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Phylogenetic Networks as Circuits
With Resistance Distance
Stefan Forcey* and Drew Scalzo

Department of Mathematics, The University of Akron, Akron, OH, United States

Phylogenetic networks are notoriously difficult to reconstruct. Here we suggest that it

can be useful to view unknown genetic distance along edges in phylogenetic networks

as analogous to unknown resistance in electric circuits. This resistance distance,

well-known in graph theory, turns out to have nice mathematical properties which allow

the precise reconstruction of networks. Specifically we show that the resistance distance

for a weighted 1-nested network is Kalmanson, and that the unique associated circular

split network fully represents the splits of the original phylogenetic network (or circuit).

In fact, this full representation corresponds to a face of the balanced minimal evolution

polytope for level-1 networks. Thus, the unweighted class of the original network can

be reconstructed by either the greedy algorithm neighbor-net or by linear programming

over a balanced minimal evolution polytope. We begin study of 2-nested networks with

both minimum path and resistance distance, and include some counting results for

2-nested networks.

Keywords: phylogenetic network, resistance, linear program (LP), polytope, circuit

1. INTRODUCTION

Consider an electrical circuit: a network made of wires joining resistors in parallel and in sequence,
with some portion hidden inside an opaque box. It is not always possible to determine that portion
by testing the visible leads. However, we prove here that if the hidden portion has a particular
form made of connected cycles, and we can test the resistance between all the pairs of leads,
then the lengths and connected structure of the cycles in the circuit are uniquely determined. The
mathematics used to recover that circuit is more typically found in work on phylogenetic networks.

Modeling heredity as the flow of genetic information suggests that mutations in DNA might be
analogous to resistance in an electrical circuit. The weights of edges in a phylogenetic network can
represent genetic distances: if we have the genomes of the two endpoints of an edge then we can use
amodel ofmutation rates to calculate a real number distance. For several edges that form the unique
path between two taxon-labeled leaves, the total distance is the sum of those edge weights. Paths
between leaves are only unique if the network is a tree. When paths between are not unique, one
option is to take the distance to be that of the minimum length path. This option may correspond
to a parsimonious approach—assuming the least complicated history. This minimum path length
distance is studied for instance in Forcey and Scalzo (2020a).

Instead, however, a greater weight of an edge could represent a greater loss of information.
Dividing and rejoining of edges illustrates events such as speciation, recombination, or
hybridization. If the genetic information of an ancestor genome can be shared among descendants,
and then collaboratively recovered upon hybridization, then a different metric than minimum
distance may be appropriate. Here we consider weighted phylogenetic networks with the resistance
distance, or resistance metric. The distance between two leaves of the network is found by
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considering the edge weights as electrical resistance, obeying
Ohm’s law. The metric resistance distance for all nodes (not only
leaves) of a graph is introduced in Klein and Randić (1993),
and studied closely in subsequent papers such as Yang and
Klein (2015) and Yang and Klein (2019). To study graphs, the
resistance of each edge is often assumed to have unit value,
but the definitions allow any weight. We review the definitions
in section 2.2.3.

In Curtis et al. (1998) and Curtis and Morrow (1990, 1991),
the authors study circular planar graphs with boundary nodes
that are analogous to the leaves of our phylogenetic networks.
They consider resistance values (or conductivity) on the edges.
They prove that complete information about the linear map
which transforms electric current values at each boundary node
to electric current values at all the edges can be used in some
cases to recover the resistance values. In our applications there
is no way to know the complete map of boundary currents to
edge currents. However, we seek only to recover the graphical
structure of the network, not the original edge weights.

In Ejov et al. (2019), the authors consider the entire set of
resistance distances (again using unit values for edges), between
any pair of nodes (not only leaves.) They show that using this
metric is useful for discovering Hamiltonian cycles via algorithms
for the Traveling Salesman problem. There is a close connection
to our applications, since the algorithm neighbor-net can be
used as a greedy approach to the Traveling Salesman problem as
shown in Levy and Pachter (2011).

1.1. Main Results and Overview
In section 2, we start by reviewing Ohm’s law and resistance
distance. Thenwe review the relevant definitions ofmathematical
phylogenetics, many taken from other sources to help make
this paper self-contained. In section 3, we state and prove
the main results for 1-nested phylogenetic networks N. The
upshot is that when the distances between taxa are effective

FIGURE 1 | The total resistance from i to k is Ri,k =
R1R2

R1 + R2
+ R3 + R4. On the left is the circuit itself, on the right we see it as a pairwise circuit within a phylogenetic

network. Here we have chosen i to be an outgroup, so the network is rooted at the top and the downward direction is forward in time.

resistances based on unknown connections, then using well
known methods we can recover an unweighted circular split
network, which gives us the precise class of (unweighted) 1-
nested phylogenetic network. Specifically, this recovery is via the
(greedy) algorithm neighbor-net as described in Theorem 3.3 or
linear programming; see Theorem 4.5.

Several features of the resistance distance seem exactly suited
to phylogenetic networks with weighted edges. First, from
Theorem 3.1, the resistance distance of 1-nested phylogenetic
networks is Kalmanson, allowing the circular split network to

be uniquely reconstructed from the measured distances. Second,

from Theorem 3.2, that reconstructed circular split network

always displays precisely the same splits as the original network.

As a consequence, the trivial splits which are the traditional final
edges to the leaves of a phylogenetic network are automatically
guaranteed to be represented in the split network—this is
a condition beyond the basic Kalmanson condition. Finally,
triangular subgraphs are interchangeable with three-edge stars
when measuring resistance distance. This is known as the Y-1
transform, pictured in Figure 2. The Y-1 equivalence mirrors
the fact that triangles in a phylogenetic network, when attached
via bridges to the rest of the network, are indistinguishable
from degree-three tree-like vertices by the linear functionals used
for balanced minimal evolution. As well, the split networks are
bipartite, so triangle free.

In section 4, we review the balanced minimal evolution
polytopes, and show how our results can be interpreted
geometrically, in Theorems 4.2 and 4.5. In section 5, we point
out some interesting counterexamples and limiting cases, and
conjecture about how to extend our results to more complicated
networks. Section 5.1 contains some new results on 2-nested
networks with regard to the minimum path distance. Finally in
section 6, we consider qualifications of experimental distance
measurements in phylogenetics that would give justification for
assuming the resistance analogy to be valid in practice.
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2. DEFINITIONS AND CITED RESULTS

We start by reviewing some equations from electric
circuit theory.

2.1. Electricity
Given a conductive circuit with a power supply, the materials
have resistance R and the power causes a current I. The classic
Ohm and Kirchoff equations include: R = V/I and I = I1 +

I2. The first depends on the conductive material—it must be
experimentally verified. It relates the resistance in a circuit to the
constant voltage drop over the circuit and the constant current
in all of the circuit. The second states that total current must
equal the sum of circuit-parallel portions of that current after a
branching in the circuit. Together, these rules imply the law for
total resistance RT for a pair of circuit-parallel resistances R1,R2.
We have RT = R1R2/(R1 + R2), which we refer to as Ohm’s
law for parallel resistance. Also, the voltage drop over a closed
circuit must equal the total voltage: this implies that resistors in
series are summed to find the total resistance. We illustrate the
basic calculation of a total resistance in Figure 1. We illustrate
the implied Y-1 equivalence in Figure 2.

2.2. Phylogenetic Definitions
Many of the definitions and notes here are repeated (sometimes
verbatim) from Forcey and Scalzo (2020a) for the sake of
self-containment. For further reference, see Steel (2016) and
Gambette et al. (2017).

A split A|B is a bipartition of [n] = {1, . . . , n}. That is, A and B
are non-empty disjoint subsets whose union is [n]. The two parts
of a split are often called clades. If one clade of a split has only
a single element, we call that split trivial. A split system is a set s
of splits of [n] which contains all the trivial splits. We say a split
system s refines another split system s′ when s ⊃ s′. In this paper
all graphs are simple (no multi-edges) and connected.

Definition 2.1. An (unrooted) phylogenetic network on [n] is a
simple connected graph with:

i. Labeled leaves: n degree-1 vertices, labeled bijectively with the
elements of [n],

FIGURE 2 | The two networks shown here have identical resistance between

any two corresponding pairs of nodes at the three corners. Here

Ra =
R1R2

R1 + R2 + R3
,Rb =

R2R3

R1 + R2 + R3
, and Rc =

R1R3

R1 + R2 + R3
.

ii. Unlabeled nodes: all these must have degree larger than 2.

For the remainder of the paper, all phylogenetic networks are
assumed to be unrooted and without any edge directions.

A split A|B is displayed by a phylogenetic network N when
there is (at least) one subset of edges ofN whose deletion (keeping
all nodes) results in two connected components with A and B
their respective sets of labeled leaves. We call that collection
of edges a minimal cut displaying the split when the collection
contains no proper subset displaying the same split. A bridge is a
single edge which displays a split. A trivial bridge displays a trivial
split. A phylogenetic tree is a cycle-free phylogenetic network,
so every edge is a bridge. Figure 3 shows examples of splits
displayed, for the trees and their two generalizations described
here: phylogenetic networks and split networks. Recall that a
cycle in a graph is a path of edges that does not revisit any nodes
except for the node at which it starts and ends. The following is
defined in Gambette et al. (2017):

Definition 2.2. An unrooted phylogenetic networkN is called 1-
nested when each edge ofN is contained in at most one cycle, and
N is triangle-free—all cycles are of length greater than 3 edges.

A 1-nested phylogenetic network can be drawn in the
plane with its leaves on the exterior, which is referred to
as outer planarity. We consider two 1-nested networks to be
split-equivalent if they display the same set of splits. See Figure 4
for examples. Twisting a phylogenetic network around a bridge
(reflecting one side through the line of the bridge), or around a
cut-point node, does not change the list of splits. Any cyclic order
of the leaves seen around the exterior in some representative
drawing of a 1-nested phylogenetic network is said to be
consistent with that split system. Figure 7 shows examples. A
binary phylogenetic network is one in which the unlabeled nodes
each have degree 3. A phylogenetic network N refines another,
written N ≥ M, when the splits displayed by M are a subset
of those displayed by N. Several of these terms are exhibited in
Figure 7. Next we review the definition of another generalization
of a phylogenetic tree.

Definition 2.3. A split network displaying a split system s on [n]
is an embedding in Euclidean space of a simple connected graph,
also called s, with the following:

i. Labeled leaves: n degree 1 nodes are bijectively labeled by [n].
ii. Unlabeled nodes: these have degree larger than 1.
iii. A partition of the set of edges: the parts of this partition

are called split-classes. There is one split-class for each split
A|B in the system. It is required that for any two leaves, the
set of edges on a shortest path between them intersects each
split-class in at most one edge, and that the set of splits thus
traversed is the same for any shortest path between those
two leaves.

iv. The split-class of edges corresponding to a splitA|B comprises
a minimal cut displaying that split: deletion of those edges
results in two connected components with respective labeled
leaves A and B.

The resulting bipartite graph is often shown with each class of
edges embedded as a set of equal length parallel line segments.
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FIGURE 3 | Modified from a figure in Forcey and Scalzo (2020a). In a phylogenetic tree t, on the left, splits are always single edges. The highlighted edge is the split

{2, 3}|{1, 4, 5, 6, 7, 8, 9}. That same split is a pair of edges making a minimal cut in the 1-nested phylogenetic network N, center. Finally on the right, that same split is a

set of parallel edges in a circular split network s.

FIGURE 4 | A trio of equivalent 1-nested phylogenetic networks. All display the same set of splits. The highlighted edges display the same split in each network.

(Note: here parallel means geometrically parallel.) Alternate
definitions use colors; the edges in a split-class are colored alike,
as in, Dress et al. (2012) and Steel (2016). A split-class of size one
is a bridge. Two split networks are defined to be equivalent when
they represent the same split system.

Definition 2.4. A circular split system is a split system which
allows the embedding of a representative split network in the
plane, with the labeled nodes all on the exterior, and thus
arranged in a circular order. We refer to these representatives as
circular split networks.

Just as for phylogenetic networks, twisting a circular split
network around a bridge (reflecting one side through the line
of the bridge), or around a cut-point node, does not change
the list of splits. Any cyclic order of the leaves seen in some
representative circular split network is said to be consistent with
that split system. Two circular split networks are equivalent if
they display the same split system. For instance see Figure 5. The
following lemma is from Forcey and Scalzo (2020a), included
here without proof for the terminology that will be useful in the
next section.

Lemma 2.5. Given a circular split network s, the nodes and edges
adjacent to the exterior of the graph are a subgraph which is
invariant: that is, this exterior subgraph will be identical to the
exterior subgraph of any circular split network representing the
same set of splits as s.

Again for example see Figure 5. Introduced in Forcey and
Scalzo (2020a) is a subclass of circular split networks.

Definition 2.6. Forcey and Scalzo (2020a) An outer-path circular
split system is a split system whose representative circular split
networks have shortest paths between pairs of leaves which can
all be chosen to lie on the exterior of the diagram, that is, using
only edges adjacent to the exterior.

For examples, see Figure 6.

2.2.1. Functions for Unweighted Networks
The definitions in this section are repeated from Forcey and
Scalzo (2020a), but originate in Gambette et al. (2017).

Definition 2.7. For a 1-nested phylogenetic network N define
6(N) to be the circular split system made up of the splits
displayed by N. Thus the map 6 takes a 1-nested phylogenetic
network and outputs the set of splits displayed by N.

In Gambette et al. (2017), it is shown that 6(N) is a circular
split system, since it can be represented by a circular split
network, also referred to as6(N). Examples of representations of
6(N) are seen in Figure 8. Note that since the bridges in a split
network are invariant, every representation of6(N) will have the
same bridges: these will match the maximal set of bridges of any
representation of N. The range of 6(N) will be referred to as the
faithfully phylogenetic circular split networks.
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FIGURE 5 | Modified from a figure in Forcey and Scalzo (2020a). A trio of equivalent split networks. All three represent the same split system. The highlighted edges

display the same split in each network. The third is the invariant exterior subgraph of all three.

FIGURE 6 | Forcey and Scalzo (2020a) from the left, N and N′ are outer-path circular split networks. In contrast M and M′ are non-outer-path circular split networks.

FIGURE 7 | Here we see (A) a split system s, with only the non-trivial splits listed (trivial splits are assumed to be included), (B) a circular split network representing s,

(C) the exterior subgraph of s as a step in the process of applying L, (D) the output 1-nested phylogenetic network N = L(s), (E) the split system 6(N) displayed by N,

again showing only the non-trivial splits, and (F) a representative circular split network also referred to as 6(N). We see that 6(N) ≥ s, and that the cyclic orders

(1, 2, 3, 4, 5, 6) and (1, 2, 4, 3, 5, 6) are both consistent with N and with s.

From Forcey and Scalzo (2020a) and Gambette et al. (2017),
we repeat an algorithm for drawing a circular split network to
represent 6(N). Each split of N must correspond to a class
of parallel edges in 6(N). The simplest representing network
would just subdivide the edges of N to make a class for each
split, but we show how to construct a representative which
makes the splits more visible via bridges and parallelograms.
For m ≥ 5, each m-cycle in N is replaced by an m-marguerite:
a collection of exactly m2 − 4m parallelograms arranged in
a circle, each sharing sides with two neighbors, specifically
organized as follows: each node of the originalm-cycle is replaced
by a rhombus, and then each edge of the cycle is replaced
by m − 5 parallelograms in a row. The rows are attached
to the rhombi along adjacent edges of each rhombus, so that
the whole arrangement has m(m − 5) sides on the interior
of the original m-cycle, and m(m − 3) sides on the exterior.
Bridges are attached to the m remaining degree-2 vertices, one

at each of the rhombi that replaced the original m nodes of
the cycle.

Now for a function that takes circular split networks to
1-nested phylogenetic networks. This function is shown to exist
in Gambette et al. (2017), and described on the split networks
which are images of the function 6. In Durell and Forcey (2020)
and Forcey and Scalzo (2020a), we define the general function L
as follows:

Definition 2.8. For a circular split system s, define L(s) to be the
smoothed exterior subgraph of a representative split network s.
Thus, L takes a circular split system (with a given representation)
and outputs a 1-nested phylogenetic network. The operation of L
is easy to describe as (1) erasing the interior edges of split network
s and (2) smoothing, which here refers to removing any degree-
2 nodes that are seen in the exterior subgraph. Such a node is
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FIGURE 8 | Examples of the functions 6 and L.

removed, but the two edges adjacent to it are joined to form a
single edge.

Recall that the nodes and edges adjacent to the exterior
of a circular split network are an invariant subgraph for the
split system, so the function L is well-defined on split systems.
Examples exhibiting 6 and L are in Figures 7, 8.

Remark 2.9. Note that by its construction, L preserves bridges
and cut-point nodes. When restricted to phylogenetic trees, the
functions L and 6 are both the identity. In Forcey and Scalzo
(2020a), several other properties of the two functions are listed,
in the process of showing that L and 6 form a Galois reflection,
as in Erné et al. (1993). These include the facts that L is surjective
but not injective, 6 is injective but not surjective, and that L ◦ 6

is the identity map.

2.2.2. Weights and Metrics
We continue to repeat definitions from Forcey and Scalzo
(2020a). Weighted networks can be constructed in two distinct
ways: by assigning non-negative real numbers to splits or
to edges.

Definition 2.10. A weighted phylogenetic network N has non-
negative real numbers assigned to its edges, described by a weight
function wN .

Definition 2.11. A weighted split network s has non-negative
weights assigned to each split, by a weight function ws.
Equivalently, ws assigns a weight to every edge, with the
requirement that each edge in a (geometrically parallel) split-class
of s has the same weight.

Definition 2.12. For a weighted phylogenetic network N, or a
weighted split network s, we denote by N, respectively s, the
unweighted networks found by forgetting the weights.

As in Forcey and Scalzo (2020a): a pairwise distance function
assigns a non-negative real number to each pair of values from
[n]. We call the lexicographically listed outputs for distinct pairs
a distance vector d, with entries denoted dij = d(i, j) = d(j, i) for
each pair of taxa i 6= j ∈ [n] (also known as a dissimilarity matrix,
or discrete metric when obeying the metric axioms.)

Definition 2.13. When the distance vector is Kalmanson, or
circular decomposable it means there exists a cyclic order of [n]
such that for any subsequence (i, j, k, l) of that order, d obeys
this condition:

max{dij + dkl, djk + dil} ≤ dik + djl.

Definition 2.14. Given a weighted split system s on [n] we can
derive a metric ds on [n],

ds(i, j) =
∑

i∈A,j∈B

ws(A|B)

where the sum is over all splits of s with i in one part and j in the
other. The metric is often referred to as the distance vector ds.

It is well-known that Kalmanson metrics are in one-to-
one correspondence with weighted circular split networks.
Specifically, from Steel (2016), and as repeated in Forcey and
Scalzo (2020a), we have the following:

Lemma 2.15. A distance vector d is Kalmanson with respect to a
circular order c if and only if d = ds for s a unique weighted circular
split system s, (not necessarily containing all trivial splits) with each
split A|B of s having both parts contiguous in that circular order c.

Definition 2.16. We define the minimum path distance vector
dN for a weighted 1-nested phylogenetic network N, where

dN(i, j) = min
p

{
∑

e∈p

wN(e) | p is a path connecting i, j}

where the minimum is over paths p from leaf i to leaf j, and each
sum is over edges in one of those paths. Examples are calculated
in Figures 9, 17.

2.2.3. Resistance Distance
Now we define a new kind of pairwise distance functions on the
leaves of a phylogenetic network. Isolating sections of circuit-
parallel paths between two leaves allows the Ohm relations,
together with the Y-1 transformation, to be used to find the
effective resistance between those leaves. A simplifying fact is that
the resistance between two leaves only depends on the resistances
of edges that are in paths between those leaves. (We use the
term pairwise circuit Pij to refer to the edges that are in any path
between leaves i, j. For example see Figure 15.)

There is a well-known alternate method for calculating
effective resistances. As defined in Klein and Randić (1993) and
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FIGURE 9 | Example of the action of Sw. Here

dN = (4, 5, 6.5, 6.5, 7, 4,

3, 4.5, 4.5, 5, 4,

3.5, 3.5, 4, 5,

1, 3.5, 6.5,

3.5, 6.5,

7)

.

Bapat (2004) the resistance distance matrix for a graph G with n
total vertices (leaves and non-leaf nodes) is given by:

�ij = Ŵ−1
ii + Ŵ−1

jj − 2Ŵ−1
ij

where Ŵ = L + 1/n, the Laplacian matrix of G plus the n × n
matrix with 1/n for every entry. Our resistance distance for
phylogenetic networks uses entries of the matrix �.

Definition 2.17. We define the resistance distance vector dRN for
a positive weighted phylogenetic network N, where dRN(i, j) is the
resistance distance on the graph between leaves i and j. That is,
dRN(i, j) = �ij for leaves i and j. The distance can also be calculated
using the basic relations of Ohm’s law. Examples of the resistance
distance vector are in Figures 10, 20, 22.

2.2.4. Weighted Functions
We next define functions between the weighted split networks
and the weighted phylogenetic networks. As previously explained
in Durell and Forcey (2020) and Forcey and Scalzo (2020a), we
begin by extending the function L to a weighted version Lw.

Definition 2.18. Forcey and Scalzo (2020a) For a weighted
circular split network s we define Lw(s) to be the 1-nested
phylogenetic network L(s) (the smoothed exterior subgraph of
the unweighted version of s), with weighted edges. The weight
of an edge in the image is found by summing the weights of splits
which contribute to that edge. Let ps(e) be the set of splits A|B
of s, such that A|B is represented by edges in s one of which is
used to form the edge e in L(s). [Recall that e in L(s) is formed by
smoothing a path of edges from the exterior subgraph of s.] If ws

is the weight function on s then the weight function on Lw(s) is:

wLw(s)(e) =
∑

A|B∈ps(e)

ws(A|B).

By this definition we have the following (from Forcey and Scalzo,
2020a):

Lemma 2.19. Lw(s) = L(s).

For an example of Lw see Figure 18. From Forcey and Scalzo
(2020a), we have the fact that the minimum path distance is
Kalmanson for planar networks. Therefore, as in that source, we
can make the following:

Definition 2.20. Given a weighted unrooted phylogenetic
network N that can be drawn on the plane with leaves on the
exterior, we define Sw(N) to be the unique weighted circular split
network with the same minimum path distance vector asN. That
is, dN = dSw(N). This image is calculable, for instance, as the
circular split network Sw(N) = N (dN), whereN is the neighbor-
net algorithm defined by Bryant et al. (2007) and implemented
as in Splits-Tree (Huson, 1998). Thus, to find Sw(N) we first
calculate the minimum path distance vector, dN , and then use
any algorithm (such as neighbor-net) to find the split network.

For an example see Figure 9. Another example of Sw, on a 2-
nested network, is in Figure 18. When we restrict to the domain
of weighted circular split networks arising from weighted 1-
nested networks, the codomain of Sw is the outer-path circular
split networks, and the distance vector is preserved by the map
Lw. Specifically from Forcey and Scalzo (2020a) we have:

Lemma 2.21. For any weighted 1-nested phylogenetic network N,
if s = Sw(N) then s is outer-path and thus dLw(s) = ds.

Sw is defined using the minimum path distance metric.
Similarly, since we will see that the resistance distance is
Kalmanson in Theorem 3.1, then by Lemma 2.15 we can make
the following definition using resistance distance.

Definition 2.22. For a weighted 1-nested phylogenetic network
N we define Rw(N) to be the unique weighted circular split
network corresponding to the resistance distance dRN . This image
is calculable, for instance, as the circular split network Rw(N) =
N (dRN), whereN is the neighbor-net algorithm defined by Bryant
et al. (2007) and implemented as in Splits-Tree (Huson, 1998).
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FIGURE 10 | Example of the function Rw which takes a weighted phylogenetic network and outputs the split network associated to its resistance distance.

Neighbor-net can be run on input dRN, or the results of Theorem 3.2 can be used: for instance the value 0.95 for the split {1, 2, 3, 7}|{4, 5, 6} is found by

95(1)/(95+1+1+1+1+1). Here

dRN = (3.99, 4.96, 6.41, 6.41, 6.84, 3.99,

2.99, 4.46, 4.46, 4.91, 3.96,

3.49, 3.49, 3.96, 4.91,

1, 3.49, 6.34,

3.49, 6.34,

6.75)

.

The algorithm neighbor-net is guaranteed to produce Rw(N)
using input dRN .

There are several algorithms for finding the unique circular
split system associated to a Kalmanson network; here we
recommend neighbor-net and its implementation in Huson
(1998). That algorithm finds both the circular split network and
its weighting. However, for a weighted 1-nested phylogenetic
network N, due to our Theorems 3.1 and 3.2 we can calculate
the weighted circular split network Rw(N) directly, bypassing
both the calculation of the metric and the use of neighbor-net.
The function Rw is shown by example in Figure 10. For another
example, on a 2-nested network that happens to be Kalmanson,
see Figure 22.

Remark 2.23. When restricted to phylogenetic trees, the
functions Lw and Sw are both the identity, and Sw = Rw. In
Forcey and Scalzo (2020a), several other properties are listed, in
the process of showing that Lw and Sw form a Galois coreflection
when restricted to weighted 1-nested phylogenetic networks and
outer-path circular split networks. These include the facts that Lw
is injective but not surjective, Sw is surjective but not injective,
and Sw ◦ Lw is the identity map.

3. KALMANSON NETWORKS

The main result in this section is that the resistance metric is
Kalmanson for 1-nested phylogenetic networks, and that the
unique associated split network has the same exterior form as the
original 1-nested phylogenetic network. First we show that dRN

obeys the Kalmanson condition: there exists a circular ordering
of [n] such that for all i < j < k < l in that ordering,

max{dN(i, j)+ dN(k, l), dN(j, k)+ dN(i, l)} ≤ dN(i, k)+ dN(j, l).

Theorem 3.1. Given a 1-nested phylogenetic network N with
positive weighted edges and n leaves, the resistance metric on its
leaves is Kalmanson.

Proof: The cyclic order that we need to exist in order to
demonstrate the Kalmanson property is found by choosing any
cyclic order of [n] consistent with N. That is, we choose an outer
planar drawing ofN and use the induced cyclic order of the leaves
arranged around the exterior of that drawing.

Begin by noting that for each pair of the four leaves i, j, k, l
there is a sub-graph, called the pairwise circuit, for instance
Pik, made of all the edges which are part of any path between
those two leaves. The pairwise circuit will contain perhaps some
cycles—it will in fact be a series of cycles connected by paths. We
are especially interested in the intersection I of the two “crossing”
pair circuits, I = Pik ∩ Pjl. There are three basic cases to consider.

Case 1: The intersection I is a single cycle. Here the four leaves
i, j, k, l have pairwise circuits that reach the cycle I at four different
nodes. Notice that any of the two pairwise circuits summed in the
Kalmanson condition will include all four of the smaller pairwise
circuits from each of the four leaves i, j, k, l to the node of I
closest to that respective leaf. We will call those closest nodes
vi, vj, vk, vl. The three sums in the Kalmanson condition all share
some terms in common: those which come from the weighted
edges in pairwise paths between the four leaves and the respective
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FIGURE 11 | Case 1 of Theorem 3.1: the highlighted edges are the

intersection I of the pairwise circuits between leaves i, k and j, l.

nodes vi, vj, vk, vl. Discarding these common terms, we are left
with terms that come from the weighted edges in I. Thus, the only
differences between the three sums in the Kalmanson condition
arise from the different contributions of the cycle I. We denote
by a, b, c, d the cumulative edge weights between the four nodes
vi, vj, vk, vl, following the cyclic order. For instance, in Figure 11,
a is the weight of the edge between vl and vi and b is the sum of
the weights on edges of I between the nodes vi and vj.

Thus, we can write the sums explicitly:

dRN(i, j)+ dRN(k, l) = dRN(i, vi)+ dRN(j, vj)+ dRN(k, vk)+ dRN(l, vl)

+
b(a+ d + c)

a+ b+ c+ d
+

d(a+ b+ c)

a+ b+ c+ d
;

dRN(j, k)+ dRN(i, l) = dRN(i, vi)+ dRN(j, vj)+ dRN(k, vk)+ dRN(l, vl)

+
c(a+ b+ d)

a+ b+ c+ d
+

a(b+ c+ d)

a+ b+ c+ d
;

dRN(i, k)+ dRN(j, l) = dRN(i, vi)+ dRN(j, vj)+ dRN(k, vk)+ dRN(l, vl)

+
(a+ d)(b+ c)

a+ b+ c+ d
+

(a+ b)(c+ d)

a+ b+ c+ d
.

After discarding the common terms, we consider just the
remaining sums of fractions. All the edge weights are positive,
and the denominators of all three are the same. Clearly the third
sum, when expanded, has a numerator larger than either of the
first two.

Case 2: The intersection I is a series of cycles containing at
least two cycles. In this case there are two possible ways that the
inequalities are satisfied, depending on which pair of consecutive
leaves (i, j or j, k) reach the same end of I, that is, have their
attaching nodes (vi, vj or vk) in I at the same end of I. In
Figure 12, below we choose i, j to do so, on the left-hand cycle,
but the other option is similar. Checking this case can be done
visually for the equality: dRN(i, k) + dRN(j, l) = dRN(i, l) + dRN(j, k)
since the two sums end up using precisely the same effective
resistances. That is, both dRN(i, k)+ dRN(j, l) and d

R
N(i, l)+ dRN(j, k)

have all terms in common: both the portions from the paths
outside of I as in case 1, and the summands contributed by I,
which are the terms:

c(a+ b)

a+ b+ c
+

a(b+ c)

a+ b+ c
+

x(w+ y)

w+ x+ y
+

w(x+ y)

w+ x+ y
.

The inequality dRN(i, k) + dRN(j, l) > dRN(i, j) + dRN(k, l) (for the
subcase where again i, j reach the same end of I) is easily checked.

FIGURE 12 | Case 2 of Theorem 3.1: the highlighted edges are the

intersection I of the pairwise circuits between leaves i, k and j, l.

FIGURE 13 | Case 2 of Theorem 3.1 continued. Here vi = vj and vk = vl .

FIGURE 14 | Case 3 of Theorem 3.1.

Here, after discarding the terms in common, the larger sum
contains more terms than the smaller (from the parts of I not
in the pairwise circuits for i, j and k, l). As well, when the smaller
sum has terms with denominator matching a term in the larger,
the numerator is indeed larger in the latter. For instance, in
Figure 12, after discarding the common terms contributed by
the paths outside of I, the sum dRN(i, j) + dRN(k, l) has the sum
contributed by I:

b(a+ c)

a+ b+ c
+

y(w+ x)

w+ x+ y
.

The numerator here is exceeded by the sum contributed by I in
dRN(i, k) + dRN(j, l) as just listed above. Finally, notice that there
are sub-cases of Case 2 in which the smaller sum will have fewer
or no terms at all contributed by I; these occur when I includes a
path at one end or at both ends. See Figure 13 for example.

Case 3: The intersection I is a path. In this case it is quickly
verified that the Kalmanson inequality is satisfied as an equality.
See Figure 14 for example.

The fact that effective resistance distance is a Kalmanson
metric immediately suggests that it would be a good candidate
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FIGURE 15 | The highlighted subgraph is the pairwise circuit Pij .

for modeling weighted phylogenetic networks. First there is the
intuition from experience that if two pathways of heredity exist,
the ancestor individual or species will havemore in commonwith
the extant individual or species. Thus, mutations in the genetic
code play the role of resistors to the flow of information.

Secondly, Kalmanson metrics are known to be the only
example for which each metric is represented uniquely by a
circular split system, as seen in Lemma 2.15. In the case of the
resistance distance, the associated unique split network has an
additional advantage: it is guaranteed to represent faithfully every
split displayed by the original 1-nested network.

Theorem 3.2. Given a 1-nested phylogenetic network N with
positive weighted edges and n leaves, and letting dRN be the
resistance metric on the n leaves, then the unique associated split
network Rw(N) = N (dRN) displays precisely the same splits as
displayed by N.

Proof: A split A|B can be displayed by N in three possible ways:
either it is displayed by a single bridge e with weight w(e), by a
pair of edges both in the same cycle c with respective weights
ac and xc, or in more than one way. Let the weight of a specific
display of a split in N be w(e) in the first case and (acxc)/zc in
the second case, where zc is the sum of all the weights in the
cycle. We claim: if the split A|B in 6(N) is assigned the sum
of the weights of all distinct displays of that split as displayed
in N, then the resulting distance metric d from the weighted
split network thus constructed is indeed dRN . Therefore, we will
conclude, since Theorem 3.1 shows that dRN is Kalmanson, that
the weighted split network thus constructed is equal to the unique
split network corresponding to dRN , as found for instance by the
algorithm neighbor-net.

First we check that the claim holds. Consider the pairwise
circuit Pij in N for a given pair i, j of leaves. It will be a series
of paths and cycles, as seen for example in Figure 15. Thus each
cycle c in Pij will be split into two circuit-parallel paths pc and
qc of respective lengths p, q. Both paths begin and end at the two
nodes where that cycle is attached to the rest of the series. Now
the resistance distance dRN(i, j) will be the sum of the weights of
the (non-circuit-parallel) paths, and of the effective resistances
of the circuit-parallel paths. Specifically, every weighted edge of

Pij not in a cycle will contribute its weight to the sum, and every
weighted edge in a cycle of Pij will appear in one of two factors
in the numerator of the term giving the effective resistance from
those circuit-parallel paths. We see that

dRN(i, j) =
∑

e∈Pij

w(e)+
∑

c∈Pij

(c1 + · · · + cp)(cp+1 + · · · + cp+q)

c1 + · · · + cp+q

=
∑

e∈Pij

w(e)+
∑

c∈Pij

∑

cm∈pc
cr∈qc

cmcr

zc

where c1, . . . , cp and cp+1, . . . , cp+q are the weights of the circuit-
parallel paths of cycle c ∈ Pij, with zc = c1 + · · · + cp+q being
the total weight of c. That is, we expand the numerator of each
term from a cycle. Now, the distance metric corresponding to the
weighted split network we constructed using 6(N) has distance

d(i, j) =
∑

A|B∈N
i∈A,j∈B

w(A|B)

Now splits in N, and thus in 6(N), which separate leaves i, j are
precisely those displayed by a bridge in Pij or by a pair of circuit-
parallel edges in a cycle of Pij. Thus, using the weights for splits
(as stated above):

w(A|B) =
∑

A|B disp. by e

w(e)+
∑

A|B disp. by
cm ,cr∈c

cmcr

zc

in the split metric, gives us the desired claim: d = dRN .
Then we conclude that since the weighted circular split

network associated to the original Kalmanson metric dRN is the
unique such network where the split metric equals the original
Kalmanson metric, thenN (dRN) will have precisely the splits of N
and thus of 6(N).

Remark: The fact that we can take a weighted 1-nested
phylogenetic network N and build a weighted circular split
network s which has the same metric, ds = dRN , implies another
proof that the resistance distance is Kalmanson. Since the circular
split network is planar, and the split metric on it is the same as
the minimum path network on it, that metric is guaranteed to
be Kalmanson. However, our original proof has the advantage
that we see which of the inequalities are strict, and which are
actually equalities.

The first important implication of these theorems is that the
resistance distance on any 1-nested phylogenetic network N is
precisely represented by a unique circular split network N (dRN).
Exactly all the splits displayed by the original N are present in
N (dRN). Thus the function L applied to the unweighted version of
N (dRN) returns the unweighted version of N itself.

Theorem 3.3. Given weighted 1-nested N, we have thatN (dRN) =

6(N). Thus, L(N (dRN)) = N.
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FIGURE 16 | Using N from Figure 10, we find N′ as in the proof of

Theorem 4.5. In the vector x(N) the first component is x1,2 = 21−0, since there

are no non-trivial bridges traversed between leaves 1 and 2. As well, there are

two consistent circular orders, with leaves 1 and 2 adjacent, found by twisting

around the single non-trivial bridge. The 19th entry is x5,6 = 21−1, since the

path between leaves 5 and 6 traverse the non-trivial bridge. Here the minimum

path distance vector is:

dN = (3.99, 4.96, 6.43, 6.43, 6.84, 3.99,

2.99, 4.46, 4.46, 4.93, 3.96,

3.49, 3.49, 3.96, 4.93,

1, 3.49, 6.34,

3.49, 6.34,

6.75)

.

Proof: The first equality follows directly from Theorem 3.2, since
neighbor-net is guaranteed to output the splits of the unique
circular split network associated to the Kalmanson metric given
by the resistance distance, which is indeed all the splits displayed
by the network N. Then from Forcey and Scalzo (2020a), we
have the second equality since L ◦ 6 is shown there to be the
identity map.

The first application implied by this result is that when using
neighbor-net on a measured distance matrix, if we assume that
it reflects a resistance distance, we can always recover the form
of the original network. The weights of splits in the result
of neighbor net are interesting, they are in fact terms in the
expansion of the calculated resistance distance. However, the first
advantage we see is that the original unweighted phylogenetic
network can be directly recovered by taking the exterior of the
result of neighbor-net.

As an alternative to neighbor-net, there are polytopes which
can serve as the domain for linear programming that finds
the best-fit 1-nested phylogenetic network for a measured
distance matrix.

4. RESISTANCE DISTANCE AND
POLYTOPES

In Durell and Forcey (2020), the authors describe a new family
of polytopes. This family lies between the Symmetric Traveling
Salesman Polytope [STSP(n)] and the Balanced Minimum
Evolution Polytope [BME(n)]. Our polytopes are called the level-
1 network polytopes BME(n, k) for 0 ≤ k ≤ n − 3. All
have dimension

(n
2

)

− n. In Forcey and Scalzo (2020a), we
looked at implications of the Galois connections studied there
for these polytopes, especially using Sw, the function based
on minimum path distance. It turns out that if we assume
an input distance metric represents the resistance distance

on a 1-nested phylogenetic network N, then the result of
neighbor-net or of linear programming on a BME polytope is a
network accurately showing all the splits of N. Also, neighbor-
net is statistically consistent, as shown in Bryant et al. (2007).
Therefore, as a measured set of pairwise distances approach
the resistance distance of N, the output of neighbor-net will
approach the faithfully phylogenetic circular split network N.
This is in contrast to minimum path distance where some genetic
connections are assumed to be negligible, and then are lost in the
output of neighbor-net. However, the theorems about minimum
path distance, specifically Theorems 8, 9, and 11 of Durell and
Forcey (2020), play an important role in the proof of Theorem 4.5
here. Here we repeat some of the same introductory definitions
and remarks and then extend the results to resistance distance.

Definition 4.1. For a binary, 1-nested phylogenetic network N,
(weighted or unweighted) the vector x(N) is defined to have
lexicographically ordered components xij(N) for each unordered
pair of distinct leaves i, j ∈ [n] as follows:

xij(N) =











2k−bij if there exists cyclic order c

consistent with N;with i, j adjacent in c,

0 otherwise.

where k is the number of bridges in N and bij is the number of
bridges traversed in a path from i to j. For example, see Figure 16.

The convex hull of all the x(N) such that binary N has n
leaves and k nontrivial bridges is the level-1 network polytope
BME(n, k). As shown in Durell and Forcey (2020), the vertices
of BME(n, k) are precisely the vectors x(N) for N binary with
n leaves and k nontrivial bridges. In light of Theorems 3.1
and 3.2, we can now characterize the vertices in terms of
resistance distance:

Theorem 4.2. Every 1-nested phylogenetic network found as an

image L[Rw(N)] gives rise to a face of BME(n, k) for some k. In
particular, the vertices of the polytopes BME(n, k) correspond to

images L[Rw(N)] which exhibit k non-trivial bridges, for weighted
1-nested networks N with n leaves and such that any node not in a
cycle has degree three.

Proof: The image Rw(N) will faithfully represent all splits, as

seen in Theorem 3.2. Thus, Rw(N) will be faithfully phylogenetic,
in the range of 6. Specifically, the function Rw will introduce
bridges that separate all cycles, thus insuring that any node in
a cycle will have degree three. Therefore, if the non-cycle nodes

of N are degree three, L[Rw(N)] will be a binary unweighted
1-nested phylogenetic network.

Also as shown in Durell and Forcey (2020) and repeated in
Forcey and Scalzo (2020a), an equivalent definition of the vector
x(N) is the vector sum of the vertices of the STSP(n) which
correspond to cyclic orders consistent with N. Recall that the
vertices of STSP(n) are the incidence vectors x(c) for each cyclic
order c of n, where the i, j component is 1 for i and j adjacent in
the order c, 0 otherwise. This equivalent definition for binary 1-
nested phylogenetic networksmay also be applied to any 1-nested
phylogenetic network:
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Lemma 4.3. For a 1-nested phylogenetic network N, the vector
x(N) is equal to

∑

c x(c) where the sum is over all cyclic orders c of
[n] consistent with N.

We point out, for the sake of attribution, that for phylogenetic
trees t (with nodes of any degree), Lemma 4.3 with N = t gives a
formula for x(t) that agrees with the definition of the coefficient
nt in Semple and Steel (2004), in the proof of Theorem 4.2 of
that paper.

In Forcey and Scalzo (2020a), it is shown that the minimum
path distance vector for a 1-nested phylogenetic network may
be seen as a linear functional, and that it is minimized over the
BME(n, k) polytope. Specifically,

Theorem 4.4. Given any weighted 1-nested phylogenetic network
N with n leaves, the product x(N̂)·dN is minimized over BME(n, k)
precisely for the unweighted binary 1-nested networks N̂ with k

bridges such that Sw(N) ≤ 6(N̂).

Here N̂ is used to denote a variable binary 1-nested
phylogenetic network, taking values from the set of networks

which refine Sw(N). By this refinement we mean taking values
from the set of networks with a superset of the set of splits
displayed by Sw(N). Now we can extend that result to resistance
distances. In fact it becomes stronger: binary networks can be
directly recovered even when they have long edges, since the
action of Rw preserves all splits. Precisely, we have:

Theorem 4.5. The minimum of x(N) · dRN is achieved at the face

of BME(n, k) with vertices x(N̂), for unweighted binary networks
N̂ with k bridges such that N̂ refines N.

Proof: We claim that x(N) · dRN is the same as x(N) · d′N for
N′ = Lw(Rw(N)). That is because the leaves which are adjacent
in some circular order consistent with N and thus in Rw(N)
have distance between them which is the sum of the splits that
separate them. Since those leaves are adjacent, the shortest path
of splits between them will lie on the exterior of Rw(N). In fact,
for adjacent i, j an edge of a cycle on the path between them

with weight a, contributes a(b+c+d+...)
a+b+c+d+...

to dRN(i, j), where the other
edges of that cycle have weights b, c, d, .... Bridges e between
them contribute their weights w(e). These values are the same
as those for the splits displayed between i, j, seen in the proof of
Theorem 3.2. Therefore:

x(N) · dRN =
∑

c

x(c) · dRn

=
∑

c

x(c) · ds, for s = Rw(N)

=
∑

c

x(c) · dN′ for N′ = Lw(Rw(N))

= x(N) · dN′

We know from Theorems 8, 9, and 11 of Durell and Forcey
(2020) that for any weighted 1-nested phylogenetic network M
with n leaves, the product x(M̂) ·dM is minimized over BME(n, k)
precisely for binary networks M̂ with k bridges such thatM ≤ M̂.

Thus, in our case we have x(N̂) · dN′ is minimized over
BME(n, k) precisely for the unweighted binary networks N̂ with

k bridges such that N′ ≤ N̂. Here, (N′) = N, since Lw(Rw(N)) =
N. The inequality here is refinement.

For example compare Figures 10, 16. It is easily checked that
although dN′ 6= dRN , we have x(N) · dN′ = x(N) · dRN = 51.4

The implication then is that using either linear programming
on BME(n, 0) or neighbor-net, assuming that the resistance
metric is valid, the resulting split network gives the true exterior
form of the original 1-nested phylogenetic network.

5. 2-NESTED NETWORKS,
COUNTEREXAMPLES, AND
CONJECTURES

In this section, we examine functions between 1-nested and 2-
nested networks, and circular split networks. We point out how
well the various distance measurement distinguish or do not
distinguish between network types, via examples. Then we make
some conjectures based on observations.

5.1. 2-Nested Networks
Toward the end of Gambette et al. (2017), the authors ask:
is it possible to characterize split systems induced by more
complex uprooted networks such as 2-nested networks (i.e.,
networks obtained from 1-nested networks by adding a chord
to a cycle)? At first we interpret this question to be about the
result of applying Sw. That is, we specialize the question to
asking more specifically which kinds of split systems correspond
to 2-nested networks, via assigning them a weighting, finding
the minimum path distance, and then finding the unique
corresponding circular split network? The question is still open,
but we begin by carefully defining 2-nested networks and making
some initial observations.

Definition 5.1. For N an unrooted phylogenetic network, if
every edge of N is part of at most two cycles, we call it a 2-nested
network. By this definition, 2-nested networks contain 1-nested
networks as a subset, which in turn contain 0-nested networks,
which are phylogenetic trees. By strict k-nested networks we
mean k-nested but not (k − 1)-nested. We will add the extra
descriptor of triangle-free-ness explicitly when desired.

A weighted 2-nested network is shown in Figure 17, with its
minimum path distance vector.

The first case we note is that weighted 2-nested networks
often have images under Sw that are not outer-path circular split
networks. For instance see Figure 18. Therefore, by Lemma 5.4,
2-nested networks can lead to split networks distinct from those
induced via Sw from 1-nested networks. Also, applying Sw and
then Lw in sequence will produce a weighted 1-nested network
that has a different distance vector than the original.

However, not all weighted 2-nested networks lead to distinct
images from the 1-nested networks, under Sw. In fact we have
the following:
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Theorem 5.2. For every weighted 1-nested networkM, there exists
some (not unique) weighted 2-nested network N such that the
minimum path distance vectors coincide: dM = dN .

Proof: Consider a 1-nested network M with positive values for
its edges and a 2-nested network N that has the same exterior
subgraph. LetN also have the same positive values for its exterior
edges, but a positive value for its internal chord large enough such
that on paths of least distance the internal chord of the 2-nested
network is never used. Therefore, both networks will have the
same distance vector dM = dN .

5.1.1. Counting 2-Nested Networks
We begin counting the total number of unweighted binary,
triangle free, 2-nested networks. The numbers of unweighted
binary, triangle free, 2-nested networks exist with n leaves are:
6, 120, 2,790 for n = 4, 5, 6.

First, consider structures with 4 leaves (n = 4). We start by
considering the unlabeled pictures, and then count the ways to
assign the values 1, . . . , 4 to the leaves. In fact, we can simplify
further by finding the unlabeled 1-nested networks and showing
the potential locations of chords simultaneously in each picture.
There is one such unlabeled picture for n = 4 as shown in

FIGURE 17 | The minimum path distance vector for the weighted 2-nested

network N is dN = (4, 7, 5, 8, 7, 5, 7, 10, 9, 7, 13, 12, 10, 9, 3). Note that

d14 = 5, for example, referring to the shortest distance between leaves 1

and 4.

Figure 19, with two possible internal chords. There are 3!
2 ways

to arrange the leaves before choosing a chord. Therefore, the total
number of unweighted binary triangle-free 2-nested networks
with n = 4 leaves is (2) 3!2 = 6.

For n = 5 the possible internal structures are shown in
Figure 19. There are 5 possible internal chords for one structure,
and 2 possible internal chords for the other. The number of ways
to arrange the leaves of the first structure is n!, and the second
structure is (n− 1)! (since the first is not rotationally symmetric.)
However, rearranging the leaves clockwise and counterclockwise
yield the same rearrangement, so we must then divide by 2 to
eliminate half of the arrangements garnered from the counting
of those leaves. Finally, if there were a bridge connecting any
components of the structure, simply divide by 2 for the twisting
around that bridge. The counting for each n = 5 structure in
Figure 19 is as follows:

5(2)

2

4!

2
= 60,

4(1)

2

5!

2

1

2
= 60.

The total number of networks for n = 5 is = 60 + 60 =120.

For n = 6 the counting for each structure is as follows (from a to
f as pictured in Figure 19):

(a) 6(3)
2

5!
2 = 540,

(b) (2)(2) 4(1)2
6!
2
1
2
1
2 = 720,

(c) 4(1)
2

6!
2
1
4
1
2 = 90,

(d) 5(2)
2

6!
2
1
2 = 900,

(e) 4(1)
2

6!
2
1
4
1
2 = 180,

(f) 4(1)
2 (6!) 14 = 360.

The total number of networks for n = 6 is = 540 + 720 + 90 + 900
+ 180 + 360 = 2,790. Notice for (f), reading the labels clockwise
is not equivalent to reading them counterclockwise due to the

FIGURE 18 | Here the output of Sw (N) is a non-outer-path circular split network, and its image under Lw has a distance vector that does not match the original: for

instance dN (1, 4) = 4 but the distance from 1 to 4 in Lw [Sw (N)] is 5.
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FIGURE 19 | For n = 4, there is only one exterior structure with two internal chords possible (as seen by the dotted lines above). For n = 5, there exist two exterior

structures. For n = 6 there are six such structures, labeled (a–f).

tree structures. This means we just consider 6! and not 6!
2 . We

ask whether there is a general formula for the number of binary
triangle-free 2-nested networks with n leaves. Alternatively, we
might look for a 2-variable formula. In Durell and Forcey (2020),
there is a 2-variable formula for binary triangle-free 1-nested
networks with n leaves and k non-trivial bridges, whichmay serve
as a model:

(

n− 3

k

)

(n+ k− 1)!

(2k+ 2)!!
.

5.2. Indistinguishable Weightings
Resistance distance metrics on a 1-nested phylogenetic network
are not in bijection with edge weightings, but the split-
equivalence class is an invariant of those edge weights. That is,
if two networks N and N′ have the same resistance distance
metric dRN = dRN′ , this does not imply that N = N′, but it does

imply that N = N′. The latter fact is implied by Lemma 2.15
and the theorems of section 3, and we can see the former
fact via counterexample. In Figure 20, we show two weighted
phylogenetic networks with four leaves, called N and N′. Their
resistance distances between leaves are identical:

dRN = dRN′ =

(

122

23
,
178

23
,
108

23
,
198

23
,
168

23
,
176

23

)

.

FIGURE 20 | Two weighted phylogenetic networks with identical resistance

distances for their leaves.

Note that we do see that N = N′. There are 7 split-classes of 1-
nested phylogenetic networks on four leaves, and our theorems
show that none of the other six classes can be given edge weights
that yield this same resistance distance metric on four leaves.

5.3. Non-Kalmanson Networks
Not all resistance distances are Kalmanson, even when restricted
to phylogenetic networks. For a counterexample, consider the
networkN formed by having six leaves attached to the six vertices
of the complete bipartite graph K3,3, pictured in Figure 21.
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The resistance distance metric for complete bipartite graphs is
found in Klein and Randić (1993). Consider thatKm,n is the graph
join if two edgeless graphs: Km,n = Km + Kn with unit weight
for each edge. Then the resistance distance on Km,n is 2/n for
vertices that have no edge between them (they are both the same
color), and (m + n − 1)/mn for vertices with an edge between
them (Klein and Randić, 1993). For our example N, let the two
(same-colored) parts of the graph (3 nodes each, say red and
blue) be attached to the leaves {1, 2, 3} and {4, 5, 6}, respectively.
Letting each edge have weight 1, we find the resistance distance
between any two leaves attached to the same colored part is
2 + 2/3 = 8/3, while the distance between any two leaves,
with one attached to each part, is 2 + 5/9 = 23/9. In any
circular order of the leaves, there will be a sub-sequence i, j, k, l
where the first two leaves i, j are attached to the same color, and
the second two k, l are both attached to the other color. Thus
dRN(i, j)+ dRN(k, l) = 16/3 = 48/9 which is larger than dRN(i, k)+
dRN(j, l) = 46/9. This counterexample raises the question of
necessary conditions for a network with resistance distance to
be Kalmanson.

FIGURE 21 | A phylogenetic network with non-Kalmanson resistance

distance. All the edge lengths are 1.

5.4. Outer Planarity
We conjecture that outer planarity is a sufficient condition for
Kalmanson: that if a weighted phylogenetic network can be
drawn in the plane with its leaves on the exterior that the
resistance distance is Kalmanson.We note that it this condition is
not necessary: it can be checked that the complete graph K5 with
unit edges has the Kalmanson property.

5.5. Faithfully Phylogenetic Kalmanson
Distance Vectors
Following the terminology in Definition 2.7, we call a Kalmanson
distance vector d faithfully phylogenetic if the unique circular
split network associated to d is in the range of 6 (after

FIGURE 23 | Calculated Jukes-Cantor distance D as a function of the number

of matching sites c in aligned sequences of length m.

FIGURE 22 | Two weighted phylogenetic networks with identical resistance distances for their leaves, and their common split network.
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forgetting weights). We conjecture that faithfully phylogenetic
Kalmanson distance vectors always arise from resistance
distances. Specifically we conjecture that if d is faithfully
phylogenetic, then d = dRN for some weighted phylogenetic
network N. Note that not all Kalmanson distance vectors arise
from resistance distances, simply due to the fact that not all
circular split networks are in the range of 6.

5.6. 2-Nested Kalmanson Networks
A special case of 5.5 is the conjecture that 2-nested phylogenetic
networks have Kalmanson resistance distance. For instance in
Figure 22we show a simple 2-nested networkN whose resistance
distance is clearly Kalmanson: in fact it is the same resistance
distance as possessed by the shown 1-nested network.

5.7. Indistinguishable Weightings and
Invariants
We conjecture that for every weighted 2-nested network there
is a weighted 1-nested network with matching resistance
distance. Again see Figure 22. However, in light of the above
conjecture 5.4, we conjecture that the exterior shape of networks
is an invariant of resistance distance: specifically that if any two

outer planar networks N,N′ have dRN = dRN′ then L(Rw(N)) =

L(Rw(N′)).

5.8. Limiting Case
Consider when an edge in a cycle of N has a very large weight,
or high resistance. As this weight grows, the limit of Lw(Rw(N))
approaches a network with that edge being deleted entirely.
We see this by considering any two circuit-parallel paths with
resistance R1 and R2 the first of which uses an edge with variable
weight w (all other weights constant). Then letting w → ∞

implies R1 → ∞ and thus R1R2/(R1 + R2) approaches R2
by L’Hospital’s rule. Thus, as w goes to ∞ we see that the
resistance distances using those circuit-parallel paths reduce to
the path distances, and so the distance metric from that network
approaches one without that edge. This is similar to the way in
which Sw, which uses the minimal path distance on N, serves to
delete some edges as seen in Figure 10.

6. DISTANCE MEASURES

A question is raised about the mathematics which precedes
the work described in this paper: what sort of measurement
should actually yield the experimental resistance distances in
a real example? What should play the role of attaching the
ohmmeter to pairs of wires? Usually, DNA sequences of length
m are aligned (a multi-step problem of its own) and then the
number of disagreeing sites is counted. Let p be the proportion
of disagreements to the lengthm of the sequence: p = (m− c)/m
where c is the number of correct, matching sites. Then there is a
selection of mutation models, such as the simplest Jukes-Cantor
model, which predict a distance D which is the expected total
number of mutations. Experimentally we find that distance D as
a function of the observed disagreements. Alternately we could
choose D from the list of evolutionary models: for instance

D = K = −
1

2
ln((1− 2p− q)

√

1− 2q)

for Kimura’s two parameter model. Or, alignment-free models
such as the k-mer distance measures as described in Allman et al.
(2017).

Here, we would want a distance D = R which is summed
when in sequence but obeys the Ohm equations. The answer will
depend both on the model of mutation we choose and the model

of recombination we choose. For instance, D = −
3

4
ln(1−

4

3
p)

for the Jukes-Cantor model, as described in Jukes and Cantor
(1969). Rewriting using p = (m− c)/c we have:

D(c) =
3

4
ln

(

3m

4c−m

)

.

D has the graph in Figure 23. The c-axis is explained by the fact
that in the Jukes-Cantor model, mutations of the 4 nucleotides
A,G,T,C can replace any letter with another—including a self
replacement. This implies that the smallest number of matching
sites is m

4 , while the largest is m. We can use D for the resistance
distance only if there is experimental evidence that for circuit-
parallel paths we have D = D1D2/(D1 + D2), where D1(c1)
and D2(c2) are the distances for each path, in expected numbers

FIGURE 24 | On the left is a simple parallel circuit with identical resistance on each branch. If the resistance is the Jukes-Cantor distance and obeys the Ohm laws,

then the number c of matching sites at the end of the circuit will depend on the number c1 of correct matching sites at the end of each branch before recombination.
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of mutations as a function of correct matching sites. There are
certainly some features of D that look promising, including the
shape of its graph: resistance typically ranges from 0 to infinity.
Assuming that the formula for D over the circuit-parallel paths
does hold, when one of the circuit-parallel resistances is infinite:
say D1 → ∞; then we see that D → D2. Similarly, as c1 → m/4,
we have that c, the number of correct sites after recombination,
approaches c2.

When both branches have the same distance D1 = D2, and it
obeys Ohm’s law, we see the total resistance D = D1/2. Using the
formula forD(c) andD1(c1) and solving for cwe get the following
function, graphed in Figure 24:

c =
m

4
+

√

3

(

m

4
c1 −

(m

4

)2
)

.

Thus, as a first check the geneticist could compare two genomes
and their hybrid genome with a common ancestor. When the
two are close to the same distance from the common ancestor
(both have c1 matching sites), then the pair (c1, c) for c the
number ofmatches between the hybrid and the common ancestor

might fit the parabola as seen in Figure 24. If that fit is

achieved, then it would be reasonable to apply the theorems of
this paper.
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