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Abstract

Seed-based cross-correlation analysis (sCCA) and independent component analysis have been widely employed to extract
functional networks from the resting state functional magnetic resonance imaging data. However, the results of sCCA, in
terms of both connectivity strength and network topology, can be sensitive to seed selection variations. ICA avoids the
potential problems due to seed selection, but choosing which component(s) to represent the network of interest could be
subjective and problematic. In this study, we proposed a seed-based iterative cross-correlation analysis (siCCA) method for
resting state brain network analysis. The method was applied to extract default mode network (DMN) and stable task
control network (STCN) in two independent datasets acquired from normal adults. Compared with the networks obtained
by traditional sCCA and ICA, the resting state networks produced by siCCA were found to be highly stable and independent
on seed selection. siCCA was used to analyze DMN in first-episode major depressive disorder (MDD) patients. It was found
that, in the MDD patients, the volume of DMN negatively correlated with the patients’ social disability screening schedule
scores.
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Introduction

Resting state network (RSN) analysis utilizing the low frequency

(,0.1 Hz) fluctuations (LFFs) in resting state functional magnetic

resonance imaging (rs-fMRI) data has been extensively used for

studying the intrinsic functional architectures of the brain

[1,2,3,4,5,6]. There are two commonly used methods for rs-fMRI

data analysis: seed-based cross-correlation analysis (sCCA) [1] and

independent component analysis [7–8]. The former measures the

connectivity strength of brain voxels with a seed region-of-interest

(ROI), and the latter mathematically decompose the LFFs into

independent components, which are considered to represent

different functional networks.

Methodologically both sCCA and ICA have some shortcom-

ings. In traditional sCCA, the selection of seed ROI is, to some

extent, subjective. It could be done based on either activated

regions associated with specified tasks [1,3,4,5], anatomically

defined structures [6], or empirical coordinates from the literature

[9]. Therefore the results of sCCA, in terms of both connectivity

strength and network topology, may depend on the selection of

seed ROI [4,10].

ICA avoids the problem of seed ROI selection. However,

choosing which component(s) to represent the network of interest

could be problematic. The decision is not always straightforward,

and may require strong a priori knowledge, especially for those

networks that may be decomposed into more than one component

[2,11]. Template-matching procedures have been used for

component identification, in which spatial correlations between

the ICA components and a template of the network of interest

were evaluated [12,13]. However, this approach sometimes can be

even less reliable than human rating [14]. Besides, in a way,

selection of the template rises to be a new problem itself.

Here we propose a seed-based iterative cross-correlation analysis

(siCCA) method for processing rs-fMRI data, with an expectation

that the method will produce stable resting state brain networks,

without puzzling over seed or component selection. The method

was first applied to derive two well-established resting state brain

networks in two independent datasets acquired from normal adults

on a 3T scanner and a 1.5 T scanner, respectively. The robustness

of siCCA was evaluated and compared to those of sCCA and group

ICA. The siCCA method was also applied to a group of eighteen

patients with first-episode major depressive disorder (MDD) to

investigate the correlation between the properties of siCAA-derived

resting state brain network and clinical assessment scores.

Materials and Methods

Ethics Statement
The study was approved by the Ethics Committee of Renji

Hospital, Shanghai Jiaotong University School of Medicine and
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Xuanwu Hospital, Capital Medical University. The participants

were informed of the aims of our study before MRI examinations.

Full written informed consent was obtained from each participant.

Subjects and data acquisition
Three groups of subjects were included in the study: 1) eighteen

first-episode MDD patients, 2) eighteen normal adults with age

and gender matched to the MDD patients, and 3) a third group of

twenty normal adults. All subjects are right-handed Chinese

adults. The normal subjects reported no history of neurological

and psychiatric diseases. The MDD patients had not received any

antidepressant treatment before MRI scan, and were assessed with

Hamilton Depression Rating Scale (HDRS) [15], Hamilton

Anxiety Rating Scale (HARS) [16] and Social Disability Screening

Schedule (SDSS) [17] scores.

The resting state fMRI data for the first two groups of subjects

were acquired on a 3.0 T Philips Achieva scanner in Renji

Hospital, Shanghai Jiaotong University School of Medicine,

Shanghai. The resting state fMRI data for the third group of

subject were acquired on a 1.5 T Siemens Sonata scanner in

Xuanwu Hospital, Capital Medical University, Beijing. Partici-

pants were instructed to lie quietly in the scanner during data

acquisition, keeping motionless and their eyes closed but without

falling asleep. A spin-echo single shot echo-planar pulse sequence

was used to acquire the rs-fMRI data. Detailed demographic

information of the subjects and the scanning parameters are listed

in Table 1.

Data Preprocessing
Data preprocessing were performed under the framework of

statistical parametric mapping (SPM5, http://www.fil.ion.ucl.ac.

uk/spm/). To avoid the effects of system instability and

environmental adaptation, the first 10 volumes of the rs-fMRI

data for each subject were discarded. The remaining volumes (i.e.,

210 for Philips 3.0 T dataset and 170 for Siemens 1.5 T dataset)

were put into subsequent processing procedures, including slice

timing and head motion corrections, spatial normalization to the

standard Montreal Neurological Institute (MNI) space (i.e., all data

resampled to a voxel size of 3 mm63 mm63 mm), spatial

smoothing with a 6-mm full width at half maximum (FWHM)

isotropic Gaussian kernel, removal of linear drift and temporal

band-pass filtering (0.01–0.08 Hz). No subjects were found to have

head translation larger than 2 mm or rotation more than 2

degrees.

sCCA
The flowchart of sCCA is shown in Fig. 1A. Sources of spurious

variance (i.e., head motion, global signal and signals from

cerebrospinal fluid and white matter) were removed through

linear regression [5]. After selection of an initial seed ROI,

individual functional connectivity map was obtained by calculating

the correlation coefficients between the time series of each brain

voxel and the average time series of the seed ROI. A Fisher r-to-z

transform was performed to increase the normality of the

correlation coefficients [18]. Voxel-wise one-sample t-test was

used to generate the group-level connectivity map at a threshold of

p,0.001 (uncorrected) and cluster size .5.

siCCA Analysis
The flowchart of siCCA is shown in Fig. 1B. After an initial seed

ROI was selected and the correlation coefficient map for each

individual was obtained, voxel-wise one-sample t-test was applied

to generate the group-level connectivity map of the seed ROI at a

threshold level of p,0.05 (corrected for family wise error) and

voxel size.20. The ensemble of all the voxels in the resultant

group-level connectivity map was then used as a new seed ROI for

Table 1. Demographic information and scanning parameters of the three datasets.

Dataset Philips 3.0T–NC Philips 3.0T–MDD Siemens 1.5T–NC

Age, range/mean (years) 21–49/30.1 22–30/29.9 23–34/25.6

Gender, M/F 6/12 6/12 6/14

TR/TE (ms) 2000/30 2000/30 2000/60

In-plane resolution 64664 64664 1286128

Field of view (mm2) 2306230 2306230 2406240

Slice thickness/gap (mm) 4/0 4/0 5/2

No. of axial slices per volume 34 34 20

No. of volumes 220 220 180

Abbreviation. NC: normal controls; MDD: major depressive disorder.
doi:10.1371/journal.pone.0058653.t001

Figure 1. Flow charts of sCCA and siCCA.
doi:10.1371/journal.pone.0058653.g001
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another round of sCCA. The iterative schedule was stopped if the

results converge (i.e., the numbers of significant voxels obtained

from two successive steps had a difference less than 10). This

convergence threshold is quite strict as the iterative seed ROI

typically consisting of more than 1000 voxels (more than 4000

voxels in the final ROI mask), resulting in above 99% overlap

between ROI of two successive steps.

Selection of Initial seed ROIs
Resting state networks analyzed here included the so-called

default mode network (DMN) [19] and the stable task control

network (STCN) [3]. A typical DMN includes posterior cingulate

cortex (PCC)/precuneus region, medial prefrontal cortex (MPFC)

and bilateral inferior parietal cortex (IPC) [2,19]. Cerebellar

regions, inferior temporal gyrus (ITG), parahippocampus gyrus

(PHG), temporal poles, thalamus, orbital frontal cortex (OFC) and

dorsolateral prefrontal cortex (DLPFC) were also reported to be

part of the DMN [4,5,20]. The STCN is composed of anterior

insula/frontal operculum (aI/fO), anterior prefrontal cortex

(aPFC), dorsal anterior cingulate/medial superior frontal cortex

(dACC/msFC) and thalamus [3].

The MNI coordinates of the seed ROIs used to derive DMN

and STCN were obtained from the literature [3,4,5]. The seed

ROIs for DMN included: 1) three concentric seeds in PCC with a

center coordinate of [25 249 40] and a radius of 3, 6 and 9 mm

respectively. These ROIs were thereafter denoted as PCC1-3,

PCC1-6 and PCC1-9, respectively; 2) a 6-mm-radius seed in PCC

with a center coordinate of [212 247 32] (thereafter denoted as

PCC2-6); 3) a 6-mm-radius seed in mPFC with a center

coordinate of [21 47 24] (thereafter denoted as MPFC-6). For

STCN, four 6-mm-radius seed ROIs were selected from the right

aI/fO [36, 16, 4], right aPFC [27, 50, 23], dACC/msFC [21, 10,

46], and right anterior thalamus [10, 215, 8], respectively.

ICA Analysis
Group spatial ICA was carried out using the Infomax algorithm

[21] within the GIFT software (http://icatb.sourceforge.net/,

version 1.3 h). The number of independent components was set to

twenty [12]. A template-matching procedure was used to identify

the components representing specific resting state networks [13].

In brief, a template of the resting state network of interest was first

selected, with respect to which a ‘‘goodness-of-fit’’ score were

calculated for each component from the group-average z map (i.e.,

subtracting the z score averaged across the voxels outside the

template from that averaged across the voxels falling within the

template). The component with the highest ‘‘goodness-of-fit’’ score

was considered to reprensent the resting state network of interest.

The template used to identify the ICA component(s) representing

DMN was the group-level DMN derived using sCCA with PCC2-

6 as the initial seed ROI (p,0.001, uncorrected and cluster size

.5) [13]. For each component, a group-level t map was obtained

with one sample t-test (p,0.001, uncorrected and cluster size.5).

The group-level t maps of all the components were reviewed by

human raters to identify the components that show similarity to

the typical DMN reported in the literature [2,3,11].

Figure 2. The default mode networks (DMN) derived from two datasets of normal adults groups using sCCA and siCCA. In (A) and (B),
the DMNs obtained with different initial seed regions of interest (ROIs) using sCCA (A) and siCCA (B) are displayed in two axial slices (z = +30 and 227
for the Philips 3.0 T dataset; z = +30 and 221 for the Siemens 1.5 T dataset). The siCCA-derived DMNs are shown in additional axial slices in (C). White
arrows and asterisks indicate the regions with different peak locations (PHG, temporal poles and thalamus) and distinct regions (a ACC/caudate/
thalamus cluster for Philips 3.0 T and bilateral middle OFC for Siemens 1.5 T) in the two datasets respectively. The VBSnet index depicting the similarity
among the DMNs obtained with different initial seed regions of interest was plotted in (D). The abscissa label in (D) describes the initial seed ROIs
being compared. The similarity between the siCCA-derived DMN and the sCCA-derived DMNs with different initial seed ROIs was evaluated in (E).
Please refer to the Selection of Initial seed ROIs section for definitions of the abbreviations for the seed ROIs.
doi:10.1371/journal.pone.0058653.g002
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Evaluation of Network Similarity
To evaluate the similarities among the networks derived with

different methods and seed ROIs, the intersection and union of the

networks under concern were calculated. The number of the non-

zero voxels in the intersection and that in the union were counted.

The ratio between the two was defined as voxel-based similarity of

networks (VBSnet). VBSnet has a value between 0 and 1. The closer

to 1 VBSnet is, the more similar the networks under concern are.

In a way, VBSnet is similar to Jaccard similarity coefficient [22].

siCCA-derived resting state brain networks in MDD
patients

A group-level DMN (p,0.05, FWE corrected, cluster size.20)

for the MDD patients was first obtained with the siCCA approach

as described above. The initial seed ROI used was PCC2-6. The

group-level result was then used as an ROI mask to extract DMN

for each individual subject, which included those voxels whose

time series had a correlation coefficient greater than 0.3 with the

mean time series of voxels within the group-level DMN. Then the

correlations between the volume (i.e., the number of voxels) of

DMN and clinical assessments were investigated. All these results

Figure 3. The stable task control networks (STCN*) derived from two datasets of normal adults groups using sCCA and siCCA. In (A)
and (B), the STCN* obtained with different initial seed regions of interest (ROIs) using sCCA (A) and siCCA (B) are displayed in two saggital slices
(x = +9 and +33). Please refer to the Selection of Initial seed ROIs section for definitions of the abbreviations for the seed ROIs. The seed ROI
‘‘thalamus’’ and the seed ‘‘thalamus (new)’’ have different center coordinates (i.e., [10, 215, 8] and [18, 29, 0] respectively). The former is obtained
from the literature [3], and the latter is defined based on the siCCA-derived STCN* obtained from the Siemens 1.5 T dataset. White arrows in (B)
indicate the regions (SMA and pre- and post-central gyrus) included in STCN* besides the four clusters analyzed. The VBSnet index depicting the
similarity among the STCN* obtained with different initial seed regions of interest was plotted in (C). The abscissa label in (C) describes the initial seed
ROIs being compared. The similarity between the siCCA-derived STCN* and the sCCA-derived STCN*with different initial seed ROIs was evaluated in
(D).
doi:10.1371/journal.pone.0058653.g003
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were compared with those obtained using the traditional sCCA

approach to extract individual DMN.

Results

siCCA vs. sCCA
Figure 2 shows the results regarding DMN derived from the two

datasets. The sCCA-derived DMNs appeared to be influenced by

the selection of initial seed ROI (Fig. 2A). Different aspects (i.e.

radius, coordinates, and located brain regions) of the seed ROI,

however, affected the results differentially (Fig. 2D). For both the

two datasets, the DMNs derived from the concentric ROIs (PCC1-

3, PCC1-6 and PCC1-9) had the least difference (VBSnet = 0.855

and 0.849 respectively), while those derived using seeds located in

different brain regions (PCC2-6 vs. vmPFC-6) exhibited the largest

difference (VBSnet = 0.464 and 0.395 respectively).

In comparison, for both datasets, the results of siCCA (Fig. 2B)

remained stable (i.e., VSBnet score close to 1 as shown in Fig. 2D),

regardless of how the seed ROI was selected. Additional slices of

the siCCA results are shown in Fig. 2C. In both datasets, the

siCCA-derived DMN included major brain regions considered to

be part of typical DMN, such as PCC/precuneus, MPFC, IPC,

cerebellum regions (i.e., tonsils and posterior lobes), ITG, PHG,

temporal poles, thalamus and DLPFC (Fig. 2B and 2C). Some of

the DMN structures within them, such as PHG, temporal poles

and thalamus, however, had different peak locations in the two

datasets (indicated by arrows in Fig. 2C). In addition, there were

also differences between the DMN derived from the two datasets

using siCCA. The siCCA-derived DMN using the Philips 3.0 T

dataset included a cluster made up of ACC/caudate/thalamus

(indicated by asterisk in Fig. 2C) similar with previous studies [4],

which was not present in the Siemens 1.5 T results. On the other

hand, presence of bilateral middle OFC in the DMN was found

only for the 1.5 T dataset (indicated by asterisk in Fig. 2C), but not

for the 3.0 T dataset.

The similarity between siCCA-derived DMN and the sCCA-

derived DMN using different initial seed ROI was assessed

(Fig. 2E). It was found that, for both datasets, the siCCA-derived

DMN was most similar to the sCCA-derived network using PCC2-

6 [4] as the initial seed ROI (VBSnet = 0.729 and 0.601

respectively) rather than using others (VBSnet smaller than 0.515

and 0.34 respectively).

Figure 3 shows the resting state functional networks derived

with the seed ROIs considered to be part of STCN using sCCA

(A) and siCCA (B), respectively. The similarity among the

networks derived using different methods and different initial seed

ROI was compared in Fig. 3C and D. For the Philips 3.0 T

dataset, the sCCA-derived networks with different initial seed

ROIs showed large difference (Fig. 3A and C). In contrast, the

siCCA approach yielded stable results irrespective of which initial

seed ROI was used (Fig. 3B and C). For the Siemens 1.5 T dataset,

however, the use of seed ROI ‘thalamus’ resulted in networks

obviously different from the networks derived with the other three

initial seed ROIs, no matter whether sCCA or siCAA was used

(Fig. 3B). It thus appeared that, for this particular dataset, the

thalamus seed ROI selected based on literature results [3] was not

part of the STCN. Given that the siCAA-derived networks using

aI/fO, aPFC and dACC/msFC as the initial seed ROIs were

stable (Fig. 3B and C), the peak location within the thalamic region

of these networks [18, 29, 0] was used as the center coordinate of

a new thalamus seed ROI (thereafter referred as thalamus (new)).

The sCAA-derived network using thalamus [23] as the initial seed

ROI showed improved resemblance to the traditional STCN,

relative to the one using original thalamus seed ROI (i.e., center

coordinate [10, 215, 8]). For both datasets, the seed-independent

siCCA-derived network included not only all the main nodes

considered to be part of the traditional STCN [3], but also other

regions such as the supplementary motor cortex [24] and pre- and

post-central gyrus (indicated by arrows in Fig. 3B). In order to

distinguish these networks from the typical STCN reported by

Dosenbach et al [3], they were thereafter referred as STCN*. The

siCCA–derived STCN* showed more resemblance to the sCCA-

derived networks using aI/fO and dACC/msFC as the initial

seeds than to the sCCA-derived networks using aPFC or thalamus

[23] as the initial seeds.

Figure 4. Similarity among the DMNs and STCN* obtained from two different datasets evaluated by inter-dataset VBSnet. The
networks being compared were derived using PCC2-6 and dACC/msFC for DMN and STCN* as the seed ROIs, respectively.
doi:10.1371/journal.pone.0058653.g004
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Inter-dataset VBSnet indices were also calculated to evaluate the

consistency among the resting state networks derived from

different datasets using sCCA and siCCA (Fig. 4). The networks

compared were derived using PCC2-6 and dACC/msFC for

DMN and STCN* as the seed ROIs, respectively. Relative to

sCCA, siCCA improved the inter-dataset consistency of DMN

only slightly (from 0.570 to 0.598), and that of STCN* moderately

(from 0.502 to 0.645).

siCCA vs. ICA
Figure 5 compares the DMNs obtained with sCCA, siCCA and

ICA. The results of sCAA and siCAA were derived using PCC2-6

as the initial seed ROI. Using the sCAA-derived DMN as the

template, the first three ICA components with the highest

‘‘goodness-of-fit’’ scores (i.e., C1, C2 and C3) were selected and

presented. For both datasets, the DMNs appeared to have been

decomposed into more than one component. For the Philips 3.0 T

dataset, C1 was mainly composed of the anterior area of DMN

while C2 and C3 constitute the posterior area of DMN as reported

in previous studies [2,11]. For the Siemens 1.5 T dataset, on the

other hand, C1 was mainly composed of the posterior area of

DMN, while the anterior parts were decomposed into C2 and C3.

DMN of MDD patients extracted by siCCA
The clinical assessments for the MDD patients were: HDRS

23.664.7, HARS 19.266.6, and SDSS 8.463.6. The DMN

volumes of MDD patients derived with siCCA were significant

larger than that derived with sCCA (p = 0.002, two-sample t test,

Fig. 6). No significant difference was found between siCCA-

derived DMN volumes in MDD patients and those in matched

normal controls (i.e. NC group). Correlation analysis revealed that,

a significant negative correlation existed between the volume of

siCCA-derived DMN and SDSS score in MDD patients

(r = 20.545, p = 0.019). In contrast, the sCCA-derived DMN did

not show similar correlation (r = 20.195, p = 0.349).

Discussion

To extract a resting state network of interest, the traditional

sCCA approach first calculates correlation coefficients between the

time courses of individual brain voxel and the mean time course of

an initial seed ROI for each subject. Statistical thresholding was

then applied to yield a group-level network. The resting state

networks derived by sCCA may depend on how the initial seed is

selected, demonstrated both by our results and previous studies

[4,10]. One reason for this is that the mean time course of the

Figure 5. Comparison among the sCCA-, siCCA- and ICA-derived default mode networks from two datasets of normal adults
groups. The sCCA- and siCCA-derived results with PCC2-6 as the initial seed ROI are displayed on the left side of the dashed line in one sagittal slice
and two axial slices. The ICA-derived results are displayed on the right side of the dashed line. The three ICA components (C1, C2 and C3) with the
highest ‘goodness-of-fit’ scores, with the sCAA-derived DMN as the template, are shown.
doi:10.1371/journal.pone.0058653.g005
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initial seed ROI contains not only features characterizing the

resting state network of interest, but also features specific to the

seed ROI itself or the brain region it locates in. The seed ROI-

specific signals may come from the following sources: 1) within a

given resting state network, some nodes may serve as hubs

characterized by having direct connections to nearly all the other

network nodes, while the others may have only indirect

connections among each other. The sCCA-derived resting

networks would thus likely be affected by whether the seed-ROI

is positioned in a hub brain region or in a non-hub brain region, 2)

some brain regions may participate in more than one resting state

networks that overlap with each other, making its time series a

combined result [25]. If the initial seed is positioned in such

regions, the correlation pattern of the seed would reflect all

contributing networks rather than only the one we are interested,

3) the mean time course of the seed-ROI includes contributions

from random background noises, and 4) cross-subjection varia-

tions in connectivity may be different for different nodes in a given

resting state network. Positioning the seed ROI in a brain region

with less cross-subjection variations in connectivity would likely

result in more consistent network.

The initial steps in siCAA were exactly the same as those in

sCCA, namely calculating the resting state network connecting to

the initial seed ROI for each subject and statistical thresholding to

yield a group-level network (Fig. 1). Instead of being considered as

the final result as in sCCA, this group-level network was used as a

new seed ROI to perform the next round of sCCA analysis in

siCCA. Starting from this point, the reference time course for

correlation analyses no longer represent merely the features of the

initial seed ROI, but rather the features of a network with the

initial seed ROI as one of its nodes. Depending on the exact

architecture of the network of interest, the reference time course

may be biased towards the contributions from larger or hub nodes

of the network, while the contributions from the signals specific to

the seed ROI initially selected were diminished. This may explain

why the siCCA-derived resting state networks are stable and seed-

independent, as long as the initial seed ROIs selected were within

the resting state network of interest (Figs. 2 and 3). This is

supported by the observation that sCCA using major/hub nodes

(such as PCC2 in DMN, and aI/fO and dACC/msFC in STCN*)

within the network of interest as the initial seed ROIs yielded

results more resemble to those obtained by siCCA.

There are other mechanisms may have also contributed to the

stability of the siCCAs. For example, the seed ROI in siCCA (i.e.,

starting from the second round of iteration) is made of a group-

level network that may have a much larger size (i.e., in terms of the

number of voxels) than the initial seed ROI selected. A physically

larger seed ROI may have a mean time course with higher signal-

to-noise ratio (SNR), and thus less effect from the background

noises. Moreover, repeated group-level statistical thresholding in

siCCA (Fig. 1B) makes only the voxels with low cross-subject

variations of connectivity properties (i.e., stable at the group level)

were included in the resultant network. The final result of siCCA

thus represents the connectivities of the brain voxels to a refined

network with the initial seed ROI as one of its nodes.

The most important parameter in siCCA is the statistical

threshold for generating the group-level network that could be

subsequently used as the new seed ROI for the next round of

correlation analyses. In this study, we optimized this parameter

empirically to a threshold level of p,0.05, corrected for family-

wise error and a cluster size.20. It can be shown that a more

lenient threshold would produce more distributed networks, with

an extreme that all brain voxels being classified into two anti-

correlated functional networks [5]. A tighter threshold would

reduce the extent of the network, with an extreme that only the

local connectivities to the initial seed ROI are revealed.

The use of the siCCA approach improved the cross-dataset

consistency between the STCN* obtained from the 1.5 T dataset

and that from the 3 T dataset moderately, but not the cross-dataset

consistency between the DMNs obtained from the two datasets

Figure 6. Correlation between the volume of siCCA-derived DMN and SDSS score in MDD patients. DMN in the MDD patients and
matched normal controls were derived using siCAA and sCAA with PCC2-6 as the initial seed. For the MDD patients, the average volume of siCAA-
derived DMN (black dots) was significant larger than that derived with sCCA (gray triangles). However, the volume of siCAA-derived DMN was not
significantly different between the MDD patients and normal controls (black circles). For the MDD patients, a significant correlation was found
between the volume of siCCA-derived DMN and SDSS score (solid line: r = 20.545, p = 0.019).
doi:10.1371/journal.pone.0058653.g006
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(Fig. 4). This is in accordance to the known fact that the resting

state networks may differ among different populations [2,9], and

the extent of cross-subject variations are different for different

resting state networks [2].

The DMN is thought to be related to a series of internal self-

referential brain processes [26,27] and accounts for person’s

individual variability such as task performance [28]. A study in

autism found a correlation between DMN region’s activity and

clinical social impairment scores [29], suggesting that the social

interaction ability was related to DMN. Previous resting state

studies of MDD patients’ brain had revealed a lot of altered

connectivity between regions or regions and networks, and several

results were correlated with clinical symptoms (see ref [30] for

review). In this study, we focus on the basic overall volume

information of DMN rather than the connections. According to

the correlation analysis result, smaller resting state DMN volume

of MDD patients correspond to higher severity of social disability.

As discussed above, a smaller DMN may represents a concen-

trated, autistic ‘self’ that segregated from external milieu or other

brain functions. This correlation may reflect a MDD-based brain

dysfunction as the MDD’s group DMN extracted with siCCA was

used, or reflect subject’s personality features as no significant

differences were found between DMN and NC group. Either of

them reveals that siCCA could produce more credible information

about the internal functional architecture than traditional sCCA.

In conclusion, the siCCA approach we proposed here is a

reliable method for extraction of resting state networks. The

siCCA-derived resting state networks are stable and seed-

independent, as long as the initial seed ROIs selected were within

the resting state network of interest. Inter-group comparison of the

siCCA-derived resting state networks can be performed in a way

similar to what have been done for ICA-derived resting state

networks [31], but without puzzling over how to select the proper

component(s) to represent the network of interest. It was

demonstrated in the MDD patients that the property of siCCA-

derived resting state networks, such as the volume of DMN,

correlated better with the clinical assessment, than that of the ones

derived with sCCA.
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