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Theory of Lehmer transform 
and its applications in identifying 
the electroencephalographic 
signature of major depressive 
disorder
Masoud Ataei* & Xiaogang Wang

We propose a novel transformation called Lehmer transform and establish a theoretical framework 
used to compress and characterize large volumes of highly volatile time series data. The proposed 
method is a powerful data-driven approach for analyzing extreme events in non-stationary and highly 
oscillatory stochastic processes like biological signals. The proposed Lehmer transform decomposes 
the information contained in a function of the data sample into a domain of some statistical 
moments. The mentioned statistical moments, referred to as suddencies, can be perceived as the 
moments that generate all possible statistics when used as inputs of the transformation. Besides, 
the appealing analytical properties of Lehmer transform makes it a natural candidate to take on the 
role of a statistic-generating function, a notion that we define in this work for the first time. Possible 
connections of the proposed transformation to the frequency domain will be briefly discussed, while 
we extensively study various aspects of developing methodologies based on the time-suddency 
decomposition framework. In particular, we demonstrate several superior features of the Lehmer 
transform over the traditional time-frequency methods such as Fourier and Wavelet transforms by 
analyzing the challenging electroencephalogram signals of the patients suffering from the major 
depressive disorder. It is shown that our proposed transformation can successfully lead to more robust 
and accurate classifiers developed for discerning patients from healthy controls.

Analysis of the non-stationary spatiotemporal data is often a daunting task as it involves the mediation of the 
concepts, theories, and techniques often developed in several seemingly diverse areas of mathematical, statistical, 
engineering and computational sciences. Most notably, the non-stationarity of time series can be shown to have a 
subtle connection to the non-autonomous behavior of dynamical systems in which the oscillatory law governing 
the manifestation of a specific phenomenon itself undergoes various temporal changes. As a result, acquiring 
a relatively thorough understanding of any phenomenon that gives rise to the realization of highly oscillatory 
and complex time series data can only be accomplished simultaneously utilizing the instruments developed in 
statistical and dynamical systems theories.

Even though the concurrent use of the classical statistics framework alongside the dynamical systems theory 
can potentially encapsulate many valuable information about the observed time series data, little does it reveal the 
temporal nature of the laws governing widespread non-stationary processes. For instance, the non-autonomous 
behavior of the oscillatory systems is typically attributed to the influence of some external fields; in this respect, 
the dynamical systems theory could be a potential aid for analysis insofar as the external modulation source is 
known or strictly assumed to be deterministic, periodic, or stochastic. In a situation where the governing law 
of the external modulations itself may exhibit some sort of time-dependency, such approaches for studying the 
phenomena usually become less effective.

This work presents a data-driven model based on a new class of transformations to reliably infer the underly-
ing laws of the non-stationary phenomena based on the time series data observed. The proposed mathematical 
model is shown to be a framework par excellence to exploit possible sources contributing to the occurrence 
of the extreme events in non-stationary stochastic processes and non-autonomous dynamics. To this end, we 
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introduce, for the first time, the notions of the Lehmer transform and the so-called domain of suddency moments. 
Briefly stated, Lehmer transform decomposes the information contained in a function of the data sample into 
their constituting statistical moments. In other words, the Lehmer transformation can be perceived as domain 
representation on a space of certain statistical moments, which we refer to them as the suddency moments (or 
s-moments in short).

The domain of s-moments shares a number of similarities with the widely used frequency domain. However, 
unlike the frequency domain analysis whose focal point is the intrinsic periodicity of all phenomena observed 
in the nature, our proposed analytical framework frees the statistical moments domain from adhering to any 
restrictive assumptions such as the one mentioned above. We find it meritorious to mention that, the proposed 
Lehmer transform and its statistical moment domain can provide a set of complementary instruments for the 
traditional frequency-based frameworks, if not replace them entirely. In turn, this further enables one to con-
struct parametric families of non-parametric statistical models, potentially bridging the existing gap between 
parametric and non-parametric areas of statistics.

Our proposed transform, named after the renowned number theorist Derrick H. Lehmer, has its mathemati-
cal roots in generalized means family. In particular, there exists a member of the mentioned family of functions 
known as the Lehmer mean, which has primarily been studied in specific branches of analytic number theory, to 
the best of our knowledge. Nevertheless, the appealing properties of this function have not received much atten-
tion from statistics, machine learning and data science communities in the past, leaving its wide range of poten-
tial applications largely unexploited in handling complex non-stationary time series such as biological signals.

Most existing works employing the Lehmer mean function for the purpose of data analysis, rely mainly on 
its special cases. For instance,  Terziyan21 formulated a distance metric using the harmonic and contra-harmonic 
means and evaluated its effectiveness in geographic information systems. In a similar manner, Somasundaram 
et al.20 studied the disconnected graphs and their possible labeling schemes and  Sluciak19 developed state-
dependent consensus algorithms by resorting to applications of some special cases of the Lehmer mean function. 
Besides,  Gomes11 successfully constructed a family of high-performance value at risk estimators through the use 
of this function and proved asymptotic normality of the constructed estimators.

On the other hand, being a generalization of the power mean function and having connections to other 
important classes of means, more attention has recently been geared towards the Lehmer mean function and its 
characterization. For instance, the function’s elementary properties like homogeneity, monotonicity and differ-
entiability have been discussed  in1,3, whereas its more advanced properties like Schur-convexity, Schur harmonic 
convexity and Schur power convexity have been the focus of more recent studies, e.g.,  see8–10,23,24 and references 
therein. Also, the inflection points of the function have been studied  in18, and the results concerning its possible 
connections to Gini and Toader means have been provided  in5–7,12,22,25.

In this article, we formally define the Lehmer transform and the domain of s-moments. Thereafter, we use the 
developed framework to study a benchmark electroencephalography (EEG) dataset of patients suffering from 
major depressive disorder (MDD), whose computational results are further provided and discussed in detail. 
Before that, however, we find it of great importance to clarify our motivations for introducing and laying out 
the theoretical foundations of this new transformation within the context of brain wave analysis and, in particular, 
the EEG analysis of MDD dataset.

Motivation
The proposed Lehmer transform is intrinsically a powerful method to summarize the information contained in 
any given set of data, whether sequential data like time series or unordered ones. More explicitly, this transform 
computes the ratio of two moments whose numeratorial and denumeratorial power difference is exactly one. 
Even though it might not be entirely clear at  first glance, this mechanism leads to unraveling significant amount 
of salient information contained in the data that other transforms cannot capture.

On the one hand, from the statistical physics point of view, one would look at a given energy level through the 
use of various powers for the s-moments. On the other hand, from the classical statistics perspective, the Lehmer 
transform can be perceived as a statistic-generating function, i.e., one can generate all possible statistics such as 
sample mean, maximum, minimum, etc., by applying the Lehmer transform to specific values of the s-moments. 
Accordingly, all complex non-stationary signals can be formulated under one coherent and unified framework 
capable of concentrating on patterns that are difficult to capture otherwise by Wavelets or Fourier transforms.

More specifically, the main challenges and limitations confronted by analysts equipped with the frequency 
domain tools for analysis of EEG signals can be surmounted to a great extent by resorting to applications of our 
proposed framework:  

1. Filtering the noise:
  The raw EEG signals contain various artifacts arising from eye movements (horizontal and vertical), eye 

blinks as well as muscular and heart activities which require applying a set of suitable filtering techniques in 
the prepossessing step. However, the majority of the filtering techniques, in one way or another, require the 
data to satisfy certain number of conditions on stationarity. The EEG signals rarely meet such requirements 
in reality, rendering inefficacy of many filtering techniques used for noise removal.

  The most common procedures used for removing noise from EEG signals are semi-automatic. That is, the 
subjective opinion of a well-trained operator plays a key role in selecting the types of artifacts to be corrected. 
As a result, the noise filtering techniques applied to a certain dataset become to some extent customized based 
on the choices made by the operator during artifact removal stage. Thus, the frameworks and methodologies 
borrowed from any other study should be incorporated with great caution on side of fully understanding the 
steps conducted by previous scholars. What we pointed out above can arguably be considered among the 
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most substantial factors leading to lack of portability of the vast majority of the methods available from the 
literature, partially delineating the reasons as to why various inconsistencies are observed across different 
lines of study on psychiatric disorders and neuroscience areas.

2. Lack of interpretability:
  Most of existing models which rely on frequency-domain properties, usually assemble a complex of 

advanced-level mathematical ideas and tools to solve the problems. However, this cannot be achieved with-
out compromising the interpretability of the model and its subsequent results, whose impacts become even 
more pronounced for those researchers not already mastered the countless venues of Fourier and Wavelets 
analyses, who would face various impediments upon their attempt to build up an intuititive know-how of 
such approaches. After all, it is well-known that a thorough and insightful understanding of the brain and its 
underlying mechanisms is more likely to be obtained through devising interpretable mathematical models 
instead of convoluted ones.

3. Existence of various dependence relations:
  In studying the brain by analyzing its EEG signals, it is essential to consider the fact that various clusters 

of neurons are spatially related to one another, especially the association and dependence being stronger in 
the neighboring clusters. However, the EEG signals quantify the local activities of the brain. As a result, the 
spatial relations among various clusters of neurons which reside on a three-dimensional space get mapped to 
the two-dimensional surface of the scalp through EEG recordings, rendering the loss of all spatial informa-
tion previously-existing among the clusters and their connecting electrodes.

  An important implication here is that the inter-cluster dependence relations which are apparent in the 
recorded EEG signals, do not necessarily reflect the true spatial relations among different regions of the 
brain. Omitting investigation of existing dependence relationships can make the outcomes of the analysis 
rather unreliable. The difficulty for exploiting those spatial relations become even more concerning when 
the non-stationary and temporal nature of the data are further taken into account.

4. Dealing with big volumes of data:
  It is no secret that the data recorded by EEG electrodes can easily exceed terabytes of volume, especially 

when the brain waves are recorded for extensive periods of time in order to detect an anomalous behavior 
as a symptom of severe disease. Hence, incorporation of big data technologies such as cloud computing is 
inevitable. The main issue here is not lack of accessibility to adequate amount of memory for storing the 
data, rather it pertains to the fact that analysis of big volumes using current frequency-based methodologies 
are simply not feasible due to the fact that almost all those methods rely on subroutines for traversing over 
large number of variable-size frequency windows and their countless combinations during fine-tuning the 
parameters step. In other words, it is the lack of any just-in-time framework for analysis of EEG signals that 
demands for storage of big volumes of data.

5. Non-applicability of many theoretical frameworks:
  Presence of large volumes of data naturally calls for the use of statistical theories in order to summarize 

the EEG data and reduce their dimensions. However, it is not straightforward at all to extend the results 
of the standard statistical theories to the situations where random variables involved in the system dem-
onstrate strong evidence of dependence and they almost never are identically distributed. Even resorting 
to the asymptotic theories of statistics which allow violation of several restrictive constrains often renders 
impractical due to the extremely small sample sizes available, especially when the cases related to some rare 
diseases are studied whose number of participants is limited.

6. Handling the missing data:
  The EEG studies often entail several experiments, but it is very common to have a dataset in which the 

recordings pertaining to some experiment(s) for a particular subject are entirely missing, i.e., the recordings 
related to all (or some) of the electrodes are missing for the entire period of the experiment(s). However, it 
is not always possible to remove that particular subject from the list of participants in order to handle the 
missing data, e.g., the number of participants might not be large enough for this purpose. More importantly, 
the missing data are often associated with some of the key participants of the study, whose removal can induce 
substantial bias in the final outcome of analysis. Various types of censoring and truncation are among the 
potential reasons behind missing data.

  Besides, the nature of censorship or truncation can be of such a type that partial recordings are available 
for that particular person under the experimentation(s). In those cases, one cannot easily omit the participant 
from the dataset as those data, even not being complete, convey important information about the subject 
and can contribute to discovering various subtleties not apparent about the psychiatric disorder under study. 
The set of techniques prescribed by the survival analysis can prove useful in those situations, however most 
of the existing models, especially the ones developed in frequency domain, do not extend easily to accom-
modate applications of the survival analysis techniques.

Now, we briefly list out all the advantages that our proposed framework based on the Lehmer transform pos-
sesses as follows: 

1. Performing the preprocessing step for noise filtering is entirely eliminated in the proposed framework due 
to the fact that s-moments capture all the noise polluting the EEG signal, regardless of the source which has 
generated the noisy data, further enabling one to bypass the filtering step of EEG signal analysis.

2. The model is easily interpretable by those lacking sufficient knowledge on technical details related to the 
areas of mathematics and physics since the proposed framework enables one to deal with the familiar and 
tangible notion of statistics such as the sample mean. Furthermore, the Lehmer transform directly works with 
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the actual measurements recorded on the EEG electrodes (measured in mV) without requiring application 
of any transformation. More importantly, this facilitating feature of the model lends itself to our proposed 
action potential function that lets one study the brain activities on a true scale of the action potentials of 
neurons, which is the most intuitive approach and leads to many insightful observations and discoveries on 
brain functionality.

3. Since our model utilizes all possible summary statistics to describe the data, there is no need to store large 
volumes of data anymore. In other words, all the computations can be carried out online with almost neg-
ligible space and time complexities, making it one of the most suitable frameworks to utilize when the EEG 
experiments are designed to last for relatively longer periods of time.

4. Spatiotemporal-preserving structure of our model in the domain of s-moments makes it practical to apply 
a vast number of machine learning techniques for both supervised and unsupervised learning purposes. 
The reason is that many machine learning algorithms require large number of sample points with dimen-
sions on feature space of the problem being as low as possible to guarantee their success, which can easily 
be accomplished through the use of our proposed statistical moments.

5. Being itself a statistical model in nature, our proposed framework allows incorporation of the tools developed 
in various areas of statistical sciences such as survival analysis in order to deal with the censored and missing 
data.

6. A great advantage of the proposed model is that it enables one to detect existence of possible sub-types, 
either by visual inspection or the use of algorithmic approaches. Our developed action potential probability 
distribution function will be the main gauge to visualize the multi-dimensional EEG data, which can prove 
extremely beneficial at both the preliminary stages of the study and during the algorithm design process.

Lehmer transform
Let R>0 and R denote the sets of strictly positive and extended real numbers, respectively. Given a signal 
x = {xi ∈ R>0, i = 1, . . . , n} , the Lehmer transform L : R → R>0 is a mapping defined by

According to this definition, the Lehmer transform L (s) maps every point s ∈ R into some statistic contained 
within the range [min{x}, max{x}] , where we refer to the point s as a suddency moment of the given signal x . 
Table 1 reports some of the widely-encountered suddency moments in data analysis. The proposed transform 
is differentiable in P-probability and its nth order derivative could be proven using the mathematical induction 
to be as follows:

where

In particular, the first derivative of the Lehmer transform is derived as
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Table 1.  Some special cases of suddency moments.

Suddency domain Sample domain

−∞ Minimum ( n ≥ 1)

0 Harmonic mean ( n ≥ 1)

1/2 Geometric mean ( n = 2)

1 Arithmetic mean ( n ≥ 1)

2 Contra-harmonic mean ( n ≥ 1)

∞ Maximum ( n ≥ 1)
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Furthermore, for any statistic t ∈ [min{x}, max{x}] , the inverse image L−1 : R>0 → R provides a set that 
contains the associated suddency moment(s) of the signal such that

Subsequently, given that the signal x contains at least two unique elements, the Lehmer transform L (s) will be 
a monotonously increasing function, and its inverse transform can be obtained by resorting to the following 
theorem:

Theorem 1 Given the signal x satisfying the condition xi  = xj for some i, j ∈ {1, . . . , n} such that i  = j , the inverse 
Lehmer transform is defined as

where

for some s0 ∈ R.

Proof Under the compatibility condition imposed on the given signal, the monotonicity property of L (s) implies 
that the function is injective, which in turn guarantees the existence of some inverse function denoted by L−1(t) . 
By further noting that L (s) is analytic for every point s ∈ R , the Lagrange-Bürmann  formula4,15 can be utilized 
to express the interior points of the inverse function as a Taylor expansion g(t) about some given point s0 ∈ R , 
hence yielding the presented result.   �

The following example employs the inversion theorem mentioned above and illustrates an application of the 
inverse Lehmer transform as a non-linear filter for detecting anomalous events.

Example 1 Let us assume that a time-indexed sample x = [x1, x2, . . . , xn]
⊺ is given whose elements correspond 

to the EEG measurements recorded using 256Hz sampling frequency for a time period of 10 seconds. Figure 1 
depicts the plot for membrane potentials measured at every time index i = 1, 2, . . . , n . Furthermore, Figs. 2 
and 3 exhibit the plots corresponding to Lehmer transform and its inverse function, respectively. As revealed 
by Fig. 2, L (s) successfully perpetuates structure of the raw EEG signal. Besides, Fig. 3 shows that the majority 
of computed s−moments lie in a range s ∈ (−20, 20) , where the thresholds are indicated using dashed lines. 
Examining the EEG signal on a statistical moment domain, may then help one to detect the anomalous points 
and identify the time-dependent behavior of their underlying events.
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Figure 1.  Plot of raw membrane potentials against time.
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Action potential distributions
In this section, we show that the Lehmer transform has a deep connection with potential functions. It is used to 
construct a general class of action potential functions that are suitable to characterize intrinsic patterns embed-
ded in a non-stationary time series such as EEG signals.

Let us recall the principal branch of the Lambert-W function denoted by W0(z) , which is defined for every real 
z ∈

(

−e
−1,∞

)

 as the inverse function of g(z) = zez , whose schematics are depicted in Fig. 4a. Here, � denotes 
the Omega constant defined by � = W0(1) ≈ 0.5671. The membrane voltage function (see Fig. 4b) may then 
be expressed as some transformation of the following functional (for a constant c):

Inspired by the appealing properties of the membrane voltage function defined above, we propose a distri-
bution function to account for the probabilistic phenomena that underlie the complex dynamics of the action 
potentials.

Theorem 2 Let us assume that a signal is given which has been transformed such that it would satisfy the following 
conditions:

Then, a real-valued random variable S is said to follow an action potential distribution if its probability density 
function is given by
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Figure 2.  Plot of Lehmer transform against time.

Figure 3.  Plot of inverse Lehmer transform against time.
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where α ∈ (0, 1] , β ∈ R>0 and the normalization constant C is obtained using the following relation

Proof Let us consider the following function

where

and

Then, it is straightforward to show that F(s) is right-continuous and nondecreasing in the domain of suddency 
moments, and further it satisfies the following properties

Thus, F(s) is a distribution function. As a result, we may resort to the Caratheodory extension theorem which 
asserts that there exists a unique Lebesgue-Stieltjes measure associated with the distribution function F(s). In 
turn, this enables us to define a real-valued random variable S on a support s ∈ (−∞,∞) , whose cumulative 
probability distribution function, i.e., FS(s) , coincides with F(s). The probability distribution function presented 
in the theorem is then derived by differentiating the FS(s) .   �

The action potential distribution function is a general framework to analyze complex non-stationary time 
series such as brain waves, e.g., see Fig. 5 which depicts plots of action potential distribution function for an EEG 
signal with varying the parameters α and β . An important class of action potentials is referred to as the dendritic 
spikes, which plays a significant role in neuronal communication, memory and learning.

Theoretically speaking, the dendritic spike dynamics would involve a number of different phase transitions, 
typically starting out from an initialization phase upon allying a stimulus. The dynamical system would then 
enter a rising phase if the membrane voltage rises above some threshold value, which is then followed by a phase 
transition into a falling phase. The final transition would occur at a reestablishment phase through which the 
membrane potential would eventually reside at its resting state.

In reality, however, a large body of evidence in neurophysiology suggests that the variations in electro-
physiological measurements may distort the actual action potentials, yielding a substantially different phase 
transition scheme as compared to the theoretical one mentioned above. That is, different types of undershoot 
and overshoot may be encountered in dendritic spikes dynamics. The key element which we incorporate in our 
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Figure 4.  Schematics of W0(y) , g(y) and V(t).
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analysis of dendritic spikes, pertains to the point that membrane voltages could effectively be modelled using 
the Lambert-W function and its variants.

Major depressive disorder
The data set we study in this work is comprised of EEG recordings of 34 patients suffering from MDD. This is one 
of the benchmark data sets to test classification algorithms designed for EEG recordings and extract knowledge 
on the underlying mechanisms and functionality of different areas of the brain in MDD patients. In this research, 
a sample of 34 MDD outpatients with 17 males and 17 females was recruited according to the experiment design 
at the Hospital University Sains Malaysia (HUSM), Kelantan, Malaysia. During each visit to the clinic, the MDD 
patients were assessed by experienced clinicians. Detailed information can be found  in17.

Our primary goal is to investigate whether the patterns existing in the EEG recordings of the subjects can 
be used for discerning the MDD patients from healthy controls. To this end, EEG recordings of 30 control sub-
jects are further taken into consideration as the control group of this study. Each subject undergoes 3 different 
types of experiments while his/her EEG signals are recorded. More precisely, the experiments are conducted 
in 3 different setups: eyes closed (EC), eyes open (EO), and while the subject performs a specific task (TASK). 

Figure 5.  Plots of action potential distributions for some EEG signal with varying the parameters α and β.
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The duration for each of the experiments EC and EO is 5 minutes which comprises an average of 77000 signals 
per each channel (there exist 19 channel per each experiment). The experiment TASK, however, lasts for longer 
duration 10 minutes and its average number of signals sampled with frequency 256Hz is roughly 155000 on each 
channel;  see17 for more details on the conducted experiments.

One of the challenges faced when studying the present problem pertains to the fact that a considerable num-
ber of data are missing from the provided dataset. Summary of the missing data for each of the experiments 
within control and MDD groups are presented in Table (2). Furthermore, let us use matrices to embed the 
experiment data by assigning their columns to different channels and populating their rows based on the EEG 
samples observed in the time domain (measured in mV ). In other words, the EEG recordings of the nth subject, 
n = 1, 2, . . . ,N , within the mth experiment, m = 1, 2, . . . ,M , is denoted using the following matrix

where N = 64 and M = 3 are total number of the subjects and experiments, respectively. Also, J = 19 denotes 
total number of the active channels within each experiment where the recordings on each of these channels 
contain I samples points.

The key point in our developed methodology is to assign random variables to each channel using the action 
potential distribution. In this way, one would take an implicit approach in studying the set of random vectors 
which have spatiotemporal correlations and autocorrelations as well as various other types of dependence. That 
is, for each signal contained within the dataset corresponding to a single column of some matrix X(n,m) for the 
subject n and experiment m, parameters of the action potential distribution are estimated using the maximum 
likelihood method. Figure 6 depicts plots of 19 action potential probability density functions for EEG signals of 
a single healthy subject when performing the TASK, which are compared to 19 probability density function of 
a subject selected from the MDD group.

Furthermore, Figs. 7, 8, 9 depict the heat maps constructed based on differential entropy values computed for 
the action potential distribution functions of all available EEG signals. It is observed that the overall brain activa-
tion of MDD patients rests at its lowest possible state across all three experiments, whereas their brain becomes 
relatively more active overall when they undergo the EC and EO experiments. It is also interesting to note the 
consistently low activation of the temporal regions of the brain, especially the right ones, across all experiments.

Next, the following quantities are computed for each available signal using its underlying action potential 
distribution function. That is, for the EEG signal recorded on the jth channel of experiment m associated to 
subject n, we compute:

where f and F represent f (m,n)
j  and F(m,n)

j  , respectively. Furthermore, we define m1 and m2 as follows:

These quantities are then utilized to train a classifier for biological signals such as EEG measurements. Thus, 
for each subject (instance), the total number of extracted features would be 5×M × J = 5× 3× 19 = 285 in 
our case.

At the final stage and to classify the subjects into binary classes, we propose an algorithm based on bootstrap-
aggregated decision trees (BADT) where each tree has a structure as depicted in the following. To be more precise, 
in addition to “H” and “MDD” labels, we assume there exist a latent label called “Mixed”, i.e., a sub-type, whose 
consideration will significantly improve the performance and interpretability of the classification algorithm. 
Furthermore, two other classifiers based on Gaussian naive Bayes (GNB) and convolutionary neural networks 
(an Encoder-Decoder with FCN-8 architecture) were developed and tested alongside the BADT, whose perfor-
mance are further reported in Table 3. 

X
(n,m) =

[

xij
]

I×J

m1
∫

−∞

f (s) log f (s)ds,

m2
∫

m1

f (s) log f (s)ds,

∞
∫

m2

f (s) log f (s)ds, F(m1) and 1− F(m2),

m1 = argmax
s≤1

f (s), and m2 = argmax
s≥1

f (s).

Table 2.  Summary of missing data for MDD dataset.

Experiment EC EO TASK Total

Control 6.7% 3.3% 6.7% 5.5%

MDD 11.8% 5.9% 2.9% 6.9%

Total 9.4% 5.0% 5.0% 6.3%
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Figure 6.  Schematics of electrode placement and action potential distributions for control and MDD subjects.
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Besides, the last row of the Table 4 reports computational results of the proposed algorithm for classifica-
tion of the benchmark instances using 10-fold cross validation averaged over 100 replications. Table 4 further 
compares the performance of our proposed framework to other methods from the literature, including the 
prominent work of Mumtaz et al.17. It is noted that all the reported results pertain to the experiments conducted 
on the same benchmark EEG dataset and under identical settings 10-fold cross validation with 100 replications.

On the basis of Table 4, it is seen that our proposed method achieves higher accuracy as compared to the 
method based on the wavelet transforms as well as other previously-proposed approaches for classifying the 
MDD and healthy subjects. A distinguishing aspect of our proposed Lehmer-based classifier is that it yields rela-
tively lower standard errors when classifying the instances. In turn, this makes the results obtained by using the 
proposed classifier reliable to a great extent, and such reliability can potentially lead to an effective applications 
of the Lehmer-based classifiers by practitioners who monitor the possible impacts of prescribed antidepressants’ 
treatment on their patients.

By further noting that the classification algorithm proposed by Mumtaz et al., is mainly based on a logistic 
regression algorithm wherein the authors have used a combination of wavelet transforms (WT), short-time 
Fourier transforms (STFT) and empirical mode decomposition (EMD) as the feature extraction method and a 
rank-based algorithm for the purpose of feature selection, the superiority of Lehmer transform and its applica-
tions become more evident as compared to the frequency-based approaches.

Conclusion
We propose a new transform that is shown be suitable to handle highly oscillatory non-stationary time series. 
It can effectively summarize and extract features from multi-channel signals and form the basis for building a 
highly accurate classifier. Although our work is still exploratory in nature, we believe that the potential of this new 
transform can be utilized fully in order to discern subtle patterns that cannot be recognized by other traditional 
methods such as Fourier and Wavelets transforms.

Table 3.  Comparisons with different incorporated classifiers.

Classifier Accuracy Sensitivity Specificity

Lehmer Transform + GNB 93.8% (±1.3) 93.9% (±1.3) 93.8% (±1.3)

Lehmer Transform + CNN 87.9% (±1.5) 84.2% (±1.9) 97.2% (±1.3)

Lehmer Transform + BADT 90.5% (±1.3) 94.1% (±1.2) 87.0% (±1.5)

Table 4.  Comparisons with other algorithms from literature. Significant values are in bold.

Derived EEG measure Accuracy Sensitivity Specificity

ATR  Index13 61.7% (±9.7) 70.0% (±15.3) 54.0% (±17.2)

EEG Theta  Coherence16 70.7% (±6.5) 75.7% (±9.1) 65.7% (±8.3)

Coherence, PSD, PSD  ratio14 72.1% (±7.6) 80.0% (±13.5) 65.0% (±12.3)

P300 (amplitude and latencies)2 74.2% (±13.1) 70.0% (±15.6) 75.0% (±7.7)

PSD, PSD  ratios14 54.5% (±8.0) 55.0% (±14.7) 50.0% (±15.6)

Wavelet  Transform17 87.5% (±7.1) 95.0% (±4.3) 80.0% (±8.8)

Lehmer Transform 93.8% (±1.3) 93.9% (±1.3) 93.8% (±1.3)
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Figure 7.  Heat maps of the differential entropy of action potential distributions for experiments with EC.
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Figure 8.  Heat maps of the differential entropy of action potential distributions for experiments with EO.
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Figure 9.  Heat maps of the differential entropy of action potential distributions when performing TASK.
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