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ABSTRACT
Objective  To assess the pharmacokinetics and safety/
tolerability of isoniazid, rifampicin and pyrazinamide in 
children and adolescents with tuberculous meningitis 
(TBM).
Design  Prospective observational pharmacokinetic 
study with an exploratory pharmacokinetic/
pharmacodynamic analysis.
Setting  Hasan Sadikin Hospital, Bandung, Indonesia.
Patients  Individuals aged 0–18 years clinically 
diagnosed with TBM and receiving first-line anti-
tuberculosis drug dosages according to revised WHO-
recommended treatment guidelines.
Interventions  Plasma and cerebrospinal fluid (CSF) 
concentrations of isoniazid, rifampicin and pyrazinamide 
were assessed on days 2 and 10 of treatment.
Main outcome measures  Plasma exposures during 
the daily dosing interval (AUC0–24), peak plasma 
concentrations (Cmax) and CSF concentrations.
Results  Among 20 eligible patients, geometric mean 
AUC0–24 of isoniazid, rifampicin and pyrazinamide was 
18.5, 66.9 and 315.5 hour∙mg/L on day 2; and 14.5, 
71.8 and 328.4 hour∙mg/L on day 10, respectively. Large 
interindividual variabilities were observed in AUC0–24 and 
Cmax of all drugs. All patients had suboptimal rifampicin 
AUC0–24 for TBM treatment indication and very low 
rifampicin CSF concentrations. Four patients developed 
grade 2–3 drug-induced liver injury (DILI) within the first 
4 weeks of treatment, in whom anti-tuberculosis drugs 
were temporarily stopped, and no DILI recurred after 
reintroduction of rifampicin and isoniazid. AUC0–24 of 
isoniazid, rifampicin and pyrazinamide along with Cmax 
of isoniazid and pyrazinamide on day 10 were higher 
in patients who developed DILI than those without DILI 
(p<0.05).
Conclusion  Higher rifampicin doses are strongly 
warranted in treatment of children and adolescents 
with TBM. The association between higher plasma 
concentrations of isoniazid, rifampicin and pyrazinamide 
and the development of DILI needs confirmatory studies.

INTRODUCTION
Tuberculosis (TB) remains a major global health 
challenge with 1.2 million new paediatric cases 
and >220 000 deaths in children aged <15 years.1 
Tuberculous meningitis (TBM), as the most devas-
tating manifestation of TB, accounts for approxi-
mately 20% of childhood TB mortality and results 
in neurological sequelae in more than 50% of survi-
vors.2 3 Management of TBM poses continuing 

challenges, mainly due to the lack of understanding 
of the pathogenesis, a lengthy process in obtaining 
a definite diagnosis and suboptimal antimicro-
bial drug therapy.3 Delayed or late presentation 
of TBM is a major problem associated with worse 
outcomes.2

First-line anti-TB drug doses for treatment of 
children with TBM were revised by the WHO in 
20104 and are similar to those described for chil-
dren with pulmonary TB (PTB).4 5 Following this 
revised dosing, sufficient plasma concentrations of 
isoniazid, rifampicin and pyrazinamide in children 
aged <2 years were reported.6 However, subther-
apeutic concentrations are still shown in high 
proportions of patients, particularly among young 
children for rifampicin and pyrazinamide7–9 and 
among fast acetylators for isoniazid.8 Furthermore, 
rifampicin and ethambutol have poor cerebrospinal 
fluid (CSF) penetration,10 11 which in case of TBM 
might lead to subtherapeutic concentrations at the 
site of infection. As an alternative TBM treatment 
option in children, the WHO suggests high-dose 
short-course therapy using isoniazid, rifampicin and 
pyrazinamide, with addition of ethionamide instead 
of ethambutol.5 10 12
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drugs contribute to unfavourable treatment 
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Pharmacokinetic (PK) data of anti-TB drugs in children with 
TBM are lacking. PK evaluation of first-line anti-TB drugs is 
important because suboptimal concentrations might lead to 
unfavourable outcomes such as treatment failure and death.13 
On the contrary, exposure to supratherapeutic concentrations 
might play a role in increasing the risk of adverse effects, like 
anti-TB drug-induced liver injury (DILI).14 We aimed to describe 
PK and safety/tolerability of isoniazid, rifampicin and pyrazin-
amide in Indonesian children and adolescents treated for TBM.

METHODS
Study design and population
We performed a prospective observational PK and safety/toler-
ability study with an exploratory pharmacokinetic/pharmacody-
namic (PK/PD) analysis in children and adolescents aged ≤18 
years at Hasan Sadikin Hospital, Bandung, Indonesia, from 
March 2018 to January 2020. Written informed consent for 
study participation was obtained from parents/legal guardians, 
with additional verbal consent/assent from competent children 
aged >12 years.

Initial screening among those with suspected meningitis 
included physical and clinical examinations, blood chemistry 
and haematology measurements, chest radiography and CSF 
analysis. Neuroradiology and microbiological examination from 
CSF/extraneural samples including smear microscopy for acid-
fast bacilli, culture for Mycobacterium tuberculosis and GeneX-
pert MTB/RIF assay were performed, if applicable. In our setting, 
neuroradiology and GeneXpert testing during screening are not 
covered by government health insurance. Patients with definite 
TBM (microbiologically proven from CSF examination), and 
those clinically diagnosed with probable/possible TBM as deter-
mined by case definition criteria,15 were eligible for inclusion in 
this study. Our exclusion criteria were mixed bacterial menin-
gitis, taking anti-TB drugs ≥3 days, HIV co-infection, baseline 
alanine/aspartate aminotransferases (ALT/AST) >3× the ULN 
(reference ranges for ALT: 16–63 U/L and AST: 15–37 U/L) and 
medical conditions not allowing for inclusion according to the 
attending physician (eg, ventriculoperitoneal shunt, rapid clin-
ical deterioration, kidney disease or autoimmune disorders).

Treatment
Treatment regimens were based on the current WHO guidelines 
in accordance with the Indonesian Paediatric Society guide-
lines for TBM treatment in children, consisting of daily isoni-
azid (7–15 mg/kg), rifampicin (10–20 mg/kg), pyrazinamide 
(30–40 mg/kg) and ethambutol (15–25 mg/kg) for a 2-month 
intensive phase, followed by a 10-month continuation phase 
of isoniazid and rifampicin at the same doses.5 16 All patients 
(including those weighing >25 kg) received dispersible fixed-
dose combinations of isoniazid/rifampicin/pyrazinamide at 
50/75/150 mg, with addition of ethambutol in a separate tablet. 
All anti-TB drugs (Kimia Farma, Indonesia) were taken orally 
on an empty stomach under directly observed treatment. For 
unconscious patients, the drugs were dissolved in water delivered 
through a nasogastric tube and flushed afterwards. A rifampicin 
formulation of the same manufacturer has shown bioavailability 
in adults equal to the international reference.17 Patients were 
given adjunctive oral prednisone (2–4 mg/kg) for the first 4–8 
weeks, tapered according to the national guidelines.16

PK assessments
PK sampling was performed on days 2±1 and 10±1 of treat-
ment. Serial venous blood samples were collected at 0, 1, 2, 4 

and 8 hours postdose; one CSF sample was also collected at 0–2, 
3–5 or 6–8 hours postdose. Patients had an overnight fast from 
23:00 hours on the day preceding PK assessments until 2 hours 
after drug administration. Bioanalysis was performed using a 
validated ultra-performance liquid chromatography method.18 
PK parameters were assessed non-compartmentally using the 
PKNCA package V.0.9.4 in R for Windows. Main PK parameters 
were area under the plasma concentration–time curve during 
the daily dosing interval (AUC0–24), peak plasma concentration 
(Cmax) and CSF concentration (CCSF0–8). Further details are given 
in online supplemental appendix 1.

Follow-up and clinical responses
Inpatient assessments were performed on days 3, 7, 10 and 14 
of treatment, including physical examinations, Glasgow Coma 
Scale, anthropometry, vital signs and complications such as hypo-
natraemia, decreased consciousness, new focal neurological signs 
and suspicion of DILI. Additional assessments were performed, 
if necessary. Liver function tests (LFTs) were measured on days 
7 and 14 of treatment and were subsequently measured if symp-
tomatic DILI was suspected. DILI was defined as an elevation 
of ALT/AST>3× the ULN with symptoms of hepatotoxicity 
(eg, jaundice, vomiting, nausea and abdominal pain) or >5× 
the ULN without the presence of symptoms.19 The severity of 
DILI was classified based on the common terminology criteria 
for adverse events (CTCAE V.5.0; https://​evs.​nci.​nih.​gov/​ftp1/​
CTCAE). Outcome of hospitalisation included good recovery, 
moderate and severe disabilities, persistent vegetative state and 
death. Six-month mortality was monitored by phone calls.

Statistical analysis
On the basis of the results from a previous study in adult patients 
with TBM,20 a minimum of 20 patients were judged to be suffi-
cient to describe PK of anti-TB drugs. Actual target values for 
rifampicin AUC0–24 in TBM (171 or 229 hour∙mg/L) were based 
on a PK/PD analysis in Indonesian adults with TBM,21 and the 
proportion of patients achieving these target values was assessed. 
PK parameters on both sampling days were compared using a 
paired-sample t-test or Wilcoxon signed-rank test. Pearson 
correlation coefficients were used to assess the relationship 
between AUC0–24, Cmax and CCSF0–8. Predictors of drug exposures 
were evaluated using univariate and multivariate linear regres-
sion analyses; more details are given in online supplemental 
appendix 2. AUC0–24 and Cmax values between DILI and non-DILI 
patients and between those who survived and died during the 
6-month follow-up were compared using the Mann-Whitney U 
test. Data were analysed using SPSS Statistics (V.25.0; IBM).

RESULTS
Between March 2018 and July 2019, 81 suspected cases of 
paediatric TBM (39 (48%) aged <5 years) were screened, of 
whom 61 were excluded due to various reasons (online supple-
mental appendix 3). Among 20 eligible HIV-negative patients 
with probable/possible TBM, 11 (55%) were female, 5 (25%) 
aged <5 years and 12 (60%) had grade 2 TBM. Baseline charac-
teristics of the study population are presented in table 1.

Plasma concentration–time profiles of isoniazid, rifampicin 
and pyrazinamide are presented in figure  1. Geometric mean 
AUC0–24 of isoniazid, rifampicin and pyrazinamide on day 2 
was 18.5, 66.9 and 315.5 hour∙mg/L, respectively. Large inter-
individual variabilities were observed in AUC0–24 and Cmax of all 
drugs. None of the patients had achieved the target values of 
229 or 171 hour∙mg/L for rifampicin AUC0–24. All patients had 
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disproportionately lower rifampicin concentrations in CSF than 
in plasma (geometric mean CCSF0–8: 0.3 and 0.1 mg/L on days 
2 and 10, respectively). Isoniazid and pyrazinamide concen-
trations in CSF were relatively comparable to those in plasma. 
AUC0–24 and Cmax between both sampling days were not statisti-
cally different (table 2). Additional PK parameters are presented 
in online supplemental appendix 4.

For each drug, AUC0–24 was highly correlated with Cmax (rs≥0.7; 
p<0.001). AUC0–24 and Cmax were also correlated with CCSF0–8 
(rs≥0.5; p<0.05) (online supplemental appendix 5. Results of 
the univariate analyses for predictors of AUC0–24, Cmax and CCSF0–8 
are presented in online supplemental appendix 6. In multivar-
iate analyses, higher drug doses in mg/kg were associated with 
a larger increase in pyrazinamide Cmax (p<0.05); drug adminis-
tration through a nasogastric tube was associated with a higher 
isoniazid AUC0–24 (p<0.01); and higher random blood glucose 
levels were associated with reduced pyrazinamide AUC0–24, Cmax 
and CCSF0–8 (p<0.01) (table 3).

During hospitalisation, two patients had grade 2 and two 
patients had grade 3 DILI. Of these, one developed DILI 
after 1 week of treatment, two after 2 weeks and one after 4 
weeks. Jaundice was observed in two patients: one with grade 
2 and one with grade 3 DILI. Isoniazid, rifampicin and pyra-
zinamide were immediately stopped in these four patients. As 
per local guidelines, ethambutol was continued, with addition 
of streptomycin (15–40 mg/kg) for a maximum of 2 weeks. 
After the symptoms of DILI and liver enzymes had normalised, 

Table 1  Baseline characteristics and drug doses of Indonesian 
children with TBM

Characteristics Value

Total cases, n 20

Female sex (n (%)) 11 (55.0)

Age, years (median (IQR)) 11.4 (4.4–14.7)

Age (n (%))

 � <5 years 5 (25.0)

 � 5–9 years 4 (20.0)

 � 10–14 years 6 (30.0)

 � 15–18 years 5 (25.0)

BCG-vaccinated (n (%)) 11 (55.0)

Nutritional status*

 � Weight for age Z-score (median (IQR))† −2.08 (−3.06 to −1.32)

 � Height for age Z-score (median (IQR)) −2.10 (−2.44 to −1.21)

 � BMI for age Z-score (median (IQR)) −2.22 (−2.98 to −1.02)

 � Head circumference, cm (median (IQR)) 50.0 (45.6–52.2)

 � Upper arm circumference, cm (median (IQR)) 16.2 (12.6–20.6)

 � Abdominal circumference, cm (median (IQR)) 52.5 (46.7–58.2)

 � Malnourished, n (%) 14 (70.0)

Temperature, °C (median (IQR)) 37.1 (37.0–37.8)

Chief complaint (n (%))

 � Severe headache 3 (15.0)

 � Seizures 4 (20.0)

 � Decreased consciousness 9 (45.0)

 � Others 4 (20.0)

Diagnostic score (median (IQR))‡ 10.5 (10.0–12.0)

GCS (median (IQR)) 13.0 (11.0–15.0)

Chest radiography, suggestive TB (n (%)) 8 (40.0)

TBM category

 � Possible TBM 2 (10.0)

 � Probable TBM 18 (90.0)

TBM grade (n (%))§

 � Grade 1 4 (20.0)

 � Grade 2 12 (60.0)

 � Grade 3 4 (20.0)

CSF baselines (median (IQR))

 � Leucocytes, cells/µL 88.0 (41.0–134.2)

 � PMN, cells/µL 20.5 (5.0–43.7)

 � MN, cells/µL 79.5 (56.2–95.0)

 � Protein, mg/dL 176.9 (80.7–287.5)

CSF/blood glucose ratio (median (IQR)) 0.17 (0.10–0.44)

CSF smear microscopy (n (%))

 � Negative 15 (75.0)

 � Not tested 5 (25.0)

Cerebral imaging, done (n (%))¶ 12 (60.0)

 � Abnormal 11 (55.0)

  �  Hydrocephalus 7 (35.0)

  �  Basal meningeal enhancement 4 (20.0)

  �  Brain oedema 4 (20.0)

  �  Midline shift 2 (10.0)

  �  Tuberculoma 1 (5.0)

  �  Infarct 1 (5.0)

  �  Intracerebral haemorrhage 1 (5.0)

 � Normal 1 (5.0)

GeneXpert MTB/RIF testing (extraneural), done (n (%))** 4 (20.0)

 � M.tb detected, susceptible to rifampicin 3 (15.0)

 � M.tb not detected 1 (5.0)

Continued

Characteristics Value

Blood test values (median (IQR))

 � Creatinine, mg/dL 0.5 (0.3–0.6)

 � Albumin, g/dL 3.2 (2.4–3.5)

 � Protein, g/dL 7.6 (6.9–8.4)

 � Random blood glucose, mg/dL 107.0 (102.0–119.0)

 � AST, IU/L 22.0 (16.0–33.0)

 � ALT, IU/L 16.0 (13.0–30.0)

Drug administration through NGT on PK1 (n (%)) 14 (70.0)

Drug administration through NGT on PK2 (n (%)) 4/12 (20.0)

Daily drug doses on PK1 (median (IQR))

 � Isoniazid (mg/kg) 8.9 (7.7–11.0)

 � Rifampicin (mg/kg) 13.4 (11.6–16.4)

 � Pyrazinamide (mg/kg) 26.7 (23.1–32.9)

 � Ethambutol (mg/kg) 20.5 (19.1–21.6)

*Anthropometric data were transformed into weight-for-age, height-for-age and 
BMI-for-age Z-scores based on the WHO standard reference populations using the R 
package ‘zscorer’ V.0.3.1. Malnutrition was defined as children aged <5 years with 
weight-for-age or height-for-age Z-scores <−2 SD and children aged ≥5 years with 
height-for-age or BMI-for-age Z-scores <−2 SD.
†Weigh for age Z-score can only be calculated for nine children.
‡Diagnostic score was assessed using a uniform case definition criteria for TBM by 
Marais et al.15

§Severity of TBM was classified according to the modified British Medical Research 
Council grading system as 1 (GCS of 15 with no focal neurological signs), 2 (GCS of 
11–14 or 15 with focal neurological signs) or 3 (GCS<10).44

¶During hospitalisation, head computed tomographic scan was performed in 11 
(55%) of 20 patients and head magnetic resonance imaging was performed in 1 
(5%) of 20 patients.
**Three patients were susceptible to rifampicin using GeneXpert testing from 
gastric lavage sample, and one patient had no M. tb detected in sputum sample.
ALT, alanine aminotransferase; AST, aspartate aminotransferase; BMI, body mass 
index; CSF, cerebrospinal fluid; GCS, Glasgow Coma Scale; MN, mononuclear cells; 
NGT, nasogastric tube; PK1 and PK2, first and second pharmacokinetic sampling 
assessments; PMN, polymorphonuclear cells; TBM, tuberculous meningitis.

Table 1  Continued
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rifampicin and isoniazid were reintroduced gradually without 
any DILI recurrence. Pyrazinamide was completely stopped 
until the end of treatment. Isoniazid, rifampicin and pyrazin-
amide doses were slightly higher in patients with DILI but not 
statistically different from those without DILI (p>0.05; online 
supplemental appendix 7). AUC0–24 of isoniazid, rifampicin and 
pyrazinamide, along with Cmax of isoniazid and pyrazinamide 
on day 10 were significantly higher in patients with DILI than 
those without DILI (p<0.05) (figure  2; online supplemental 
appendix 7).

At hospital discharge, 10 patients had good recovery, 2 were 
moderately disabled, 2 were severely disabled and 6 died due 
to increased intracranial pressure (n=2), intracerebral haem-
orrhage (n=1), septic shock (n=1), respiratory failure (n=1) 
and hospital-acquired pneumonia (n=1). Within the 6-month 
follow-up, another patient died of unknown cause and the 
remaining 13 patients survived including those who previ-
ously developed DILI. Post-mortem autopsy was unavailable 
to provide accurate causes of death. AUC0–24, Cmax and CCSF0–8 
of isoniazid, rifampicin and pyrazinamide were not statistically 
different between patients who survived and died within the 
6-month follow-up.

DISCUSSION
This study presents important information on plasma and CSF 
concentrations of first-line anti-TB drugs in children and adoles-
cents with TBM from Indonesia. Our average AUC0–24 values 
on day 2 of treatment compared with those reported in Indo-
nesian adults with TBM were relatively similar for isoniazid 
(18.5 vs 16.4 hour∙mg/L),22 were higher for rifampicin (66.9 
vs 53.5 hour∙mg/L)20 and were lower for pyrazinamide (315.5 
vs 709 hour∙mg/L).23 Our results showed large interindividual 
variabilities in drug exposures, which are in agreement with the 
literature and might be enhanced by PK changes in critically ill 
patients.24 25 Furthermore, the wide age range included in this 
study from infants to adolescents, and the small sample size, 
might contribute to these large variabilities. Although none of 
our patients had diabetes mellitus, higher blood glucose levels 
were found to be associated with decreased pyrazinamide expo-
sures. A hyperglycaemic condition may have reduced gastric 
mucosal blood flow and gastric acid secretion,26 which resulted 
in decreased absorption of anti-TB drugs.

The low rifampicin CSF concentration has been reported in 
Vietnamese children11 and in Indonesian adults with TBM.18 20 27 
Likely the high plasma protein binding and blood-CSF/brain 

Figure 1  Pharmacokinetic profiles (drug concentration vs time curves) of isoniazid (INH), rifampicin (RIF) and pyrazinamide (PZA) in children and 
adolescents treated for tuberculous meningitis on days 2 and 10 of treatment. (A) INH in plasma; (B) RIF in plasma; (C) PZA in plasma; (D) INH in 
cerebrospinal fluid (CSF); (E) RIF in CSF; (F) PZA in CSF.
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barrier efflux pumps can explain this low CSF rifampicin concen-
tration.28 The bactericidal effect of such a low concentration, 
when compared with the minimum inhibitory concentration 
(MIC) of this drug against M. tuberculosis, is likely to be limited 
if we use plasma-derived fAUC/MIC or fCmax/MIC targets. In 

adults, a 33% higher dose of intravenous rifampicin resulted in a 
threefold increase in plasma and CSF exposures compared with 
the standard dose of oral rifampicin.27 Threefold and fivefold 
increases in plasma exposure with proportional increases in CSF 
concentrations were also observed in adults given double and 
triple doses of oral rifampicin.20 It seems that efflux pumps may 
be saturable and CSF rifampicin concentrations can be enhanced 
by increasing the dose. In South African children, short-course 
intensified TBM treatment with isoniazid (20 mg/kg), rifampicin 
(20 mg/kg), pyrazinamide (40 mg/kg) and ethionamide (20 mg/
kg) was found to be safe and effective.12 Intensified regimens 
containing high-dose rifampicin and other anti-TB drugs with 
better CSF penetration (eg, fluoroquinolones and ethionamide), 
along with ancillary treatment beyond corticosteroids such as 
targeted anti-inflammatory drugs (eg, aspirin, thalidomide and 
tumour necrosis factor-alpha antibodies), need further evalua-
tion.12 29

Serious adverse events in children during TB treatment are 
rare although severe hepatotoxic events were occasionally 
reported.14 30 In a review by Donald,14 abnormal LFTs and jaun-
dice were recorded, respectively, in 53% and in 10% of children 
during TBM therapy. In Indonesian settings, DILI frequently 
occurred in children during the first 2 months of TB therapy,31 32 
with most of them being treated for TBM.31 The reason why 
patients with TBM are more likely to develop DILI is unclear 
but could be related to the severity of the underlying disease.33 
Of note, this hepatotoxic event could have been the result of 
hepatic adaptation.19 The temporary use of streptomycin in this 
study could not be regarded as an effective treatment.10 34 Better 
management of DILI in children (including criteria to continue 
treatment in severe conditions and drug reintroduction regi-
mens) is needed.

Data on the relationship between DILI and anti-TB drug 
exposures in children are lacking.14 In Chinese and Indian 
adults with PTB/extrapulmonary TB, higher isoniazid and 
rifampicin exposures were associated with an increased risk 
of DILI.35 36 High-dose rifampicin was not associated with an 
increase in DILI when administered to Tanzanian and South-
African adults with PTB.37 In Indonesian adult patients with 

Table 2  Summary of pharmacokinetic (PK) parameters of isoniazid, 
rifampicin and pyrazinamide among Indonesian children treated for 
TBM

PK parameters
First PK assessment 
(n=20)

Second PK 
assessment (n=12) P value*

Isoniazid

 � AUC0–24 (h∙mg/L) 18.5 (5.1–47.4) 14.5 (5.9–44.2) 0.888

 � Cmax (mg/L) 4.6 (1.0–10.0) 4.7 (2.5–13.6) 0.366

 � CCSF0–2 (mg/L)† 1.4 (0.5–6.1) 1.6 (1.2–2.5) n/a

 � CCSF3–5 (mg/L)† 1.6 (0.3–5.0) 1.7 (0.6–5.0) n/a

 � CCSF6–8 (mg/L)† 1.3 (1.2–4.3) 2.3 (1.9–2.8) n/a

Rifampicin

 � AUC0–24 (h∙mg/L) 66.9 (21.7–118.6) 71.8 (36.1–116.5) 0.442

 � Cmax (mg/L) 9.4 (2.9–23.7) 10.4 (5.7–23.3) 0.499

 � CCSF0–2 (mg/L)† 0.2 (0.1–0.4) 0.1 (0.1–0.1) n/a

 � CCSF3–5 (mg/L)† 0.3 (0.1–0.8) 0.1 (0.1–0.3) n/a

 � CCSF6–8 (mg/L)† 0.4 (0.1–1.4) 0.2 (0.1–0.7) n/a

Pyrazinamide

 � AUC0–24 (h∙mg/L) 315.5 (100.6–599.0) 328.4 (143.3–1477.7) 0.482

 � Cmax (mg/L) 37.7 (15.9–61.7) 40.5 (22.7–88.4) 0.350

 � CCSF0–2 (mg/L)† 24.4 (11.1–54.9) 25.6 (21.3–37.1) n/a

 � CCSF3–5 (mg/L)† 30.0 (19.2–43.3) 24.7 (15.9–38.1) n/a

 � CCSF6–8 (mg/L)† 19.6 (7.2–37.7) 39.4 (23.1–70.8) n/a

Data are presented as geometric mean (range). The first PK assessment was performed on 
day 2 of treatment and the second PK assessment was performed on day 10 of treatment.
*Paired-sample t-test on log-transformed data of 12 patients for whom PK data were 
available both at the first and second PK assessments.
†At the first PK assessment, 6, 7 and 7 CSF samples for each drug were available at 
0–2 hours, 3–5 hours and 6–8 hours, respectively; and at the second PK assessment, 4, 4 
and 3 CSF samples for each drug were available at 0–2 hours, 3–5 hours and 6–8 hours, 
respectively.
AUC0–24, area under the plasma concentration–time curve from 0 to 24 hours postdose; 
CCSF0–8, drug concentration in cerebrospinal fluid during 0–8 hours postdose; Cmax, peak 
plasma concentration; n/a, non-applicable; TBM, tuberculous meningitis.

Table 3  Multivariate linear regression analysis of factors associated with AUC0–24, Cmax and CSF concentrations of isoniazid, rifampicin and 
pyrazinamide in Indonesian children treated for TBM

AUC0–24, hour∙mg/L
(B (95% CI))

Cmax, mg/L
(B (95% CI))

CCSF0–8, mg/L
(B (95% CI))

Isoniazid

 � Age, years n/a −0.020 (−0.043 to 0.003)# n/a

 � Random blood glucose, mg/dL −0.002 (−0.006 to 0.003) −0.004 (−0.009 to 0.001) −0.007 (−0.015 to 0.001)#

 � Drug dose, mg/kg 0.016 (−0.048 to 0.080) n/a 0.046 (−0.058 to 0.151)

 � Drug administration via NGT, no/yes 0.439 (0.143 to 0.735)** 0.130 (−0.160 to 0.420) 0.289 (−0.197 to 0.775)

Rifampicin

 � Age, years −0.009 (−0.028 to 0.010) −0.008 (−0.029 to 0.012) −0.021 (−0.052 to 0.009)

 � Random blood glucose, mg/dL −0.003 (−0.007 to 0.001) −0.005 (−0.009 to −0.0003)* n/a

 � Drug dose, mg/kg 0.014 (−0.021 to 0.048) n/a 0.030 (−0.030 to 0.091)

 � Drug administration via NGT, no/yes n/a 0.067 (−0.194 to 0.328) 0.019 (−0.365 to 0.403)

Pyrazinamide

 � Random blood glucose, mg/dL −0.006 (−0.010 to −0.003)** −0.003 (−0.005 to −0.001)** −0.006 (−0.010 to −0.003)**

 � Drug dose, mg/kg 0.010 (−0.006 to 0.027) 0.010 (0.001 to 0.020)* 0.010 (−0.006 to 0.027)

 � Drug administration via NGT, no/yes −0.068 (−0.293 to 0.156) 0.036 (−0.095 to 0.167) −0.068 (−0.293 to 0.156)

Data are presented as regression coefficients (B) and 95% CIs. #p<0.1, *p<0.05, **p<0.01.
The total explained variance (R2) for isoniazid AUC0–24: 0.57, isoniazid Cmax: 0.46, isoniazid CCSF0–8: 0.45; rifampicin AUC0–24: 0.31, rifampicin Cmax: 0.38, rifampicin CCSF0–8: 0.33, pyrazinamide AUC0–24: 
0.53, pyrazinamide Cmax: 0.63 and pyrazinamide CCSF0–8: 0.53.
AUC0–24, area under the plasma concentration–time curve from 0 to 24 hours postdose at the first PK assessment; CCSF0–8, CSF concentrations during 0–8 hours postdose at the first PK assessment; 
CI, confidence interval; Cmax, peak plasma concentration at the first PK assessment; n/a, non-applicable; NGT, nasogastric tube; TBM, tuberculous meningitis.
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TBM, hepatotoxicity was not related to rifampicin expo-
sure20 27 and was equally distributed between rifampicin 
standard-dose and high-dose groups.18 20 27 It should be 
acknowledged that neither the current study nor the previous 
studies in Indonesian adults18 20 27 were powered to test for 
an association between drug levels and DILI. Our findings on 
DILI in children with TBM warrant further investigation as 
DILI has clinical implications in increasing patient morbidity/
mortality.38 The risk of DILI with increased drug dosages 
requires consideration, but it should be balanced against the 
need to ensure optimal treatment of a life-threatening illness 
like TBM.29 39 Combining therapeutic drug monitoring as a 
decisive tool for TB treatment,40 and regular monitoring of 
LFTs,19 might benefit to ensure drug efficacy without causing 
toxicity.

Our study has some limitations. Conducting intensive 
PK studies in children is challenging. Ideally, multiple CSF 
samples are required to assess CSF-to-plasma ratio for total 
drug exposure.41 Although we were able to collect two PK 
curves with a modest number of plasma samples, only one 

CSF sample per patient could be collected. As a result, AUC0–

24 and Cmax in CSF could not be determined. None of our 
patients had definite TBM because mycobacterial confirma-
tion is known to be a significant challenge in children, due to 
the paucibacillary nature of the disease and low CSF volumes 
available for diagnostic analysis.42 Relatively few young chil-
dren who may be considered most at risk for being under-
dosed were included in this study. Our results pointed out, 
however, no difference in drug exposure between younger 
and older children. Of note, our population was not repre-
sentative of the total paediatric TBM patients diagnosed over 
the study period. Due to the small sample size, our findings 
on predictors of exposure to anti-TB drugs and the relation-
ship of drug exposures with DILI and 6-month mortality 
should be interpreted with caution. It could be of value to 
collect data on drug exposure and pathogen susceptibility in 
a large cohort to overcome the limitations of small-scale PK 
studies.43

In conclusion, suboptimal plasma and CSF rifampicin concen-
trations were observed in all patients, and there is an urgent need 

Figure 2  Pharmacokinetic profiles of isoniazid (INH), rifampicin (RIF) and pyrazinamide (PZA) on day 10 of tuberculous meningitis treatment 
in children and adolescents who developed antituberculosis drug-induced liver-injury (DILI, n=3*) and those without DILI (n=9). (A) INH plasma 
concentration vs time curve; (B) RIF plasma concentration vs time curve; (C) PZA plasma concentration vs time curve; (D) INH area under the 
concentration–time curve during the dosing interval (AUC0–24); (E) RIF AUC0–24; (F) PZA AUC0–24. Box plots represent medians with IQRs; lower and 
upper whiskers represent first and fourth quartiles, respectively. *Of four patients with DILI, one who developed DILI on day 7 of treatment did not 
have INH, RIF and PZA concentrations measured on day 10 because the drugs had been temporarily stopped due to DILI.
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to increase the rifampicin dose in children and adolescents with 
TBM. Intensified regimens containing anti-TB drugs with better 
CSF penetration, along with other ancillary treatment for paedi-
atric TBM, warrant further evaluation. The association between 
higher isoniazid, rifampicin and pyrazinamide concentrations 
and the development of DILI needs confirmatory studies.
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