated. The system identification methods were applied to the collected input and
output signals, and a state-space model of the process was estimated. The accuracy of the
obtained model was validated with different datasets. The estimated linear model can be
employed with good accuracy for the design of a moisture controller for the microwave
drying process with various linear control methods. Furthermore, the designed ECT sensor
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5. Conclusions

In this paper, the system identification of a conveyor belt microwave drying process
was investigated. The test material was polymer foam with sealing applications in the
construction industry. An ECT sensor was installed at the exit of a microwave oven to
estimate the polymer foam permittivity, which correlates with the foam moisture. The
prespecified input signal for this process was the power level of the microwave sources,
and the additional recorded input was the input foam moisture. In several experiments
with different input power level signals, the corresponding output foam permittivity was
estimated. The system identification methods were applied to the collected input and
output signals, and a state-space model of the process was estimated. The accuracy of the
obtained model was validated with different datasets. The estimated linear model can be
employed with good accuracy for the design of a moisture controller for the microwave
drying process with various linear control methods. Furthermore, the designed ECT sensor
can estimate the moisture distribution of the material, and is thus suitable for deriving a
MIMO model of the process.
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