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ABSTRACT: We report herein an easy, mild, and robust Pd-catalyzed
enantioselective hydroalkynylation reaction of achiral cyclopropenes. Commer-
cially available Pd(acac)2 and (R)-DM-BINAP proved to be the best
combination to reach high diastereo- and enantioselectivities.
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The diastereo- and enantioselective addition of organo-
metallic species across unactivated 1,2-disubstituted

double bonds (carbometalation) still stands nowadays as one
of the most challenging transformations in organic synthesis.1

Because of the release of ring strain, the addition on
cyclopropenes represents a particular but successful case
providing a new entry to a large variety of polysubstituted
enantioenriched cyclopropanes.2 In this context, and since the
pioneering work of Lautens,3 Fox,4 and Nakamura,5 the direct
functionalization of achiral, unsaturated,6 three-membered
carbocycles have attracted much attention.7 We and others
have reported the catalytic enantioselective copper-, rhodium-,
and lanthanide-catalyzed addition of sp3- and sp2-hydridized
alkyl groups8−10 as well as the addition of heteroelements10a,11

with excellent diastereo- and enantioselectivities (Scheme 1a).

However, an important but still missing transformation in this
arsenal of direct functionalization of achiral unsaturated three-
membered carbocycles was the introduction of alkynyl
groups,12 until the very recent report of Hou describing the
highly diastereo- and enantioselective half-sandwich gadoli-
nium-catalyzed enantioselective hydroalkynylation of cyclo-
propenes (Scheme 1b).13 Because diastereo- and enantiomeri-
cally pure alkynyl cyclopropanes are motifs present in several
natural products14 and are considered as important building
blocks in the construction of more complex skeletons,15 we
wanted to develop an alternative more efficient and easier
approach to reach these scaffolds with high selectivities. The
availability of palladium complexes combined with their
robustness, ease of preparation and manipulation, and high
functional group tolerance were key factors to investigate the
Pd-catalyzed alkynylation reaction of cyclopropenes.16 Addi-
tionally, and opposite to gadolinium complexes, most
palladium (pre)catalysts can easily be handled outside a
glovebox, advocating for their user-friendliness.
Cyclopropene 1a and commercially available phenylacety-

lene were used as model substrates to explore the diastereo-
and enantioselective Pd-catalyzed hydroalkynylation reaction.
Various parameters such as the nature of the (i) catalyst, (ii)
chiral ligand, and (iii) solvent were screened, as shown in
Table 1. (See the Supporting Information for full details.) Our
preliminary experiment was performed with Pd(OAc)2 as the
catalyst and (S)-DTBM-SEGPHOS as the ligand in (CH2Cl)2
for 16 h. Under this experimental condition, we were pleased
to observe that alkynylated cyclopropane 2a was formed with a
moderate enantiomeric ratio (Table 1, entry 1, er 64:36).
On the basis of this initial finding, different chiral ligands

were evaluated (Table 1, entries 2−6), and the commercially
available (R)-DM-BINAP was found to be the best ligand
(Table 1, entry 6, er 86:14). Using (R)-DM-BINAP as the
most effective ligand, different solvents were tested (Table 1,
entries 7−11), and DCM, THF, and Et2O provided similar
selectivities. Further additional screening of palladium salts and
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Scheme 1. Direct Functionalization of Achiral Unsaturated
Cyclopropenes
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solvents (Table 1, entries 12−20) revealed that the ideal
combination was Pd(acac)2 with (R)-DM-BINAP in Et2O
(Table 1, entry 16). The desired alkynylcyclopropane 2a was
obtained with excellent enantio- and diastereoselectivity (er
98:02, dr 20:1). Having established the best experimental
conditions for a mild Pd-catalyzed diastereo- and enantiose-
lective hydroalkynylation reaction of achiral cyclopropenes 1a,
we then explored the nature of the substituents of the three-
membered rings on the selectivity of the reaction.
As shown in Scheme 2, cyclopropenes bearing electron-

withdrawing or -donating groups gave the corresponding
hydroalkynylated cyclopropanes 2b−d in good yield with
constantly excellent diastereo- and enantioselectivity. When
the cyclopropene possessing a benzyl group was treated under
our experimental condition (1e, R1 = Me, R2 = CH2Ph), the
desired alkynyl cyclopropanes 2e and 2e′ were isolated with
good to excellent enantiomeric ratios but as an equimolar
diastereoisomeric mixture of products, easily independently
obtained by purification by column chromatography. Fur-
thermore, cyclopropenes possessing identical groups on C3
could easily be transformed into the expected products with
high enantioselectivity (2f, Scheme 2), underlining that the
aromatic ring present on the cyclopropenyl ring is not
mandatory to reach good enantioselectivity.
Encouraged by this result, the simplest dimethyl cyclo-

propene was prepared and submitted to our catalytic Pd-
catalyzed enantioselective alkynylation reaction. We were
pleased to find that the desired alkynylated cyclopropane 2g
could be isolated in moderate yield with a promising

Table 1. Optimization of the Pd-Catalyzed Asymmetric
Hydroalkynylation of Cyclopropene 1a

entry Pd salt L* solvent era

1 Pd(OAc)2 (S)-DTBM-SEGPHOS DCE 36:64
2 Pd(OAc)2 (R,S,S)-phosphoramidite DCE 57:43
3 Pd(OAc)2 H8-(R)-BINAP DCE 85:15
4 Pd(OAc)2 (R)-BINAP DCE 70:30
5 Pd(OAc)2 (R)-Tol-BINAP DCE 71:29
6 Pd(OAc)2 (R)-DM-BINAP DCE 86:14
7 Pd(OAc)2 (R)-DM-BINAP DCM 94:06
8b Pd(OAc)2 (R)-DM-BINAP MeCN ND
9b Pd(OAc)2 (R)-DM-BINAP toluene ND
10 Pd(OAc)2 (R)-DM-BINAP Et2O 93:07
11 Pd(OAc)2 (R)-DM-BINAP THF 94:06
12 Pd(OAc)2 (R)-DM-BINAP DCM 90:10
13 Pd(acac)2 (R)-DM-BINAP DCM 95:05
14 Pd(dpa)2 (R)-DM-BINAP DCM 93:07
15 (PdAllylCl)2 (R)-DM-BINAP DCM 60:40
16 Pd(acac)2 (R)-DM-BINAP Et2O 98:02c

17 Pd(acac)2 (R)-DM-BINAP THF 96:04
18b Pd(acac)2 (R)-DM-BINAP DMF ND
19b Pd(acac)2 (R)-DM-BINAP DMSO ND
20 Pd(acac)2 (R)-DM-BINAP acetone 93:07

aDetermined by chiral HPLC. bNo detection of the desired product
2a; cyclopropene 1a was recovered. cReactions were run on a 0.05
mmol scale using 2 equiv of the alkyne, Pd salt (5 mol %), and L*
(7.5 mol %) in the corresponding solvent (0.1 M), and the reaction
mixture was stirred at room temperature for 16 h. In all cases,
conversion was >70%.

Scheme 2. Pd-Catalyzed Enantioselective
Hydroalkynylation of Cyclopropenes

Scheme 3. Pd-Catalyzed Enantioselective
Hydroalkynylation Reaction of Cyclopropenes with
Different Terminal Alkynes
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enantiomeric ratio of 88:12. In the last two cases, a substitution
on C1 of the cyclopropenyl ring would lead to the creation of
two quaternary stereocenters. Unfortunately, in this case, our
catalytic procedure does not work anymore. Stimulated by
these positive results, we then turned our attention to the
nature of the nucleophilic alkynyl groups that could be
introduced. A series of different substituted aromatic
acetylenes were added to cyclopropane 1a, and in all cases,
excellent selectivities were observed. Alkyl substituents could
be in either a meta or para position of the aromatic ring
without drastically altering the diastereo- and enantioselectivity
(Scheme 3, compare 2h with 2i and 2j). Electron-donating
groups provided the expected alkynylated cyclopropanes (2k
and 2l) with identical enantiomeric ratios. It is worth
mentioning that electron-deficient para-bromo-phenyl acety-
lene could also be tolerated in this transformation and afford
the desired cyclopropane 2m in 79% yield with excellent
diastereo- and enantioselective control (dr 20:1, er 96:04).
Interestingly, ortho-, meta-, and para-fluoro-phenyl acetylene
gave the desired fluoro-containing enantiomerically enriched
alkynyl cyclopropanes (Scheme 3, 2n−p) also with excellent
stereocontrol. To establish the absolute configuration of the
alkynyl cyclopropanes, product 2r has been prepared, and the
configuration was determined by X-ray diffraction analysis.17

All other absolute configurations of products have been
assigned by analogy.18

Various functional groups present on the alkynyl part can
also be tolerated, such as ester, ferrocene, pyridine, and acetal
(Scheme 3, 2s−v). An important extension of this approach is
the catalytic enantioselective addition of 1,3-butadiyn-1-
ylbenzene. In the two examined cases (Scheme 3, 2w and
2x), the diynyl cyclopropanes were obtained with excellent

diastereo- and enantioselectivities. It should be noted that
TMS-substituted alkynes led to nearly racemic products with
(R)-DM-BINAP, whereas alkyl-substituted alkynes did not
lead to the expected products.
Encouraged by the excellent selectivity of the last two

examples in Scheme 3, we were then wondering if this
approach could be extended to more challenging systems, and
we were particularly interested in the catalytic enantioselective
addition of conjugated enynes. Thus a series of enynes were
synthesized and tested under our standard conditions (Scheme
4). To our delight, cyclopropanes 3a−k were isolated in
moderate yield but with excellent diastereo- and enantiose-
lectivity (dr 20:1, er up to 99:01). For instance, the Pd-
catalyzed enantioselective addition of (E)-4-phenyl-3-buten-1-
yne to 1a provided the product 3a in 57% yield with a 94:06
enantiomeric ratio. A variously substituted aromatic ring can
be used without altering the diastereo- and enantioselectivities.
In conclusion, we have developed a friendly and easy to use

Pd-catalyzed enantioselective hydroalkynylation reaction of
achiral cyclopropenes by the addition of different terminal
alkynes, diynes, and enynes with Pd(acac)2 and commercially
available (R)-DM-BINAP as a chiral ligand with excellent
diastereo- and enantioselectivity. This hydroalkynylation
reaction provides a simple, mild, and atom-economical
approach toward a large variety of enantiomerically enriched
alkynylated cyclopropanes.
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