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 Abstract 
  Objective:  To evaluate the effects of energy restriction with or without aerobic exercise on 
thigh muscle mass and quality in adults with visceral adiposity.  Methods:  75 males and fe-
males were randomly assigned to the groups ‘diet only’ (DO; n = 42) or ‘diet plus aerobic ex-
ercise’ (D/Ex; n = 33) for 12 weeks. The target energy intake in both groups was 25 kcal/kg of 
ideal body weight. Subjects in the D/Ex group were instructed to exercise for   ≥  300 min/week 
at lactate threshold. Computed tomography was used to measure thigh muscle cross-section-
al area (CSA), normal-density muscle area (NDMA), and visceral fat area.  Results:  Total body 
weight (DO: –6.6 ± 3.6%; D/Ex: –7.3 ± 4.6%) and visceral fat (DO: –16.0 ± 13.8%; D/Ex: –23.1 ± 
14.7%) decreased significantly in both groups; however, the changes were not significantly 
different between the two groups. The decrease in muscle CSA was significantly greater in the 
DO group (–5.1 ± 4.5%) compared with the D/Ex group (–2.5 ± 5.0%). NDMA decreased sig-
nificantly in the DO (–4.9 ± 4.9%) but not in the D/Ex group (–1.4 ± 5.0%).  Conclusion:  Aero-
bic exercise attenuated the loss of skeletal muscle during energy restriction in adults with 
visceral adiposity.  © 2014 S. Karger GmbH, Freiburg 
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 Introduction 

 Muscle mass decreases by 1–2% each year in middle-aged adults  [1, 2] . The loss of muscle 
strength amounts to approximately 1.5% each year between 50 and 60 years of age, and 
increases to 3% per year thereafter. Thus, marked declines in muscle mass and strength have 
already occurred by middle age, and persons in any age group must protect themselves 
against the loss of muscle associated with weight loss.

  Abdominal obesity, particularly visceral fat accumulation, is an independent risk factor 
for metabolic and cardiovascular disorders  [3, 4] . Energy restriction-induced weight loss, 
which is the most common method of treating obesity and visceral adiposity, can be successful 
in achieving moderate weight loss  [5] . However, energy restriction not only results in the loss 
of body fat mass but also causes a significant loss of fat-free mass (FFM)  [5, 6] . This suggests 
that energy restriction-induced weight loss actually accelerates the loss of muscle mass with 
age, also known as sarcopenia, which induces physical frailty and increases the risk of cardio-
vascular diseases  [7] . This may result in the decline of both activities of daily living and health-
related quality of life. Therefore, it is essential to carefully consider the clinical approach used 
to treat obesity and visceral adiposity. 

  Chomentowski et al.  [6]  reported that the addition of moderate aerobic exercise to inten-
tional diet-induced weight loss attenuated the loss of muscle mass in older, overweight to 
obese adults. However, Asian populations are more prone to visceral adiposity and low 
skeletal muscle mass compared to their Western counterparts  [8] . Despite these findings, it 
is unclear whether exercise could help to maintain skeletal muscle mass during energy 
restriction in Asian (Japanese) individuals with visceral adiposity. Thus, the purpose of this 
study was to determine whether diet-induced weight loss plus aerobic exercise has beneficial 
effects on decreasing abdominal fat and metabolic parameters (circulating glucose, lipid, and 
inflammatory markers) and attenuates the loss of skeletal muscle mass associated with 
energy restriction in adults with visceral adiposity.

  Methods 

 Participants 
 Males and females aged 40–75 years were recruited by advertisements in newspapers, on television, 

and on public transportation. Overall, 146 subjects were contacted to be participants, and 89 subjects were 
eligible to be enrolled in the Metabolic Syndrome Prevention/Improvement Intervention Program. Before 
baseline measurements, subjects were randomized to receive one of two interventions, each lasting 12 
weeks: diet-induced weight loss (DO; n = 45) or diet-induced weight loss combined with aerobic exercise (D/
Ex; n = 44). The participants enrolled in this study i) had visceral adiposity (visceral fat area  ≥  100 cm 2 ), ii) 
were not taking any medications affecting glucose metabolism to avoid potential confounding effects on 
weight change, and iii) had no thyroid disease. Of the 14 subjects who did not complete the program (DO: n 
= 3; D/Ex: n = 11), 5 left for employment-related reasons, 4 had a metabolic disorder or ileus, 2 were lost to 
follow-up, 2 had poor physical condition during the 12-week intervention, and 1 left for family reasons. Thus, 
75 males and females completed the 12-week intervention, with 42 in the DO group (18 males and 24 
females) and 33 in the D/Ex group (13 males, 20 females). As a result, the present study only analyzed data 
from participants who completed the measures at both baseline and at the end of the study. The character-
istics of the subjects who completed the intervention were not significantly different between the groups 
regarding age, male:female ratio, anthropometric variables, or metabolic parameters at baseline. All subjects 
gave informed consent after agreeing with the purpose, methods, and significance of the study. This study 
was approved by the Ethics Committee of Fukuoka University. 

  Exercise Protocol 
 Participants were instructed to perform 20 min each of step exercises, bicycle ergometry, and walking 

or running (60 min per session) three times per week under the supervision of exercise trainers. They were 
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also instructed to carry out a further 120 min of exercise per week on their own at home in order to ensure 
a total of   ≥  300 min of moderate exercise per week. The exercise intensity was set at lactate threshold (LT). 
The LT intensity of bicycle ergometer training (W) was determined from an incremental exercise test on a 
bicycle ergometer, as described below. The LT intensity of step exercise was determined by using a 
submaximal graded step test  [9] . The intensity of walking or jogging was controlled by heart rate (HR) at the 
LT intensity, which was determined by the step exercise test. HR was measured using a HR monitor (Polar 
FT1; Polar Electro, Kempele, Finland). The exercise sessions completed at the participant’s homes (stepping 
and walking or jogging) were performed using provided bench steps and HR monitors. Each participant 
recorded all exercise sessions, including the duration (min), mode, and HR, which were reviewed every other 
week to assess exercise adherence. All subjects underwent workload modifications at least 6 weeks after 
starting the program. According to the participant’s diary (exercise duration and body weight (BW)) and 
exercise intensity (metabolic equivalent (MET)) at the prescribed LT, the estimated energy expenditure per 
day (kcal/day) during exercise was calculated using the following formula  [10]:  ‘BW (kg) × (MET value – 1 
MET) × exercise duration (h/day).’ The maximum HRs were calculated using the formula proposed by the 
American College of Sports Medicine (ACSM)  [11] : HRmax = 206.9 – (0.67 × age). 

  Energy Restriction 
 Daily energy needs were determined by multiplying the participant’s ideal BW equivalent of a BMI of 22 

kg/m 2  by 25. The participants received weekly guidance from skilled dieticians (face-to-face) who recommended 
appropriate daily nutrition using lectures and counseling. The sessions included adjustments of caloric intake 
and behavioral therapy. Food diaries were reviewed every week, and participants were given instruction on food 
intake based on the prescribed energy intake. The participants were instructed to measure their weight daily. 

  Dietary Records 
 To calculate energy intake (in kcal) and the intake of fat, protein, and carbohydrate (in grams), each 

participant completed a self-recorded food intake diary before and at 10–12 weeks following the inter-
vention. Subjects were asked to record food intake over 3 days, including 2 weekdays and either a Saturday 
or a Sunday. All meals were to be photographed to increase the accuracy of the measurement. Skilled dieti-
cians analyzed the data ( table 1 ).

Table 1.  Effects of diet-induced weight loss with or without aerobic exercise on anthropometric parameters, 
aerobic capacity, dietary intake, and physical activity

 DO group D/Ex group Group × time, 
p value

pre post pre post

Weight, kg 72.2 ± 11.9 67.2 ± 10.1*** 71.2 ± 13.7 65.9 ± 12.9*** 0.652
BMI, kg/m2 28.0 ± 3.4 26.2 ± 3.0*** 27.8 ± 3.8 25.7 ± 3.5*** 0.445
Percentage of body fat, %a 34.2 ± 7.3 31.3 ± 7.7*** 34.1 ± 6.4 30.4 ± 6.9*** 0.361
Fat mass, kga 25.0 ± 6.9 21.3 ± 6.1*** 23.8 ± 5.7 19.6 ± 5.4*** 0.546
FFM, kga 48.0 ± 9.2 46.7 ± 8.6** 46.4 ± 10.2 45.1 ± 9.5*** 0.936
Visceral fat area, cm2 182 ± 54 151 ± 44*** 183 ± 52 140 ± 46*** 0.104
Subcutaneous fat area, cm2 284 ± 108 252 ± 102*** 281 ± 92 241 ± 90*** 0.333
VO2 peak, ml/min/kg FFMb 33.0 ± 6.2 31.2 ± 5.3* 32.2 ± 5.7 36.0 ± 7.8* 0.001
Step counts, steps/dayc 6,645 ± 2,492 7,116 ± 2,902 6,602 ± 3,004 9,195 ± 3,711*** 0.001
Energy intake, kcal/dayd 2,008 ± 385 1,526 ± 300*** 2,000 ± 316 1,618 ± 330*** 0.180
Protein, g/dayd 75 ± 18 63 ± 13*** 82 ± 16 68 ± 17*** 0.822
Fat, g/dayd 60 ± 15 43 ± 12*** 60 ± 15 47 ± 14*** 0.314
Carbohydrate, g/dayd 269 ± 53 211 ± 42*** 267 ± 51 224 ± 44*** 0.179

 DO group = Diet-induced weight loss group; D/Ex group = diet-induced weight loss with aerobic exercise 
group; FFM = fat-free mass.

aDO (n=38), D/Ex (n=32). bDO (n=38), D/Ex (n=31). cDO (n=34), D/Ex (n=29). dDO (n=38), D/Ex (n=30).
Pre vs. post: *p < 0.05, **p < 0.01, ***p < 0.001.

http://dx.doi.org/10.1159%2F000358576


29Obes Facts 2014;7:26–35

 DOI: 10.1159/000358576 

 Yoshimura et al.: Aerobic Exercise Attenuates the Loss of Skeletal Muscle during 
Energy Restriction in Adults with Visceral Adiposity 

www.karger.com/ofa
© 2014 S. Karger GmbH, Freiburg

  Physical Activity 
 Physical activity (step count) was measured using a small uniaxial accelerometer (Lifecorder Ex; 

Suzuken Co., Ltd., Nagoya, Japan)  [12] . Subjects wore the accelerometer, except while sleeping or bathing, for 
2 weeks before the intervention and during the 10–12 weeks of the intervention. The accelerometer was 
sealed so that the subjects could not gain access to the physical activity measurements. All measured vari-
ables were averaged over the last 7 days of the measurement period to assess physical activity in free-living 
conditions.

  Anthropometric Measurements and Body Composition 
 All anthropometric measurements and body composition were conducted after a fast lasting more than 

12 h. BW was measured to the nearest 0.01 kg using electronic scales (Shinko Denshi Vibra Co., Ltd., Tokyo, 
Japan). Height was measured to the nearest 0.1 cm using a stadiometer. BMI was calculated as kg/m 2 . Body 
composition was measured using the underwater weighing method, and body density was estimated after 
correction for residual air by the O 2  re-breathing method during underwater weighing  [13] . Body fat 
percentage was calculated using the formula of Brozek et al.  [13] . Fat mass (FM) and FFM were calculated 
using the formula ‘BW × body fat percentage / 100’ and ‘BW – FM’. 

  Computed Tomography 
 Computed tomography (CT) scans were performed as previously described  [14] . Visceral fat area (VFA) 

and subcutaneous fat area (SFA) were assessed at the L4-L5 intervertebral disc space. CT was also used to 
measure the cross-sectional area (CSA) of the mid-thigh muscle in both legs. Low-density muscle area 
(LDMA), a marker of lipid-rich skeletal muscle and normal-density muscle area (NDMA), which contains a 
lower lipid content, were also quantified  [6, 15] . All subjects fasted for at least 3 h before CT scans but were 
allowed to drink water.

  Blood Biochemistry 
 Blood samples were obtained from the antecubital vein in the morning after a 12-hour overnight fast. 

Serum biochemistry analysis was conducted by SRL Inc. (Tokyo, Japan). The biochemical parameters 
included: interleukin-6 (IL-6), insulin (chemiluminescent enzyme immunoassays), high-sensitive C-reactive 
protein (hsCRP; nephelometry method), high-molecular-weight adiponectin, TNF-α (enzyme-linked immu-
nosorbent assays), glucose (ultraviolet/hexokinase method), triglyceride (enzyme method), high-density 
lipoprotein (HDL; direct method), leptin (radioimmunoassays), and hemoglobin A1c (HbA1c; latex aggluti-
nation method). HbA1c (%) is presented as the National Glycohemoglobin Standardization Program (NGSP) 
value, which was calculated using the conversion equation for HbA1c derived by the Japan Diabetes Society 
(JDS): HbA1c (NGSP; %) = 1.02 × HbA1c (JDS; %) + 0.25%  [16] . Homeostasis model assessment of insulin 
resistance (HOMA-IR) was calculated as a marker for systemic insulin resistance using the formula reported 
by Matthews et al.  [17] : HOMA-IR = glucose × insulin/405.

  Aerobic Work Capacity 
 Aerobic work capacity was performed as previously described  [14] . The test of aerobic work capacity 

was continued until subjective exhaustion using a bicycle ergometer (Rehcor; Lode BV, Groningen, The Neth-
erlands) to determine the peak oxygen uptake (VO 2 peak ). VO 2peak  was adjusted for FFM. 

  Statistical Analysis 
 All data are presented as means ± standard deviation (SD), and the level of significance for all statistical 

tests was set at p < 0.05. hsCRP was logarithmically transformed to approximate a normal distribution. 
Baseline characteristics were compared between the two groups using unpaired one-way analysis of variance 
(ANOVA). Repeated-measures ANOVA was used to compare dependent variables as a function of group (DO 
and D/Ex) and time (pre- and post-intervention). Within-group differences (baseline vs .  post-intervention) 
were assessed by paired t-tests. SPSS version 12.0 (SPSS Inc., Chicago, IL, USA) was used for all statistical 
analyses.
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  Results 

 Baseline Data and Intervention Adherence 
 There were no significant differences in age, anthropometric parameters, thigh muscle 

area, or metabolic parameters between the DO and D/Ex groups at baseline. The mean 
proportion of weekly supervised exercise sessions attended during the 12-week intervention 
was 81 ± 16%. The mean durations of exercise performed at home and of total exercise were 
127 ± 80 min/week and 273 ± 87 min/week, respectively. The percentages of VO 2peak  at LT 
(%VO 2 peak ), predicted maximal HR (%HR max ), and METs during exercise (prescribed LT 
intensity) were 55.1 ± 11.9% VO 2peak , 64.3 ± 9.6% HR max , and 5.3 ± 0.8 METs. The estimated 
energy expenditure attributable to exercise was 263 ± 117 kcal/day. The rates of attendance 
at nutritional guidance sessions averaged over the 12-week intervention were 97 ± 7% in the 
DO group and 93 ± 9% in the D/Ex group. In both groups, less than one-third of the subjects 
achieved the target daily energy intake (DO 33% vs. D/Ex 27%).

  Effects of Diet-Induced Weight Loss with or without Aerobic Exercise on Anthropometric 
Parameters, Aerobic Capacity, Dietary Intake, and Physical Activity 
 There were no significant interaction effects between group and time for the anthropo-

metric parameters (BW, BMI, body fat percentage, FM, FFM, VFA, and SFA) and for dietary 
intake ( table 1 ). In addition, decreases in BW, BMI, body fat percentage, FM, FFM, VFA, SFA, 
and dietary intake were similar in both groups. VO 2 peak  increased to a greater extent in the 
D/Ex group compared with the DO group; the increase from baseline to post-intervention 
was significant in the D/Ex group, but not in the DO group. The mean step count also increased 

Table 2.  Effects of diet-induced weight loss with or without aerobic exercise on blood pressure and metabolic 
parameters

DO group  D/Ex group Group × time, 
p valuepre post pre post

SBP, mm Hga 139 ± 18 131 ± 20*** 137 ± 20 129 ± 18** 0.914
DBP, mm Hga 87 ± 12 82 ± 11** 84 ± 11 79 ± 10** 0.946
Glucose, mg/dl 103 ± 13 99 ± 10** 104 ± 13 99 ± 8** 0.870
Insulin, μIU/ml 8.6 ± 3.9 6.6 ± 2.7*** 10.0 ± 6.1 6.7 ± 3.9*** 0.165
HDL, mg/dl 52 ± 13 52 ± 14 52 ± 13 54 ± 12* 0.096
Triglyceride, mg/dlb 149 ± 83 119 ± 68** 132 ± 61 86 ± 33*** 0.249
Interleukin-6, pg/mlc 2.3 ± 2.4 1.5 ± 1.3* 4.8 ± 13.4 1.8 ± 3.1 0.296
TNF-α, pg/mld 1.2 ± 0.6 1.1 ± 0.6 1.2 ± 0.5 1.1 ± 0.4** 0.115
Leptin, ng/ml 12.4 ± 7.4 8.6 ± 6.7*** 11.3 ± 6.2 6.5 ± 3.9*** 0.211
hsCRPe,f 2.9 ± 0.5 2.5 ± 0.3*** 3.0 ± 0.5 2.7 ± 0.5** 0.230
High molecular weight 
adiponectin, μg/ml

5.0 ± 3.2 5.4 ± 3.1* 4.9 ± 3.1 5.5 ± 3.1** 0.392

HOMA-IR 2.3 ± 1.3 1.6 ± 0.7*** 2.7 ± 1.9 1.7 ± 1.1*** 0.208
HbA1c, %e 5.6 ± 0.4 5.5 ± 0.4** 5.7 ± 0.5 5.5 ± 0.4*** 0.315

 DO group = Diet-induced weight loss group; D/Ex group = diet-induced weight loss with aerobic exercise 
group.

aDO (n = 40), D/Ex (n = 33). bDO (n = 42), D/Ex (n = 32). cDO (n = 41), D/Ex (n = 31). dDO (n=39), D/Ex
(n = 31). eDO (n = 41), D/Ex (n = 33). fhsCRP was logarithmically transformed to approximate a normal distri-
bution.

Pre vs. post: *p < 0.05, **p < 0.01, ***p < 0.001.
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to a greater extent in the D/Ex group compared with the DO group; the increase from baseline 
to post-intervention was significant in the D/Ex group, but not in the DO group. 

  Effects of Diet-Induced Weight Loss with or without Aerobic Exercise on Blood Pressure 
and Metabolic Parameters 
 There was no significant interaction effect between group and time on blood pressure or 

metabolic parameters. Systolic and diastolic blood pressure decreased in both groups from 
baseline to post-intervention. In addition, there were significant decreases in glucose, insulin, 
triglyceride, leptin, hsCRP, HOMA-IR, and HbA1c in both groups. HDL increased significantly 
and TNF-α decreased significantly in the D/Ex group, but not in the DO group ( table 2 ). 

  Percent Changes in BW, FM, FFM, and Thigh Muscle Area 
 There was no significant interaction effect between group and time for the percent 

changes in BW, FM, or FFM. CSA decreased in both groups, although the decrease was greater 
in the DO group compared with the D/Ex group ( fig. 1 ). LDMA, which represents high lipid 
content, decreased significantly in both groups, without significant differences between the 
two groups. The decrease in NDMA, which represents lower lipid content, was greater in the 
DO group compared with the D/Ex group, although the loss of muscle area was only signif-
icant in the DO group. 

  Fig. 1.  Percent changes in BW, FM, and FFM (as measured by the underwater method), and thigh muscle area 
(as measured by CT). Decreases in BW, FM, FFM, and LDMA were similar in both groups. Decreases in CSA 
and NDMA were greater in the DO group compared with the D/Ex group.  *  * p < 0.01 and  *  *  * p < 0.001 versus 
baseline.  † The interaction effect was statistically significant. N.S. = Not significant; DO = diet-induced weight 
loss only; D/Ex = diet-induced weight loss with aerobic exercise; BW = body weight; FM = fat mass; FFM = 
fat-free mass; CSA = cross-sectional area; LDMA = low-density muscle area; NDMA = normal-density muscle 
area. 
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  Discussion 

 The main finding of this study was that diet-induced weight loss in addition to aerobic 
exercise attenuated the loss of thigh skeletal muscle mass associated with energy restriction 
alone in middle-aged to elderly adults with visceral adiposity. Conversely, diet-induced 
weight loss alone was associated with reductions in both FFM and thigh skeletal muscle mass. 
Chomentowski et al.  [6]  reported that moderate aerobic exercise attenuated the loss of lean 
muscle mass caused by energy restriction. Diet-induced weight loss that can successfully 
achieve a weight loss of 5–10% within a short period of time can greatly improve blood 
pressure as well as glucose and lipid metabolism  [18–20] . These results suggest that inten-
tional weight loss with diet/energy restriction can improve various metabolic parameters 
associated with obesity and visceral adiposity but may also increase the risk of sarcopenia, 
which occurs with aging in association with the loss of muscle  [21, 22] . Thus, the addition of 
aerobic exercise to diet-induced weight loss may offer an effective strategy to prevent sarco-
penia and may achieve better weight loss compared with diet alone. 

  The present study indicated that FFM (using the underwater method) decreased in both 
groups. Previous studies have revealed that the decrease in body mass does not differ between 
diet- and diet plus exercise-induced weight loss regimens, although diet-induced weight loss 
reduced FFM (as assessed by dual-energy X-ray absorptiometry (DXA)) more than diet-
induced weight loss plus exercise  [6, 22] . However, an earlier study indicated that 6.8% of 
FFM was lost during an exercise intervention  [23] . This study also suggested that changes in 
FFM are comparable to changes in appendicular lean soft tissue during energy restriction 
with or without exercise. The reason for this apparent discrepancy is unclear, but it is possible 
that differences in methods (DXA vs. underwater method)  [24, 25]  or the composition of the 
FFM lost (i.e. water, protein, and mineral masses)  [26]  may be potential explanations. 

  Interestingly, this study revealed that the improvements in metabolic parameters 
(including insulin resistance) and the reduction of abdominal fat did not differ between the 
two groups. Previous studies have also reported that exercise can reduce visceral fat content 
without inducing weight loss  [27, 28] . However, Christiansen et al.  [29]  reported that a rela-
tively large weight loss of  ≥ 5–7% has beneficial effects on the circulating levels of inflam-
matory markers in obese subjects, whereas aerobic exercise had no effects on these markers. 
Furthermore, Weiss et al.  [30]  suggested that the addition of exercise to energy restriction 
does not appear to have additive effects on changes in metabolic parameters or show improve-
ments in glucose tolerance if exercise training is discontinued for   ≥  2 days. In the present 
study, the D/Ex group was assessed 2 days after the last exercise training session to determine 
the chronic effects of aerobic exercise on metabolic parameters, including insulin resistance. 
Therefore, the results of the studies described above may be consistent with the current 
results. 

  In the present study, there were no significant interaction effects between group and 
time on dietary intake (p = 0.180). The estimated energy expenditure attributable to exercise 
in the D/Ex group was 263 ± 117 kcal/day, which would account for a loss of FM of 3.0 ± 1.3 
kg over 12 weeks (where 1.0 g of fat equals 7.2 kcal). Nevertheless, the D/Ex group did not 
lose more weight than the DO group. While there are conflicting reports  [31] , our results are 
consistent with those of earlier studies, which indicate that the magnitude of these changes 
is not substantially different between diet alone and diet plus exercise  [6, 22, 29] . A meta-
analysis also suggested that weight loss achieved with diet alone or diet plus exercise is not 
significantly different (10.7 ± 0.5 vs. 11.0 ± 0.6 kg)  [32] . The D/Ex group was instructed to 
perform  ≥ 300 min of exercise each week; however, this ranged from 199 to 325 min. 
Therefore, not all participants in this group conducted   ≥  250 min of exercise per week, which 
is a threshold level for clinically significant weight loss set by the ACSM  [33] . Furthermore, 
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Thomas et al.  [34]  have reported that the small magnitude of weight loss observed from the 
majority of evaluated exercise interventions is primarily due to low doses of prescribed 
exercise energy expenditures compounded by a concomitant increase in caloric intake. This 
result suggests that the additional effects of diet and exercise are difficult to anticipate, as 
suggested by the results of previous studies  [6, 22, 29] .

  Aerobic capacity was clearly increased in the D/Ex group, but not in the DO group. The 
increase in VO 2 peak  in the D/Ex group is an important and clinically relevant outcome. It is well 
documented that greater aerobic capacity is associated with greater longevity and reduced 
risks of type 2 diabetes, coronary heart disease, stroke, and colon cancer  [35, 36] . Aerobic 
exercise may also benefit aging skeletal muscle by enhancing mitochondrial bioenergetics  [37] , 
conferring improvements in insulin sensitivity and/or decreased oxidative stress. Thus, while 
attenuation of sarcopenia in the thigh muscle is important, the additional benefits of aerobic 
exercise on increasing aerobic capacity have several clinical implications, including the potential 
for future increases in activities of daily living and health-related quality of life in middle-aged 
and older adults. Therefore, our finding that diet-induced weight loss plus aerobic exercise 
improves aerobic capacity is important in terms of longevity and metabolic disorders. 

  There are two limitations associated with the present study. Firstly, the sample size was 
small, included males and females, and the age range was relatively wide. However, the 
influence of sex as a limitation may be negligible based on the study by Christiansen et al.  [29]  
who found no sex-specific differences of exercise or diet-induced weight loss on metabolic or 
inflammatory factors, indicating that males and females would respond similarly to a 12-week 
randomized intervention study. We also found that the decrease in thigh skeletal muscle mass 
was smaller in the D/Ex group compared with the DO group, even after adjusting for age in 
ANOVA (DO vs. D/Ex, p = 0.021). Therefore, the age range of subjects is unlikely to affect the 
results of this study. Secondly, exclusion criteria for the present study included antidiabetic 
therapy to avoid possible confounding effects on weight change, although subjects receiving 
antihypertensive and antihyperlipidemic drugs were eligible. However, even if we excluded 
these participants who were taking such drugs from the analysis, the results were unchanged. 
Future studies should establish a study protocol for further evaluation (e.g. aerobic training 
vs. resistance training, and normal diet-induced weight loss vs. high protein diet-induced 
weight loss with or without exercise).

  In conclusion, the present findings suggest that diet-induced weight loss plus aerobic 
exercise decreases abdominal fat (i.e. visceral and subcutaneous fat) and circulating meta-
bolic parameters, and also attenuates the loss of thigh skeletal muscle mass associated with 
diet-induced weight loss in middle-aged to elderly adults with visceral adiposity. 
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