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Background: Epigenetic alterations driven by chromatin regulators (CRs) are well-recognized cancer 
hallmarks. Growing evidence suggests that the imbalance of CRs may lead to the occurrence of various 
diseases including tumors. However, the role and prognostic value of CRs in clear cell renal cell carcinoma 
(ccRCC) remain undefined. 
Methods: Consensus clustering analysis was used to identify different subtypes. Univariate and multivariate 
Cox regression analysis were performed to identify prognosis-related CRs and constructed a risk model. 
Transcriptome sequencing was used to verify gene expression levels. Kaplan-Meier survival analysis was used 
to compare overall survival (OS) between high- and low-risk groups. The area under the curve (AUC) value 
of the receiver operating characteristic (ROC) curve was used to evaluate the performance of the model. The 
ESTIMATE algorithm and single-sample gene set enrichment analysis (ssGSEA) were executed to evaluate 
the immune characteristics of samples. Correlation analysis was used to assess the relationship between risk 
score and immune checkpoint genes, the relationship between expression levels of CRs and immune cell 
infiltration and drug therapeutic response. Finally, we also compared differences in drug sensitivity between 
low- and high-risk groups.
Results: We identified three CRs-related subtypes with different characteristics. A prognostic model 
was built with four CRs and can precisely predict the OS of patients in different risk groups. The model 
has good stability and applicability and was further verified in the internal and external dataset. The 
transcriptomic levels of the four CRs were also validated, and the risk score was an independent prognostic 
factor for ccRCC. Obvious differences in the immune microenvironment and the expression levels of 
immune checkpoints were observed in low- and high-risk group. Higher immune activity and immune cell 
infiltration were found in the high-risk group. Besides, the expression levels of CRs were associated with 
drug therapeutic response. Patients with high-risk score may be more sensitive to gemcitabine, vinblastine, 
paclitaxel, axitinib, sunitinib, and temsirolimus. 
Conclusions: CRs were strongly associated with the occurrence and development of ccRCC. Targeting 
CRs may become a new therapeutic strategy for ccRCC. Besides, CRs-related gene signature can predict 
the prognosis and therapeutic significance of ccRCC, which provides an important reference for clinical 
decision-making.
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Introduction 

As a popular malignant tumor in urinary system, the 
incidence of renal cell carcinoma (RCC) is increasing 
year by year (1). Every year, there are approximately 
431,000 new cases of RCC worldwide, resulting in more 
than 179,000 deaths (2). Clear cell renal cell carcinoma 
(ccRCC) is considered as the deadliest and the most 
common histological type, accounting for more than 
80% of RCC (3). The ccRCC has relatively specific 
immunological features, including high immune infiltration 
and low tumor mutational burden (TMB), resistance to 
chemotherapy, and relative sensitivity to antiangiogenic 
and immunotherapy (4). It is insensitive to conventional 
chemotherapy and radiotherapy, and nephrectomy, targeted 
therapy and immunotherapy are the main therapies for 
ccRCC (5-7). However, about 30% of ccRCC patients 
have distant metastases at the first diagnosis. Around 
30–40% of patients with the early-stage or localized disease 
even having undergone surgical resection will develop 
metastatic recurrence during follow-up (8). Although 
significant progress has been made in targeted therapy 

and immunotherapy, the overall survival (OS) is still not 
satisfactory in advanced or metastatic patients (9). Low 
response rates to immunotherapy also limit its therapeutic 
efficacy (10). Considering the limitations of ccRCC 
treatment and bad prognosis of advanced patients, we need 
to explore new therapeutic targets to improve the prognosis. 

The continuous development of bioinformatics provides 
convenience for exploring the biomarkers of tumors. Chen 
et al. (11) found SPOCK1 participates in the epithelial-
mesenchymal transition process and may be a potential 
prognostic biomarker in ccRCC. Shao et al. (12) found 
that the down-regulation of ALDOB was closely related to 
the clinicopathological features, poor prognosis, immune 
infiltration and m6A modification of ccRCC patients 
by integrating multiple public databases. Liao et al. (13) 
established a survival and prognosis model system by 
exploring immune-related genes, and provided an effective 
prediction tool for the future. Zhou et al. (14) not only used 
data analysis, but also supplemented immunohistochemical 
staining and cell line experiments, which proved that 
high expression of CD73 contributes to poor prognosis 
of ccRCC by promoting cell proliferation and migration. 
These findings are good supplement to the study of ccRCC 
biomarkers. Identifying novel biomarkers and exploring risk 
prediction models to optimize treatment strategies remain 
important tasks in precision medicine. 

Epigenetic alterations are driven by chromatin regulators 
(CRs), which are currently recognized hallmarks of  
cancer (15). CRs have been shown to be the indispensable 
upstream regulators of epigenetics (16). CRs play distinct 
regulatory effect in epigenetics, which are commonly classified 
into three types: DNA methylators, histone modifiers, and 
chromatin remodelers (17-19). Previous research has shown 
that the dysregulation of CRs is closely involved in many 
biological processes, including inflammation, autophagy, 
apoptosis, and proliferation (20-23). Further exploration 
revealed that mutations and dysregulation of CRs 
contribute to tumorigenesis, heterogeneity of tumor, and 
drug resistance (24-28). CCCTC-binding factor (CTCF) 
is a transcriptional regulator and uniquely participates in 
regulation of epigenetic, including the regulation of cancer-
specific genes and cell cycle (29,30). Damaschke et al. (31) 
found that dysregulation of chromodomain helicase DNA-
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binding protein 8 (CHD8) and CTCF leads to abnormal 
chromatin structure and epigenetic alterations in cancer-
related genes, ultimately leading to prostate cancer 
progression and poor prognosis. Chromobox 7 (CBX7) is 
considered as a tumor suppressor gene, which can inhibit 
the progression of bladder cancer by down-regulating 
AKR1B10 and further inactivating ERK signaling (32). 
Furthermore, high mRNA levels of CBX7 in ovarian 
clear cell adenocarcinoma tissues usually indicate a bad 
prognosis (33). Enhancer of zeste homolog 2 (EZH2) is 
a vital epigenetic regulator and EMT inducer, which was 
found to be strongly associated with the metastasis of 
multiple cancers (34). Zhang et al. (35) found that EZH2 
can promotes osteolytic metastasis of breast cancer through 
regulating transforming growth factor beta (TGFβ) 
signaling. Besides, the high expression levels of EZH2 were 
also involved in invasiveness of prostate cancer, cutaneous 
melanoma, and endometrial cancer and promotes disease 
progression to the advanced stage (36-39). Expression of 
HX family members is also thought to correlate with cancer 
progression and survival time. Zinc fingers and homeoboxes 
2 (ZHX2), a potent inhibitor of cyclins A and E expression, 
can inhibit cell proliferation in hepatocellular carcinoma 
(HCC) and reduce xenograft tumor growth in mice (40). 
Decreased expression of zinc fingers and homeoboxes 
1 (ZHX1) and zinc fingers and homeoboxes 3 (ZHX3) is 
associated with advanced pathological stages and poor OS of 
ccRCC (41). A variety of biological functions are controlled 
by WD repeat domain 5 (WDR5) via epigenetic regulation of 
gene expression. It has been found that WDR5 can promote 
the tumorigenesis of oral squamous cell carcinoma (42) and is 
closely related to the immune escape of pancreatic cancer (43).  
These studies have demonstrated that CRs contribute to 
tumorigenesis and progression.

Yet, only a few studies have been conducted on the 
specific functions of CRs in ccRCC. The role and 
prognostic value of CRs in ccRCC remain unclear. We 
speculate that CRs may play a tumor-promoting role 
in ccRCC and is related to the prognosis of patients. 
In this research, we investigated the expression profile 
and the prognostic value of CRs in ccRCC based on 
bioinformatics approaches, as well as its impacts on tumor 
microenvironment (TME) and therapeutic response. This 
provides new ideas and insights for predicting the prognosis 
of ccRCC patients and developing possible treatment 
strategies. We present this article in accordance with the 
TRIPOD reporting checklist (available at https://tcr.
amegroups.com/article/view/10.21037/tcr-23-1383/rc).

Methods 

Data collection and processing

Transcriptome information and clinicopathological features 
of 539 cases of ccRCC and 72 cases of normal renal tissues 
were obtained from the Cancer Genome Atlas (TCGA) 
database (https://portal.gdc.cancer.gov/repository). The 
somatic mutation data of ccRCC can also be found in the 
TCGA database. ArrayExpress database (https://www.ebi.
ac.uk/biostudies/arrayexpress) provides transcriptomic 
and clinical information of the E-MTAB-1980 cohort 
(101 ccRCC cases). A total of 870 CRs were obtained 
from previously published research (16). In addition, we 
obtained 318 tumor-associated transcription factors (TFs) 
from the Cistrome cancer database (http://cistrome.org/
CistromeCancer/). The information of 507 ccRCC samples 
was obtained after integrating CR transcriptional data and 
survival information (survival time >30 days) in the TCGA 
dataset. Then, a ratio of 7 to 3 was executed to stochastically 
divide the patients into a training cohort and a testing 
cohort. The flowchart of the study is shown in Figure S1.

Identification of differentially expressed CRs in ccRCC

The mNRA levels of all CRs were firstly extracted from 
the TCGA dataset and the E-MTAB-1980 dataset, which 
were normalized by R packages to reduce the effects of the 
batch effect. The “limma” R package was then executed to 
identify the differentially expressed CRs between ccRCC 
and normal renal tissues in the TCGA dataset with the 
set threshold was |log fold change (FC)| >1 and false 
discovery rate (FDR) <0.001. Next, the same method was 
performed to examine the differentially expressed TFs 
between tumor and normal tissues. The protein-protein 
interaction (PPI) network of these CRs was obtained via 
the STRING database (https://cn.string-db.org/cgi/input). 
Univariate Cox regression analysis was executed on CRs to 
evaluate their prognostic value, and a prognostic network 
was presented via the corresponding R package. The 
correlation analysis was executed to establish a regulatory 
network between prognosis-related CRs and differentially 
expressed TFs (cor >0.6 and P value <0.001) and visualized 
in Cytoscape.

Consensus clustering analysis of differentially expressed 
CRs

We performed consensus cluster analysis through the 
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R package “ConsensusClusterPlus” to identify different 
subtypes according to the expression of differentially 
expressed CRs. We think it is the best result when the 
subtype number k=3. Subsequently, functional enrichment 
analysis was used to investigate the biological function 
differences of CRs in different subtypes, including Gene 
Ontology (GO) analysis and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway analysis, and FDR <0.05 
was considered to be meaningful results.

Association of CR-related subtypes with prognosis and 
clinicopathological features

We compared the differences of clinical features and 
prognosis among different subtypes to judge the clinical 
value of CR-related subtypes derived from consensus 
clustering analysis. The clinical characteristics of patients 
included survival status, gender, age, Tumor Node 
Metastasis (TNM) stage, grade, and the American Joint 
Committee on Cancer (AJCC) stage. The differences in 
OS and progression-free survival (PFS) among different 
subtypes were examined by the Kaplan-Meier curves.

Construction and validation of a CR-related prognostic 
model

We executed multivariate Cox regression analysis on 
the prognosis-related CRs obtained by above analysis to 
distinguish independent prognostic factors. Then, a risk 
prognostic model was built in training cohort. Using the 
following formula to count patient’s risk score: 

( )Risk score Ci Ei= ×∑  [1]

where Ci represented the risk coefficient and Ei represented 
mRNA levels of each gene. Patients in the training cohort 
were divided into low- and high-risk group on the basis of 
the median value of risk score. The difference in prognosis 
between two groups was compared by Kaplan-Meier curves 
produced by survival analysis. The efficiency of the model 
was judged according to the area under the curve (AUC) 
values corresponding to the receiver operating characteristic 
(ROC) curves. On the basis of the “ggplot2” R package, we 
performed the T-distributed stochastic neighbor embedding 
(t-SNE) analysis to determine the ability of the model 
to discriminate patients in different groups. The testing 
cohort, TCGA entire cohort, and E-MTAB-1980 external 
cohort were as validation datasets to further confirm the 
predictive capability of the model.

Clinical correlation, independent prognostic analysis and 
stratification analysis of the model

Chi-squared test was executed to assess the correlation 
between clinical features and risk score, including patient’s 
age, gender, T stage, M stage, grade, and AJCC stage.  
Univariate and multivariate Cox risk regression analyses 
were subsequently used to evaluate the impact of clinical 
characteristics and risk score on ccRCC. Besides, we 
conducted a stratification analysis to assess whether the 
model maintained predictive performance in different 
clinical subgroups.

TME and immune checkpoints

We calculated the TME scores for all samples through 
the ESTIMATE algorithm to assess the difference in the 
TME between two groups. The CIBERSORT algorithm 
was executed to quantify the infiltrating levels of 22 human 
immune cells in ccRCC samples. Then, correlation test 
was performed to evaluate the relevance between risk score 
and immune cells. The single-sample gene set enrichment 
analysis (ssGSEA) was run to estimate the infiltration 
fraction of 16 immune cells and the activity of 13 immune-
related pathways among two groups. Furthermore, the 
expression levels of common immune checkpoint between 
two groups were also analyzed in this study.

Gene Set Enrichment Analysis (GSEA)

GSEA was run based on the gene set c2.cp.kegg.
v7.4.symbols.gmt derived from the MSigDB database 
(http://www.broad.mit.edu/gsea/msigdb/, c2.cp.kegg.
v7.4.symbols.gmt) to further explore the potential 
molecular mechanism of the difference between two group. 
FDR ≤0.25 and P values <0.05 were considered a significant 
enrichment criterion.

Somatic mutation and drug sensitivity analysis

We used the waterfall diagram generated by the “maftools” 
R package to evaluate the frequency of somatic mutations 
between two groups. We downloaded the NCI-60 data 
from the CellMiner platform (https://discover.nci.nih.gov/
cellminer/home.do), including the efficacy of common 
anticancer drugs and gene expression information of 
cancer cells. Correlation test was carried out to evaluate 
the relationship between the expression levels of CRs and 
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therapeutic response. The semi-inhibitory concentration 
(IC50) values of drugs were estimated via the “pRRophetic” 
R package for exploring the difference in sensitivity to 
common anticancer drugs among two groups, and P value 
<0.05 was considered statistically significant.

Tissue samples and transcriptome sequencing

A total of 18 tumor samples and 6 paracancerous 
samples were collected from 6 ccRCC patients treated at 
Guangdong Provincial People’s Hospital, and the specimens 
were cryopreserved in liquid nitrogen for subsequent 
transcriptome sequencing. The pathology of the patient’s 
postoperative tumor specimen was reviewed and determined 
to be ccRCC by two independent pathologists. According 
to the manufacturer’s agreement, transcriptome sequencing 
was performed for each case of ccRCC tissue and matched 
with paracancerous samples. The study was conducted in 
accordance with the Declaration of Helsinki (as revised in 
2013). The study was approved by the Ethics Committee of 
Guangdong Provincial People’s Hospital (IRB number: KY-
Z-2021-657-01) and informed consent was obtained from 
all individual participants. 

Statistical analysis

The Wilcoxon test was conducted to compare the 
differences between two groups. The Chi-squared test 
was run for the comparison of categorical variables. All R 
packages and statistical analysis methods were execucating 
that CRs may p0.4). All the results of statistical analyses are 
two-sided, the AUC values of the model greater than 0.5 
and P value less than 0.05 was considered to be meaningful 
results.

Results 

Differentially expressed CRs in ccRCC

A total of 89 differentially expressed CRs were identified 
in the TCGA-KIRC dataset compared to normal tissue, 
including 58 up-regulated CRs and 31 down-regulated 
CRs. Figure 1A,1B shows their expression heatmap and 
volcano plot. In order to analyze the interaction of these 
CRs, we used the STRING database to set the lowest 
interaction score to 0.9 (the highest confidence), and 
finally obtained their PPI network excepting isolated genes  

(Figure 1C). Based on these dysregulated CRs, we executed a 
univariate Cox prognostic analysis to assess their predictive 
value (Figure 1D). The prognostic network showed 
more intuitively correlation among these CRs and their 
relationship with prognosis (Figure 1E). In addition, we also 
identified 60 differentially expressed TFs in normal kidney 
tissue and ccRCC (Figure 1F). The interaction between 
TFs and genes is an important way to regulate gene 
transcription. In tumor tissue, their regulatory relationship 
may undergo major changes. So, we constructed a network 
of possible regulatory relationships between CRs and TFs 
(Figure 1G), which provides possible predictions for further 
research on the mechanisms of CRs and tumorigenesis or 
inhibition. 

CR-related subtypes in ccRCC

To investigate the correlation between different subtypes 
and expression levels of CRs, we performed the consensus 
clustering analysis on differentially expressed CRs using 
the “ConsensusClusterPlus” R package. We think it is the 
best classification subtypes when the subtype number k=3, 
and finally determine three CR-related subtypes (C1, C2, 
and C3) (Figure 2A-2C). Kaplan-Meier survival curve was 
utilized for comparing the survival differences among three 
subtypes. The results showed the strong differences in OS 
and PFS among the three subtypes. The subtype C3 had 
the best prognosis, followed by subtype C1, and subtype 
C2 had the worst prognosis (Figure 2D,2E, P<0.001). The 
obvious differences were also found in survival status, 
TNM stage, grade, and AJCC stage among three subtypes 
(P<0.001), but meaningless difference in age (Figure 2F). 
Specifically, subtype C2 was more common in men and 
had bad grade, AJCC stage, and TNM stage. The patients 
with subtype C2 showed high expression of CRs as a whole, 
and the proportion of deaths was the highest, indicating 
that CRs are strongly involved in the tumorigenesis and 
prognosis of ccRCC. In addition, we further excavated the 
biological function differences of CRs in different subtypes 
through functional enrichment analysis. Immune-related 
biological processes were discovered by GO enrichment 
analysis, such as B cell-mediated immunity, complement 
activation, lymphocyte-mediated immunity, etc. (Figure 2G). 
KEGG enrichment analysis showed significant enrichment 
in pathways such as cytokine-cytokine receptor interaction, 
protein digestion and absorption, cell cycle, p53 signaling 
pathway etc. (Figure 2H). 
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Figure 1 Identification of differentially expressed CRs in ccRCC. (A,B) The expression heatmap and volcano plot of 89 differentially 
expressed CRs. Red dots indicate genes whose expression is up-regulated, green dots indicate genes whose expression is down-regulated, 
and black dots indicate genes whose expression is not significantly different. (C) The PPI network of differentially expressed CRs. (D) The 
result of univariate Cox prognostic analysis on differentially expressed CRs. (E) The prognostic network of 33 CRs. The line connecting 
the CRs represents their interaction, blue and pink represent negative and positive correlations, respectively. (F) The expression heatmap of 
60 differentially expressed TFs. (G) The regulatory network of TFs and CRs. **, P<0.01; ***, P<0.001. FDR, false discovery rate; FC, fold 
change; CI, confidence interval; CRs, chromatin regulators; ccRCC, clear cell renal cell carcinoma; PPI, protein-protein interaction; TFs, 
transcription factors.

A CR-related prognostic model

Multivariate Cox regression analysis was performed 
on prognosis-related CRs to judge their independent 
prognostic value for the prognosis of ccRCC patients. 

Finally, four CRs with independent prognostic value, 
including TTK, L3MBTL1, glycine-N-acyltransferase-like 
1 (GLYATL1) and TOX3, were identified for predicting 
OS, and a risk prognostic model was established in the 
training cohort. Among them, TTK and L3MBTL1 were 
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Figure 2 Identification of CR-related subtypes in ccRCC. (A-C) Consensus matrix heatmap defining three clusters (k=3) and CDF curve and 
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identified as risk genes, and GLYATL1 and TOX3 were 
identified as favorable genes (Figure 3A).

( ) ( )
( ) ( )

Risk score 1.101 TTK mRNA 0.976 L3MBTL1 mRNA

0.201 GLYATLA mRNA 0.627 TOX3 mRNA

= × + × +

− × + − ×
 [2]

The patients with high-risk score had a poor OS 
according to Kaplan-Meier survival analysis (Figure 3B, 
P<0.001). The AUC value of the risk prognostic model at 
1-, 3-, and 5-year were 0.730, 0.681, and 0.763, respectively, 
revealing its excellent prediction performance (Figure 
3C). Furthermore, the survival time of patients decreased 
and death rate increased significantly with the risk score 
increased, indicating the negative correlation between 

prognosis and risk score (Figure 3D,3E). The result of the 
t-SNE analysis showed the good ability of the model to 
distinguish patients with different risks (Figure 3F). 

Validation of the prognostic model 

We validated the risk prognostic model in the testing 
cohort, TCGA entire cohort, and E-MTAB-1980 external 
cohort. Survival analysis showed that patients with high-risk 
score had shorter OS in testing cohort and TCGA entire 
cohort, compared to patients with low-risk score (Figure 
4A,4B, P<0.001). In testing cohort, the AUC value of the 
ROC curve of the prognostic model at 1-, 3-, and 5-year 
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Figure 4 Validation of the prognostic model in internal and external cohorts. (A,B) The Kaplan-Meier survival curves of the two groups 
in the testing cohort and TCGA entire cohort. (C,D) The ROC curves of 1-, 3-, and 5-year survival rates in the testing cohort and TCGA 
entire cohort. (E) Kaplan-Meier survival curves between the low- and high-risk group in the E-MTAB-1980 cohort. (F) The ROC curves 
of 1-, 3-, and 5-year survival rates in the E-MTAB-1980 cohort. (G-I) The risk distribution curve and survival status of patients of three 
cohorts. AUC, area under the curve; TCGA, The Cancer Genome Atlas; ROC, receiver operating characteristic.

were 0.700, 0.758, and 0.721, respectively (Figure 4C). In 
TCGA entire cohort, the AUC value of the prognostic 
model at 1-, 3-, and 5-year were 0.717, 0.705, and 0.754, 
respectively (Figure 4D). Besides, consistent with the results 
of TCGA cohort, patients with high-risk score also had 
poor OS in E-MTAB-1980 external cohort (Figure 4E, 

P<0.001). The AUC value of the model for predicting OS 
at 1-year, 3-year, and 5-year were 0.866, 0.857, and 0.829, 
respectively, showing its excellent predictive performance 
(Figure 4F). The risk distribution curves of the three cohorts 
also revealed the negative correlation of risk score and 
prognosis (Figure 4G-4I). These data reveal the accuracy of 
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the risk prognostic model for predicting the prognosis of 
ccRCC patients.

Validation of the mRNA levels of four CRs

We validated the mRNA levels of four CRs by high-
throughput sequencing of 18 tumor samples and 6 
paracancerous samples collected. The Figure 5A-5D shows 
the mRNA levels of the four CRs in TCGA dataset. The 
same results were observed in sequencing data, TTK 
and L3MBTL1 were highly expressed in ccRCC, and 
GLYATL1 and TOX3 were lowly expressed in ccRCC 
(Figure 5E-5H).

Risk score was an independent prognostic factor for ccRCC

To estimate the independent prognostic value of the 
risk score constructed by the four CRs, univariate and 
multivariate Cox regression analyses were carried out. 
The results showed that patient’s age, grade, AJCC stage, 
T stage, M stage, and risk score were independent factors 
for poor survival in ccRCC (Figure 6A, P<0.001). Age, 
grade, AJCC stage and risk score were still considered 

as independent prognostic indicators for ccRCC after 
removing interference between confounding factors 
using multivariate Cox regression analysis (Figure 6B, 
P<0.01). In addition, we also obtained consistent results in 
E-MTAB-1980 external cohort (Figure 6C,6D, P<0.001). 
These results suggest that the risk score constructed by four 
CRs was an independent prognostic risk factor for ccRCC.

Relationship between prognostic model and clinical features

To evaluate the effect of risk score on clinical features, we 
used Chi-square test to judge whether the gene signature 
based on four CRs was related to the tumorigenesis 
and progress of ccRCC. Obvious differences in gender 
(P<0.01), grade (P<0.001), AJCC stage (P<0.001), T stage 
(P<0.001), and M stage (P<0.001) between high- and low-
risk groups were found, but insignificant difference in age  
(Figure 7A). Specifically, high-risk score was related 
to terminal grade, T stage, M stage, and AJCC stage. 
Male patients also had higher risk score than female 
patients (Figure 7B). Furthermore, stratification analysis 
demonstrated that compared with low-risk group, patients 
with high-risk score had a significantly poorer OS in all 
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Figure 5 Validation of the mRNA levels of the four CRs used to construct the model. (A-D) The mRNA levels of the four CRs in the 
TCGA dataset. (E-H) The mRNA levels of the four CRs by high-throughput sequencing. CRs, chromatin regulators; TCGA, The Cancer 
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subgroups except those age >65 years (Figure 8). These 
results showed good applicability and reliable prediction 
value of the risk model.

Functional enrichment analysis and immune 
characteristics between low-and high-risk groups

The results of GSEA showed that alpha linolenic acid 
metabolism, NOD-like receptor signaling pathway, primary 
immunodeficiency, chemokine signaling pathway, cytokine-
cytokine receptor interaction, systemic lupus erythematosus, 
and taste transduction were significantly enriched in the 
high-risk group, while oxidative phosphorylation, fatty acid 
metabolism, PPAR signaling pathway, drug metabolism 
cytochrome p450, retinol metabolism, tight junction, valine 
leucine, and isoleucine degradation were majorly enriched 
in the low-risk group (Figure 9A,9B). The results of the 
ESTIMATE algorithm revealed significant difference 
in TME score between two groups, and high-risk group 

had higher immune score and stromal score (Figure 9C). 
Correlation analysis showed that the four CRs used to 
construct the model were closely related to most immune 
cells (Figure 9D). The results of the ssGSEA showed 
higher levels of immune cell infiltration in the high-risk 
group, especially CD8+ T cells, macrophages, plasmacytoid 
dendritic cells (pDCs), regulatory T cells (Treg), tumor 
infiltrating lymphocytes (TIL), T helper cells, T follicular 
helper cells (Tfh), Th1 cells, and Th2 cells (Figure 9E). 
Moreover, higher immune activity was also found in the 
high-risk group. Except for the type II interferon response, 
the activity of other nine kind immune pathways was higher 
in the high-risk group (Figure 9F). Finally, we compared 
the expression levels of common immune checkpoint genes 
among the two groups. Thirty-six immune checkpoints 
were differentially expressed between low- and high-risk 
group. And most of them were up-expressed in the high-
risk group, including CTLA-4, LAG3, PD-1, PD-L1, etc. 
(Figure 9G).
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Somatic mutation 

Gene mutations is considered to be a vital factor in 
tumorigenesis and progression. Therefore, we analyzed 
the somatic mutation status among two groups. Figure 10  
shows the top 20 genes with the highest frequency of 
somatic mutation in two groups. Our results showed that 
missense mutation was the most popular type of somatic 
mutation in ccRCC, followed by frameshift deletion and 
nonsense mutation. The largest differences in mutations 
between groups were in VHL mutations, BAP1 mutations, 
and KDM5C mutations. Specifically, BAP1 mutations and 
KDM5C mutations were usual in the high-risk group (13% 
vs. 7%; 9% vs. 3%), while VHL mutations were popular in 
the low-risk group (45% vs. 39%). 

Therapeutic response and drug sensitivity analysis

To improve the clinical value of CRs, we conducted a 
correlation analysis after acquiring and integrating data 
from the CellMiner platform (Figure 11). Cancer cells 
with higher mRNA levels of TTK may be more sensitive 
to nelarabine, but they may be associated with increased 
resistance to mithramycin. Higher expression levels of 
TOX3, cancer cells are more sensitive to LOXO-101, 
but they may be associated with increased resistance 
to pazopanib. Cancer cells with higher expression of 
GLYATL1 may be more sensitive to erlotinib, but it may 

be associated with increased resistance to vinorelbine and 
vinblastine. To improve the efficiency of clinical decision-
making, we analyzed the drug sensitivity of two groups to 
common anticancer drugs. Higher IC50 values of lapatinib, 
AKT inhibitor VIII, and HER2 kinase inhibitor are 
observed in the high-risk group, suggesting patients with 
low-risk score were more sensitive to these drugs. While 
the IC50 values of vinblastine, gemcitabine, paclitaxel, 
axitinib, sunitinib, and temsirolimus were higher in the low-
risk group, indicating patients with high-risk score may be 
more sensitive to these drugs (Figure 12). 

Construction of a nomogram

In order to promote the clinical application of the risk 
model, we built a nomogram based on risk score and 
the patient’s age, grade and AJCC stage. It contains four 
prognostic indicators, which can be better used to assess the 
survival probability of individuals in clinic (Figure 13A). The 
satisfied consistency between predicted and actual survival 
of patients can be observed from the calibration curve of the 
nomogram, confirming the superior predictive ability of the 
nomogram (Figure 13B). 

Discussion 

The ccRCC is a relatively special tumor. Unlike most 
tumors, its epigenetic regulators are frequently mutated 

Altered in 100 (81.97%) of 122 samples

VHL 
PBRM1 

TTN 
SETD2 
BAP1 

MTOR 
KDM5C 
HMCN1 
DNAH9 
MUC16 

ATM 
LRP2 
SPEN 

CSMD3 
FBN2 

ARID1A 
ANK3 

DNAH2 
FLG 

KMT2C

512

0

TM
B

39% 
34% 
14% 
11% 
13% 
9% 
9% 
5% 
6% 
4% 
4% 
5% 
7% 
5% 
2% 
2% 
2% 
4% 
5% 
3%

0
No. of samples

48

Risk

Missense_Mutation 
Frame_Shift_Del 
Frame_Shift_Ins 
Nonsense_Mutation

In_Frame_Del 
Translation_Start_Site 
In_Frame_Ins 
Multi_Hit 

Risk
High
Low

VHL 
PBRM1 

TTN 
SETD2 
BAP1 

MTOR 
KDM5C 
HMCN1 
DNAH9 
MUC16 

ATM 
LRP2 
SPEN 

CSMD3 
FBN2 

ARID1A 
ANK3 

DNAH2 
FLG 

KMT2C

117

0

TM
B

Altered in 153 (80.1%) of 191 samples

0
No. of samples

86

45% 
38% 
14% 
10% 
7% 
5% 
3% 
4% 
4% 
6% 
4% 
3% 
3% 
3% 
4% 
5% 
5% 
2% 
3% 
4%

Risk

Frame_Shift_Ins 
Missense_Mutation 
Frame_Shift_Del 
Nonsense_Mutation

Translation_Start_Site 
In_Frame_Del 
Nonstop_Mutation 
Multi_Hit

Risk
High
Low

A B

Figure 10 The waterfall diagram of the top 20 genes with the highest frequency of somatic mutation in the low- and high-risk group. 
(A) Distribution of somatic mutations in the high-risk group. (B) Distribution of somatic mutations in the low-risk group. TMB, tumor 
mutation burden.



Translational Cancer Research, Vol 13, No 1 January 2024 165

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2024;13(1):150-172 | https://dx.doi.org/10.21037/tcr-23-1383

2

0

−2

−4D
ru

g 
se

ns
iti

vi
ty

0       1       2       3       4
Gene expression

TOX3, 6-Thioguanine 
Cor =−0.534, P<0.001

0

−1

−2 

−3D
ru

g 
se

ns
iti

vi
ty

0.0    0.2    0.4    0.6    0.8
Gene expression

GLYATL1, Vinorelbine 
Cor =−0.499, P<0.001

1
0

−1
−2
−3D

ru
g 

se
ns

iti
vi

ty

0       1       2       3       4
Gene expression

TOX3, 6-Thioguanine 
Cor =−0.468, P<0.001

2
1
0

−1
−2
−3

D
ru

g 
se

ns
iti

vi
ty

0       1       2       3       4
Gene expression

TOX3, Pazopanib 
Cor =−0.454, P<0.001

0

−1

−2

D
ru

g 
se

ns
iti

vi
ty

0.0    0.2    0.4    0.6    0.8
Gene expression

GLYATL1, Vinblastine 
Cor =−0.403, P<0.001

5.0

2.5

0.0D
ru

g 
se

ns
iti

vi
ty

1       2       3       4
Gene expression

TTK, Nelarabine 
Cor =0.368, P=0.004

1

0

−1

−2D
ru

g 
se

ns
iti

vi
ty

0.0    0.2    0.4    0.6    0.8
Gene expression

GLYATL1, Eribulin mesilate 
Cor =−0.360, P=0.005

6

4

2

0D
ru

g 
se

ns
iti

vi
ty

0       1       2       3       4
Gene expression

TOX3, LOXO-101 
Cor =342, P=0.007

1

0

−1

−2D
ru

g 
se

ns
iti

vi
ty

0.0    0.2    0.4    0.6    0.8
Gene expression

GLYATL1, Tyrothricin 
Cor =−0.341, P=0.008

1
0

−1
−2
−3
−4
−5

D
ru

g 
se

ns
iti

vi
ty

1       2       3       4
Gene expression

TTK, Mithramycin 
Cor =−0.335, P=0.009

0

−2

−4D
ru

g 
se

ns
iti

vi
ty

0       1       2       3       4
Gene expression

TOX3, Ixazomib citrate 
Cor =−0.327, P=0.011

1

0

−1

−2D
ru

g 
se

ns
iti

vi
ty

0.0    0.2    0.4    0.6    0.8
Gene expression

GLYATL1, Paclitaxel 
Cor =−0.322, P=0.012

1

0

−1

−2D
ru

g 
se

ns
iti

vi
ty

0       1       2       3       4
Gene expression

TOX3, Allopurinol 
Cor =−0.320, P=0.013

2

1

0

−1D
ru

g 
se

ns
iti

vi
ty

0.0    0.2    0.4    0.6    0.8
Gene expression

GLYATL1, Erlotinib 
Cor =0.310, P=0.016

0

−2

−4

D
ru

g 
se

ns
iti

vi
ty

0.0    0.2    0.4    0.6    0.8
Gene expression

GLYATL1, Homoharringtonine 
Cor =−0.308, P=0.017

4

2

0

D
ru

g 
se

ns
iti

vi
ty

0.0    0.2    0.4    0.6    0.8
Gene expression

GLYATL1, Imiquimod 
Cor =0.308, P=0.017

Figure 11 Correlation of CRs expressions with therapeutic response. CRs, chromatin regulators.

(such as SETD2, PBRM1, and BAP1), while gene pathways 
mutations in other common cancers (such as RAS, BRAF, 
and TP53) are largely absent (44-47). Previous studies (48) 
have demonstrated that inactivation of the VHL is a tumor-
initiating incident in ccRCC, while the epigenetic expansion 
of VHL-HIF signaling output was considered to be a key 
link in driving multiple organ metastasis in RCC (49). These 
evidences suggest that epigenetic alterations are strongly 
related to the tumorigenesis and progression of ccRCC. 
However, how CRs drive epigenetic alterations function in 
ccRCC and their impacts on prognosis remain unclear. 

In this research, we firstly identified 89 differentially 

expressed CRs between ccRCC and normal renal tissue 
in TCGA database and constructed their PPI network. 
Among them, TTK, TOP2A, BUB1, AURKB, and PBK 
are at the core of the network. At the same time, we also 
identified 60 differentially expressed TFs, and constructed 
a regulatory network between TFs and CRs. Thirty-three 
CRs were related with the prognosis of ccRCC, indicating 
that CRs may play a vital effect in tumorigenesis and 
progression of ccRCC. Based on 89 differentially expressed 
CRs, we executed an unsupervised clustering analysis of 
ccRCC patients in TCGA dataset and finally identified 
three subtypes. Obvious differences in CRs expression, 
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Figure 12 Differences in drug sensitivity between low- and high-risk group.

OS, PFS, and clinical features among the three subtypes 
were found. Compared with the other two subtypes, the 
overall expression of CRs in patients with subtype C2 
was higher, while OS and PFS were shorter. In addition, 
subtype C2 was more common in men and was associated 
with poor histological grade, AJCC stage and TNM 
stage. Functional enrichment analysis was conducted to 

further research on the biological function differences of 
CRs in different subtypes. We discovered some immune-
related biological processes and cancer-related signaling 
pathways, such as lymphocyte-mediated immunity, B cell-
mediated immunity, complement activation; cytokine-
cytokine receptor interaction, cell cycle, p53 signaling 
pathway, etc. The immune effects mediated by immune 
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Figure 13 Construction of a nomogram for predicting survival. (A) A nomogram combining the clinical features and risk score was 
constructed to predict 1-, 3-, and 5-year OS. (B) The calibration curve of the nomogram showed excellent consistency between the actual 
and predicted survival of the patients. OS, overall survival.

cells can affect the progression of tumor. Li et al. (50) 
found that B cells recruited by tumor can significantly 
increase the invasive and metastatic ability of RCC. Ou  
et al. (51) found that regulation of IL-8 by B cells in 
the TME through mediated immune effects increased 
bladder cancer metastasis. In addition, inflammatory 
cytokines mediated by B cells were strongly associated with 
progression of colorectal cancer (52). P53 is mainly involved 
in biological processes such as cell cycle arrest, senescence, 
DNA repair, apoptosis, etc. In recent years, researchers have 
found that p53 is also involved in many other pathways, 
such as autophagy, cellular metabolism, ferroptosis, and 
pathways in metabolism of reactive oxygen species (53). The 
dysregulation of p53 signaling pathway and cell cycle may 
lead to the occurrence of many diseases including tumors. 
These evidences indicate that these biological processes 

and related pathways identified from CR-related subtypes 
are of great significance, revealing the possible potential 
mechanisms of CRs in the occurrence and progression of 
ccRCC. 

Subsequently, we identified four CRs (TTK, L3MBTL1, 
GLYATL, and TOX3) with independent prognostic value 
by performing a multivariate Cox regression analysis. We 
successfully constructed a risk prognostic model using 
these four CRs. Survival curves and ROC curves showed 
the excellent predictive performance of the model and the 
model was validated in internal and external datasets. TTK 
is essential for the regulation of mitosis and chromosome 
attachment (54). It has been reported that TTK contributes 
greatly to the tumorigenesis and progression of many 
tumors (55-57). Zhang et al. (58) reported that TTK 
promoted cancer cell proliferation in colon cancer by 

A

B
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activating PKCα/ERK1/2 pathway and inhibited tumor 
differentiation by inactivating PI3K/Akt pathway. Huang 
et al. (54) reported that TTK can regulate cancer cells’ 
apoptosis and proliferation by the Akt-mTOR signaling 
pathway in gastric cancer and silence of TTK inhibits tumor 
cell proliferation and increases apoptosis. Another study also 
showed that TTK can activate the Akt-mTOR signaling 
pathway in a p53-dependent manner, thereby promoting 
the proliferation and migration of hepatoma cells (59). 
Furthermore, Liu et al. (60) found that highly expressed 
in ccRCC tissues, TTK can promote tumor growth and 
metastasis via inducing cell proliferation and invasion. In 
mammals, L3MBTL1 was shown to be a transcriptional 
repressor and a suspected tumor suppressor gene (61). 
L3MBTL1 interacts with Tel/Etv6 and participates in the 
regulation of hematopoiesis in adults (62). L3MBTL may be 
the key gene of q12 deletion on chromosome 20 in human 
myeloid malignant tumors (63). However, no mutation of 
L3MBTL has been identified in patients with 20q deletion 
or in patients with normal cytogenetics (64). Gurvich  
et al. (65) suggested that 20q(-) hematopoietic malignancies 
develop as a result of replication stress and DNA damage 
caused by loss of L3MBTL1 expression. Highly expressed 
in breast cancer, L3MBTL1 was related to low histological 
grade and hormone receptor positivity, which contributes to 
good prognosis (61). GLYATL1, a member of the GLYATL 
gene family, is located in mitochondria and encodes an 
enzyme involved in catalyzing aryl acetyl transfer (66). 
Studies have shown that GLYATL1 is involved in many 
physiological metabolism, but is also associated with 
tumors. Guan et al. (67) found that high levels of promoter 
methylation of the GLYATL1 may silence the expression of 
GLYATL1, which leads to the occurrence of hepatocellular 
cancer and poor OS. Another research reported that 
GLYATL1 was up-expressed in primary prostate cancer and 
was regulated by the ETS TF ETV1 (68). As a member 
of the TOX gene family, TOX3 is abnormally expressed 
or mutated in malignant tumors. The TOX3 expression 
in mammary epithelial cell progenitors may lead to 
tumorigenesis of breast cancer (69). The up-regulation of 
TOX3 was observably related to the PFS and OS of lung 
adenocarcinoma (70). Besides, TOX3 is also considered to 
be a tumor suppressor gene, and the up-expressed of TOX3 
inhibits the migration and invasion of ccRCC (71). This 
evidence suggests that the four CRs we identified may be 
potential therapeutic targets for many tumors, including 
ccRCC. Interestingly, we verified the expression level of 
the four CRs by high-throughput sequencing of tumor 

specimens. The results of univariate and multivariate Cox 
analyses also demonstrated that risk score constructed by 
four CRs can independently predict survival outcomes in 
ccRCC.

More and more evidences show the importance of TME 
in tumorigenesis, development and metastasis. Our findings 
revealed a momentous difference in TME between low- and 
high-risk group. Patients with high-risk score had higher 
immune score and stromal score, indicating higher levels of 
immune cells and stromal cells. The results of the ssGSEA 
demonstrated that patients with high-risk score generally had 
higher levels of immune cell infiltration and immune pathway 
activity, which was similar to known research (72). However, 
the high-risk group had a worse prognosis, indicating the 
complexity of the microenvironment in ccRCC. On the 
one hand, ccRCC may have a special immunophenotype. 
Although it possesses many immune cells, these cells 
cannot penetrate into the tumor cell nucleus, but are 
confined to the peripheral stroma of the tumor cell (73). 
On the other hand, immune cells in the microenvironment 
can be induced by various signaling pathways to become 
dysfunctional (74-76). Based on the above reasons, immune 
cells cannot exert the effect of killing tumors. The result 
of correlation analysis showed that the four CRs used 
to construct the model were obviously associated with 
most immune cells. In addition, we also observed that 36 
immune checkpoints were differently expressed between 
two groups, including CTLA-4, LAG3, PD-1 and PD-
L1, etc. Thus, we speculate it may also be a vital factor for 
the bad prognosis of high-risk group. Some new researches 
reported the interaction between cancer cell metabolism 
and immune cell metabolism can regulate anti-tumor 
immunity and affect the efficacy of immunotherapy (77). 
One of the characteristics of ccRCC is the mutation of 
target genes involved in metabolic pathways (78), thereby 
exhibiting distinct metabolic patterns. We found that 
CR-based gene signatures were enriched in cancer and 
metabolic-related pathways, such as NOD-like receptor 
signaling pathway, PPAR signaling pathway, chemokine 
signaling pathway; alpha linolenic acid metabolism, drug 
metabolism cytochrome p450, fatty acid metabolism, 
oxidative phosphorylation, valine leucine, and isoleucine 
degradation. Based on the above evidence, we speculate that 
CRs may decide tumor progression by affecting the immune 
signature and metabolic pattern of the TME. This suggests 
that targeting CRs may regulate the TME, enhance the 
efficacy of immunotherapy, and become a new therapeutic 
strategy. 
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To improve the value of CR-related prognostic model 
in clinical decision-making, we explored the relationship 
between CRs and the sensitivity of general anticancer drugs. 
Cancer cells with high expression of TOX3 may be more 
sensitive to LOXO-101. According to a study, LOXO-
101 has a considerable effect on patients with advanced 
solid tumors that harbour an NTRK gene fusion (79). 
Tyrosine kinase inhibitors are commonly used drugs for 
the treatment of ccRCC. However, up-regulation of TOX3 
may increase resistance to pazopanib. Cancer cells with high 
GLYATL1 expression may be more sensitive to erlotinib. 
Erlotinib induces cell cycle arrest by inhibiting epidermal 
growth factor receptor (EGFR), which prevents tumor cell 
division, and initiates programmed cell death in human 
tumor cells with overexpression of EGFR (80). However, 
the increased expression of GLYATL1 may increase drug 
resistance of vinorelbine and vinblastine. In addition, we 
found that patients with high-risk score may be more 
sensitive to vincristine, gemcitabine, paclitaxel, axitinib, 
sunitinib, and temsirolimus. This information can provide 
an important reference for clinical decision-making. Finally, 
we integrated the patient’s clinical information and the risk 
score to develop a nomogram, which can better apply in 
clinical setting.

We have to admit that there are some limitations in our 
research. Firstly, the data we analyzed were from public 
databases, which need to be verified in forward-looking 
queue. Secondly, the risk prognostic model also needs to 
verify its predictive performance in more ccRCC cohorts. 
Finally, more researches are needed to explore the specific 
mechanism of CRs affecting the biological behavior of 
ccRCC.

Conclusions 

Our research revealed the important role of CRs in 
the occurrence and development of ccRCC. The CR-
related gene signature can predict the prognosis and drugs 
therapeutic significance of ccRCC, which provides an 
important reference for clinical decision-making. Targeting 
CRs may be a potential strategy for the treatment of ccRCC 
in the future.

Acknowledgments 

We acknowledge the TCGA, ArrayExpress, MSigDB 
and Cistrome Cancer databases for providing available 
information.

Funding: This research was supported by the Medical 
Science and Technology Research Foundation of 
Guangdong Province (grant No. A2022232), and Foshan 
Nanhai District “14th Five-Year Plan” key specialty (special 
specialty) construction project.

Footnote

Reporting Checklist: The authors have completed the 
TRIPOD reporting checklist. Available at https://tcr.
amegroups.com/article/view/10.21037/tcr-23-1383/rc

Data Sharing Statement: Available at https://tcr.amegroups.
com/article/view/10.21037/tcr-23-1383/dss

Peer Review File: Available at https://tcr.amegroups.com/
article/view/10.21037/tcr-23-1383/prf

Conflicts of Interest: All authors have completed the ICMJE 
uniform disclosure form (available at https://tcr.amegroups.
com/article/view/10.21037/tcr-23-1383/coif). The authors 
have no conflicts of interest to declare.

Ethical Statement: The authors are accountable for all 
aspects of the work in ensuring that questions related 
to the accuracy or integrity of any part of the work are 
appropriately investigated and resolved. The study was 
conducted in accordance with the Declaration of Helsinki 
(as revised in 2013). The study was approved by the Ethics 
Committee of Guangdong Provincial People’s Hospital 
(IRB No. KY-Z-2021-657-01) and informed consent was 
obtained from all individual participants. 

Open Access Statement: This is an Open Access article 
distributed in accordance with the Creative Commons 
Attribution-NonCommercial-NoDerivs 4.0 International 
License (CC BY-NC-ND 4.0), which permits the non-
commercial replication and distribution of the article with 
the strict proviso that no changes or edits are made and the 
original work is properly cited (including links to both the 
formal publication through the relevant DOI and the license). 
See: https://creativecommons.org/licenses/by-nc-nd/4.0/.

References

1. Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 
2022. CA Cancer J Clin 2022;72:7-33.

2. Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 

https://tcr.amegroups.com/article/view/10.21037/tcr-23-1383/rc
https://tcr.amegroups.com/article/view/10.21037/tcr-23-1383/rc
https://tcr.amegroups.com/article/view/10.21037/tcr-23-1383/dss
https://tcr.amegroups.com/article/view/10.21037/tcr-23-1383/dss
https://tcr.amegroups.com/article/view/10.21037/tcr-23-1383/prf
https://tcr.amegroups.com/article/view/10.21037/tcr-23-1383/prf
https://tcr.amegroups.com/article/view/10.21037/tcr-23-1383/coif
https://tcr.amegroups.com/article/view/10.21037/tcr-23-1383/coif
https://creativecommons.org/licenses/by-nc-nd/4.0/


Zhang et al. Role of gene signature in the prediction of ccRCC170

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2024;13(1):150-172 | https://dx.doi.org/10.21037/tcr-23-1383

2020: GLOBOCAN Estimates of Incidence and Mortality 
Worldwide for 36 Cancers in 185 Countries. CA Cancer J 
Clin 2021;71:209-49.

3. Hsieh JJ, Purdue MP, Signoretti S, et al. Renal cell 
carcinoma. Nat Rev Dis Primers 2017;3:17009.

4. Kim MC, Jin Z, Kolb R, et al. Updates on Immunotherapy 
and Immune Landscape in Renal Clear Cell Carcinoma. 
Cancers (Basel) 2021;13:5856.

5. Yang F, Zhou Q, Xing N. Comparison of survival and 
renal function between partial and radical laparoscopic 
nephrectomy for T1b renal cell carcinoma. J Cancer Res 
Clin Oncol 2020;146:261-72.

6. Barata PC, Rini BI. Treatment of renal cell carcinoma: 
Current status and future directions. CA Cancer J Clin 
2017;67:507-24.

7. McKay RR, Bossé D, Xie W, et al. The Clinical Activity 
of PD-1/PD-L1 Inhibitors in Metastatic Non-Clear 
Cell Renal Cell Carcinoma. Cancer Immunol Res 
2018;6:758-65.

8. Choueiri TK, Motzer RJ. Systemic Therapy for Metastatic 
Renal-Cell Carcinoma. N Engl J Med 2017;376:354-66.

9. Miller KD, Nogueira L, Mariotto AB, et al. Cancer 
treatment and survivorship statistics, 2019. CA Cancer J 
Clin 2019;69:363-85.

10. Motzer RJ, Escudier B, McDermott DF, et al. Nivolumab 
versus Everolimus in Advanced Renal-Cell Carcinoma. N 
Engl J Med 2015;373:1803-13.

11. Chen J, Ye Z, Liu L, et al. Assessment of the prognostic 
value of SPOCK1 in clear cell renal cell carcinoma: a 
bioinformatics analysis. Transl Androl Urol 2022;11:509-18.

12. Shao Y, Wu B, Yang Z, et al. ALDOB represents a 
potential prognostic biomarker for patients with clear cell 
renal cell carcinoma. Transl Androl Urol 2023;12:549-71.

13. Liao Z, Yao H, Wei J, et al. Development and validation 
of the prognostic value of the immune-related genes 
in clear cell renal cell carcinoma. Transl Androl Urol 
2021;10:1607-19.

14. Zhou Y, Jiang D, Chu X, et al. High expression of CD73 
contributes to poor prognosis of clear-cell renal cell 
carcinoma by promoting cell proliferation and migration. 
Transl Cancer Res 2022;11:3634-44.

15. Brien GL, Valerio DG, Armstrong SA. Exploiting 
the Epigenome to Control Cancer-Promoting Gene-
Expression Programs. Cancer Cell 2016;29:464-76.

16. Lu J, Xu J, Li J, et al. FACER: comprehensive molecular 
and functional characterization of epigenetic chromatin 
regulators. Nucleic Acids Res 2018;46:10019-33.

17. Plass C, Pfister SM, Lindroth AM, et al. Mutations in 

regulators of the epigenome and their connections to 
global chromatin patterns in cancer. Nat Rev Genet 
2013;14:765-80.

18. Gonzalez-Perez A, Jene-Sanz A, Lopez-Bigas N. The 
mutational landscape of chromatin regulatory factors 
across 4,623 tumor samples. Genome Biol 2013;14:r106.

19. Medvedeva YA, Lennartsson A, Ehsani R, et al. EpiFactors: 
a comprehensive database of human epigenetic factors and 
complexes. Database (Oxford) 2015;2015:bav067.

20. Marazzi I, Greenbaum BD, Low DHP, et al. Chromatin 
dependencies in cancer and inflammation. Nat Rev Mol 
Cell Biol 2018;19:245-61.

21. Chu Y, Chen W, Peng W, et al. Amnion-Derived 
Mesenchymal Stem Cell Exosomes-Mediated Autophagy 
Promotes the Survival of Trophoblasts Under Hypoxia 
Through mTOR Pathway by the Downregulation of 
EZH2. Front Cell Dev Biol 2020;8:545852.

22. Li T, Yang J, Yang B, et al. Ketamine Inhibits Ovarian 
Cancer Cell Growth by Regulating the lncRNA-PVT1/
EZH2/p57 Axis. Front Genet 2021;11:597467.

23. Chen J, Wang F, Xu H, et al. Long Non-Coding RNA 
SNHG1 Regulates the Wnt/β-Catenin and PI3K/
AKT/mTOR Signaling Pathways via EZH2 to Affect 
the Proliferation, Apoptosis, and Autophagy of Prostate 
Cancer Cell. Front Oncol 2020;10:552907.

24. Cancer Genome Atlas Research Network, Ley TJ, 
Miller C, et al. Genomic and epigenomic landscapes of 
adult de novo acute myeloid leukemia. N Engl J Med 
2013;368:2059-74.

25. Shain AH, Pollack JR. The spectrum of SWI/SNF 
mutations, ubiquitous in human cancers. PLoS One 
2013;8:e55119.

26. Alizadeh AA, Aranda V, Bardelli A, et al. Toward 
understanding and exploiting tumor heterogeneity. Nat 
Med 2015;21:846-53.

27. Banelli B, Carra E, Barbieri F, et al. The histone 
demethylase KDM5A is a key factor for the resistance to 
temozolomide in glioblastoma. Cell Cycle 2015;14:3418-29.

28. Sharma SV, Lee DY, Li B, et al. A chromatin-mediated 
reversible drug-tolerant state in cancer cell subpopulations. 
Cell 2010;141:69-80.

29. Fiorentino FP, Giordano A. The tumor suppressor role of 
CTCF. J Cell Physiol 2012;227:479-92.

30. Marshall AD, Bailey CG, Rasko JE. CTCF and BORIS 
in genome regulation and cancer. Curr Opin Genet Dev 
2014;24:8-15.

31. Damaschke NA, Yang B, Blute ML Jr, et al. Frequent 
disruption of chromodomain helicase DNA-binding 



Translational Cancer Research, Vol 13, No 1 January 2024 171

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2024;13(1):150-172 | https://dx.doi.org/10.21037/tcr-23-1383

protein 8 (CHD8) and functionally associated chromatin 
regulators in prostate cancer. Neoplasia 2014;16:1018-27.

32. Huang Z, Yan Y, Zhu Z, et al. CBX7 suppresses urinary 
bladder cancer progression via modulating AKR1B10-
ERK signaling. Cell Death Dis 2021;12:537.

33. Shinjo K, Yamashita Y, Yamamoto E, et al. Expression of 
chromobox homolog 7 (CBX7) is associated with poor 
prognosis in ovarian clear cell adenocarcinoma via TRAIL-
induced apoptotic pathway regulation. Int J Cancer 
2014;135:308-18.

34. Li Z, Hou P, Fan D, et al. The degradation of EZH2 
mediated by lncRNA ANCR attenuated the invasion and 
metastasis of breast cancer. Cell Death Differ 2017;24:59-71.

35. Zhang L, Qu J, Qi Y, et al. EZH2 engages TGFβ signaling 
to promote breast cancer bone metastasis via integrin β1-
FAK activation. Nat Commun 2022;13:2543.

36. Yang YA, Yu J. EZH2, an epigenetic driver of prostate 
cancer. Protein Cell 2013;4:331-41.

37. White JR, Thompson DT, Koch KE, et al. AP-2α-
Mediated Activation of E2F and EZH2 Drives Melanoma 
Metastasis. Cancer Res 2021;81:4455-70.

38. Roh JW, Choi JE, Han HD, et al. Clinical and biological 
significance of EZH2 expression in endometrial cancer. 
Cancer Biol Ther 2020;21:147-56.

39. Cai H, Memarzadeh S, Stoyanova T, et al. Collaboration 
of Kras and androgen receptor signaling stimulates EZH2 
expression and tumor-propagating cells in prostate cancer. 
Cancer Res 2012;72:4672-81.

40. Yue X, Zhang Z, Liang X, et al. Zinc fingers and 
homeoboxes 2 inhibits hepatocellular carcinoma cell 
proliferation and represses expression of Cyclins A and E. 
Gastroenterology 2012;142:1559-70.e2.

41. Kwon RJ, Kim YH, Jeong DC, et al. Expression and 
prognostic significance of zinc fingers and homeoboxes 
family members in renal cell carcinoma. PLoS One 
2017;12:e0171036.

42. Lyu XY, Shui YS, Wang L, et al. WDR5 promotes 
the tumorigenesis of oral squamous cell carcinoma via 
CARM1/β-catenin axis. Odontology 2022;110:138-47.

43. Lu C, Liu Z, Klement JD, et al. WDR5-H3K4me3 
epigenetic axis regulates OPN expression to compensate 
PD-L1 function to promote pancreatic cancer immune 
escape. J Immunother Cancer 2021;9:e002624.

44. Simon JM, Hacker KE, Singh D, et al. Variation in 
chromatin accessibility in human kidney cancer links 
H3K36 methyltransferase loss with widespread RNA 
processing defects. Genome Res 2014;24:241-50.

45. Comprehensive molecular characterization of clear cell 

renal cell carcinoma. Nature 2013;499:43-9.
46. Dalgliesh GL, Furge K, Greenman C, et al. Systematic 

sequencing of renal carcinoma reveals inactivation of 
histone modifying genes. Nature 2010;463:360-3.

47. Duns G, van den Berg E, van Duivenbode I, et al. 
Histone methyltransferase gene SETD2 is a novel tumor 
suppressor gene in clear cell renal cell carcinoma. Cancer 
Res 2010;70:4287-91.

48. Kaelin WG Jr. The von Hippel-Lindau tumour suppressor 
protein: O2 sensing and cancer. Nat Rev Cancer 
2008;8:865-73.

49. Vanharanta S, Shu W, Brenet F, et al. Epigenetic expansion 
of VHL-HIF signal output drives multiorgan metastasis in 
renal cancer. Nat Med 2013;19:50-6.

50. Li S, Huang C, Hu G, et al. Tumor-educated B cells 
promote renal cancer metastasis via inducing the IL-1β/
HIF-2α/Notch1 signals. Cell Death Dis 2020;11:163. 
Erratum in: Cell Death Dis 2022;13:415.

51. Ou Z, Wang Y, Liu L, et al. Tumor microenvironment 
B cells increase bladder cancer metastasis via modulation 
of the IL-8/androgen receptor (AR)/MMPs signals. 
Oncotarget 2015;6:26065-78.

52. Lasry A, Zinger A, Ben-Neriah Y. Inflammatory 
networks underlying colorectal cancer. Nat Immunol 
2016;17:230-40.

53. Hernández Borrero LJ, El-Deiry WS. Tumor suppressor 
p53: Biology, signaling pathways, and therapeutic targeting. 
Biochim Biophys Acta Rev Cancer 2021;1876:188556.

54. Huang H, Yang Y, Zhang W, et al. TTK regulates 
proliferation and apoptosis of gastric cancer cells through 
the Akt-mTOR pathway. FEBS Open Bio 2020;10:1542-9.

55. Benzi G, Camasses A, Atsunori Y, et al. A common 
molecular mechanism underlies the role of Mps1 in 
chromosome biorientation and the spindle assembly 
checkpoint. EMBO Rep 2020;21:e50257.

56. Silva RD, Mirkovic M, Guilgur LG, et al. Absence of the 
Spindle Assembly Checkpoint Restores Mitotic Fidelity 
upon Loss of Sister Chromatid Cohesion. Curr Biol 
2018;28:2837-2844.e3.

57. Lim G, Huh WK. Rad52 phosphorylation by Ipl1 and 
Mps1 contributes to Mps1 kinetochore localization and 
spindle assembly checkpoint regulation. Proc Natl Acad 
Sci U S A 2017;114:E9261-70.

58. Zhang L, Jiang B, Zhu N, et al. Mitotic checkpoint kinase 
Mps1/TTK predicts prognosis of colon cancer patients 
and regulates tumor proliferation and differentiation 
via PKCα/ERK1/2 and PI3K/Akt pathway. Med Oncol 
2019;37:5.



Zhang et al. Role of gene signature in the prediction of ccRCC172

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2024;13(1):150-172 | https://dx.doi.org/10.21037/tcr-23-1383

59. Liu X, Liao W, Yuan Q, et al. TTK activates Akt and 
promotes proliferation and migration of hepatocellular 
carcinoma cells. Oncotarget 2015;6:34309-20.

60. Liu XD, Yao DW, Xin F. TTK contributes to tumor 
growth and metastasis of clear cell renal cell carcinoma 
by inducing cell proliferation and invasion. Neoplasma 
2019;66:946-53.

61. Zeng H, Irwin ML, Lu L, et al. Physical activity and 
breast cancer survival: an epigenetic link through reduced 
methylation of a tumor suppressor gene L3MBTL1. 
Breast Cancer Res Treat 2012;133:127-35.

62. Hock H, Meade E, Medeiros S, et al. Tel/Etv6 is an 
essential and selective regulator of adult hematopoietic 
stem cell survival. Genes Dev 2004;18:2336-41.

63. Li J, Bench AJ, Vassiliou GS, et al. Imprinting of the 
human L3MBTL gene, a polycomb family member located 
in a region of chromosome 20 deleted in human myeloid 
malignancies. Proc Natl Acad Sci U S A 2004;101:7341-6.

64. MacGrogan D, Kalakonda N, Alvarez S, et al. Structural 
integrity and expression of the L3MBTL gene in normal 
and malignant hematopoietic cells. Genes Chromosomes 
Cancer 2004;41:203-13.

65. Gurvich N, Perna F, Farina A, et al. L3MBTL1 polycomb 
protein, a candidate tumor suppressor in del(20q12) 
myeloid disorders, is essential for genome stability. Proc 
Natl Acad Sci U S A 2010;107:22552-7.

66. Barfeld SJ, East P, Zuber V, et al. Meta-analysis of 
prostate cancer gene expression data identifies a novel 
discriminatory signature enriched for glycosylating 
enzymes. BMC Med Genomics 2014;7:513.

67. Guan R, Hong W, Huang J, et al. The expression and 
prognostic value of GLYATL1 and its potential role 
in hepatocellular carcinoma. J Gastrointest Oncol 
2020;11:1305-21.

68. Eich ML, Chandrashekar DS, Rodriguez Pen A MDC, 
et al. Characterization of glycine-N-acyltransferase like 1 
(GLYATL1) in prostate cancer. Prostate 2019;79:1629-39.

69. Seksenyan A, Kadavallore A, Walts AE, et al. TOX3 is 
expressed in mammary ER(+) epithelial cells and regulates 

ER target genes in luminal breast cancer. BMC Cancer 
2015;15:22.

70. Zeng D, Lin H, Cui J, et al. TOX3 is a favorable prognostic 
indicator and potential immunomodulatory factor in lung 
adenocarcinoma. Oncol Lett 2019;18:4144-52.

71. Jiang B, Chen W, Qin H, et al. TOX3 inhibits cancer 
cell migration and invasion via transcriptional regulation 
of SNAI1 and SNAI2 in clear cell renal cell carcinoma. 
Cancer Lett 2019;449:76-86.

72. Newman AM, Liu CL, Green MR, et al. Robust 
enumeration of cell subsets from tissue expression profiles. 
Nat Methods 2015;12:453-7.

73. Chen DS, Mellman I. Elements of cancer immunity and 
the cancer-immune set point. Nature 2017;541:321-30.

74. Prinz PU, Mendler AN, Brech D, et al. NK-
cell dysfunction in human renal carcinoma reveals 
diacylglycerol kinase as key regulator and target for 
therapeutic intervention. Int J Cancer 2014;135:1832-41.

75. Xia Y, Zhang Q, Zhen Q, et al. Negative regulation of 
tumor-infiltrating NK cell in clear cell renal cell carcinoma 
patients through the exosomal pathway. Oncotarget 
2017;8:37783-95.

76. Giraldo NA, Becht E, Pagès F, et al. Orchestration and 
Prognostic Significance of Immune Checkpoints in the 
Microenvironment of Primary and Metastatic Renal Cell 
Cancer. Clin Cancer Res 2015;21:3031-40.

77. Leone RD, Powell JD. Metabolism of immune cells in 
cancer. Nat Rev Cancer 2020;20:516-31.

78. Lucarelli G, Loizzo D, Franzin R, et al. Metabolomic 
insights into pathophysiological mechanisms and 
biomarker discovery in clear cell renal cell carcinoma. 
Expert Rev Mol Diagn 2019;19:397-407.

79. Hong DS, DuBois SG, Kummar S, et al. Larotrectinib in 
patients with TRK fusion-positive solid tumours: a pooled 
analysis of three phase 1/2 clinical trials. Lancet Oncol 
2020;21:531-40.

80. Abdelgalil AA, Al-Kahtani HM, Al-Jenoobi FI. Erlotinib. 
Profiles Drug Subst Excip Relat Methodol 2020;45:93-117.

Cite this article as: Zhang C, Zeng J, Ye C, Tian K, Xian Z. 
Construction and validation of a chromatin regulator-related 
gene signature for prognostic and therapeutic significance 
of clear cell renal cell carcinoma. Transl Cancer Res 
2024;13(1):150-172. doi: 10.21037/tcr-23-1383


