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Abstract

Seed-based cross-correlation analysis (sCCA) and independent component analysis have been widely employed to extract
functional networks from the resting state functional magnetic resonance imaging data. However, the results of sCCA, in
terms of both connectivity strength and network topology, can be sensitive to seed selection variations. ICA avoids the
potential problems due to seed selection, but choosing which component(s) to represent the network of interest could be
subjective and problematic. In this study, we proposed a seed-based iterative cross-correlation analysis (siCCA) method for
resting state brain network analysis. The method was applied to extract default mode network (DMN) and stable task
control network (STCN) in two independent datasets acquired from normal adults. Compared with the networks obtained
by traditional SCCA and ICA, the resting state networks produced by siCCA were found to be highly stable and independent
on seed selection. siCCA was used to analyze DMN in first-episode major depressive disorder (MDD) patients. It was found
that, in the MDD patients, the volume of DMN negatively correlated with the patients’ social disability screening schedule
scores.
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Introduction

Resting state network (RSN) analysis utilizing the low frequency
(<0.1 Hz) fluctuations (LFFs) in resting state functional magnetic
resonance imaging (rs-fMRI) data has been extensively used for
studying the intrinsic functional architectures of the brain
[1,2,3,4,5,6]. There are two commonly used methods for rs-fMRI
data analysis: seed-based cross-correlation analysis (sCCA) [1] and
independent component analysis [7-8]. The former measures the
connectivity strength of brain voxels with a seed region-of-interest
(ROI), and the latter mathematically decompose the LFFs into
independent components, which are considered to represent
different functional networks.

Methodologically both sCCA and ICA have some shortcom-
ings. In traditional sCCA, the selection of seed ROI is, to some
extent, subjective. It could be done based on either activated
regions associated with specified tasks [1,3,4,5], anatomically
defined structures [6], or empirical coordinates from the literature
[9]. Therefore the results of SCCA, in terms of both connectivity
strength and network topology, may depend on the selection of
seed ROI [4,10].

ICA avoids the problem of seed ROI selection. However,
choosing which component(s) to represent the network of interest
could be problematic. The decision is not always straightforward,
and may require strong a priori knowledge, especially for those
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networks that may be decomposed into more than one component
[2,11]. Template-matching procedures have been used for
component identification, in which spatial correlations between
the ICA components and a template of the network of interest
were evaluated [12,13]. However, this approach sometimes can be
even less reliable than human rating [14]. Besides, in a way,
selection of the template rises to be a new problem itself.

Here we propose a seed-based iterative cross-correlation analysis
(siCCA) method for processing rs-fMRI data, with an expectation
that the method will produce stable resting state brain networks,
without puzzling over seed or component selection. The method
was first applied to derive two well-established resting state brain
networks in two independent datasets acquired from normal adults
on a 3T scanner and a 1.5 T scanner, respectively. The robustness
of siCCA was evaluated and compared to those of sSCCA and group
ICA. The siCCA method was also applied to a group of eighteen
patients with first-episode major depressive disorder (MDD) to
investigate the correlation between the properties of siCAA-derived
resting state brain network and clinical assessment scores.

Materials and Methods

Ethics Statement
The study was approved by the Ethics Committee of Renji
Hospital, Shanghai Jiaotong University School of Medicine and
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Xuanwu Hospital, Capital Medical University. The participants
were informed of the aims of our study before MRI examinations.
Full written informed consent was obtained from each participant.

Subjects and data acquisition

Three groups of subjects were included in the study: 1) eighteen
first-episode MDD patients, 2) eighteen normal adults with age
and gender matched to the MDD patients, and 3) a third group of
twenty normal adults. All subjects are right-handed Chinese
adults. The normal subjects reported no history of neurological
and psychiatric diseases. The MDD patients had not received any
antidepressant treatment before MRI scan, and were assessed with
Hamilton Depression Rating Scale (HDRS) [15], Hamilton
Anxiety Rating Scale (HARS) [16] and Social Disability Screening
Schedule (SDSS) [17] scores.

The resting state {MRI data for the first two groups of subjects
were acquired on a 3.0 T Philips Achieva scanner in Renji
Hospital, Shanghai Jiaotong University School of Medicine,
Shanghai. The resting state fMRI data for the third group of
subject were acquired on a 1.5 T Siemens Sonata scanner in
Xuanwu Hospital, Capital Medical University, Beijing. Partici-
pants were instructed to lie quietly in the scanner during data
acquisition, keeping motionless and their eyes closed but without
falling asleep. A spin-echo single shot echo-planar pulse sequence
was used to acquire the rs-fMRI data. Detailed demographic
information of the subjects and the scanning parameters are listed
in Table 1.

Data Preprocessing

Data preprocessing were performed under the framework of
statistical parametric mapping (SPM5, http://www fil.ion.ucl.ac.
uk/spm/). To avoid the effects of system instability and
environmental adaptation, the first 10 volumes of the rs-fMRI
data for each subject were discarded. The remaining volumes (i.e.,
210 for Philips 3.0 T dataset and 170 for Siemens 1.5 T dataset)
were put into subsequent processing procedures, including slice
timing and head motion corrections, spatial normalization to the
standard Montreal Neurological Institute (MNI) space (i.e., all data
resampled to a voxel size of 3 mmx3 mmx3 mm), spatial
smoothing with a 6-mm full width at half maximum (FWHM)
isotropic Gaussian kernel, removal of linear drift and temporal
band-pass filtering (0.01-0.08 Hz). No subjects were found to have
head translation larger than 2 mm or rotation more than 2
degrees.
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Figure 1. Flow charts of sCCA and siCCA.
doi:10.1371/journal.pone.0058653.g001

sCCA

The flowchart of sCCA is shown in Fig. 1A. Sources of spurious
variance (i.e., head motion, global signal and signals from
cerebrospinal fluid and white matter) were removed through
linear regression [5]. After selection of an initial seed ROI,
individual functional connectivity map was obtained by calculating
the correlation coeflicients between the time series of each brain
voxel and the average time series of the seed ROI. A Fisher r~to-z
transform was performed to increase the normality of the
correlation coefficients [18]. Voxel-wise one-sample #test was
used to generate the group-level connectivity map at a threshold of
$<<0.001 (uncorrected) and cluster size >5.

siCCA Analysis

The flowchart of siCCA is shown in Fig. 1B. After an initial seed
ROI was selected and the correlation coefficient map for each
individual was obtained, voxel-wise one-sample #test was applied
to generate the group-level connectivity map of the seed ROI at a
threshold level of p<<0.05 (corrected for family wise error) and
voxel size>20. The ensemble of all the voxels in the resultant
group-level connectivity map was then used as a new seed ROI for

Table 1. Demographic information and scanning parameters of the three datasets.

Dataset Philips 3.0T-NC Philips 3.0T-MDD Siemens 1.5T-NC
Age, range/mean (years) 21-49/30.1 22-30/29.9 23-34/25.6
Gender, M/F 6/12 6/12 6/14

TR/TE (ms) 2000/30 2000/30 2000/60

In-plane resolution 64 x64 64 x64 128x128

Field of view (mm?) 230x230 230x230 240 %240

Slice thickness/gap (mm) 4/0 4/0 5/2

No. of axial slices per volume 34 34 20

No. of volumes 220 220 180

Abbreviation. NC: normal controls; MDD: major depressive disorder.
doi:10.1371/journal.pone.0058653.t001
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Figure 2. The default mode networks (DMN) derived from two datasets of normal adults groups using sCCA and siCCA. In (A) and (B),
the DMNs obtained with different initial seed regions of interest (ROIs) using sCCA (A) and siCCA (B) are displayed in two axial slices (z=+30 and —27
for the Philips 3.0 T dataset; z=+30 and —21 for the Siemens 1.5 T dataset). The siCCA-derived DMNs are shown in additional axial slices in (C). White
arrows and asterisks indicate the regions with different peak locations (PHG, temporal poles and thalamus) and distinct regions (a ACC/caudate/
thalamus cluster for Philips 3.0 T and bilateral middle OFC for Siemens 1.5 T) in the two datasets respectively. The VBS,,e; index depicting the similarity
among the DMNs obtained with different initial seed regions of interest was plotted in (D). The abscissa label in (D) describes the initial seed ROIs
being compared. The similarity between the siCCA-derived DMN and the sCCA-derived DMNs with different initial seed ROIs was evaluated in (E).

Please refer to the Selection of Initial seed ROIs section for definitions of the abbreviations for the seed ROls.

doi:10.1371/journal.pone.0058653.g002

another round of SCCA. The iterative schedule was stopped if the
results converge (i.e., the numbers of significant voxels obtained
from two successive steps had a difference less than 10). This
convergence threshold is quite strict as the iterative seed ROI
typically consisting of more than 1000 voxels (more than 4000
voxels in the final ROI mask), resulting in above 99% overlap
between ROI of two successive steps.

Selection of Initial seed ROls

Resting state networks analyzed here included the so-called
default mode network (DMN) [19] and the stable task control
network (STCN) [3]. A typical DMN includes posterior cingulate
cortex (PCC)/precuneus region, medial prefrontal cortex (MPFC)
and bilateral inferior parietal cortex (IPC) [2,19]. Cerebellar
regions, inferior temporal gyrus (ITG), parahippocampus gyrus
(PHG), temporal poles, thalamus, orbital frontal cortex (OFC) and
dorsolateral prefrontal cortex (DLPFC) were also reported to be
part of the DMN [4,5,20]. The STCN is composed of anterior
insula/frontal operculum (al/fO), anterior prefrontal cortex
(aPFC), dorsal anterior cingulate/medial superior frontal cortex
(dACC/msFC) and thalamus [3].

The MNI coordinates of the seed ROIs used to derive DMN
and STCN were obtained from the literature [3,4,5]. The seed
ROIs for DMN included: 1) three concentric seeds in PCC with a
center coordinate of [—5 —49 40] and a radius of 3, 6 and 9 mm
respectively. These ROIs were thereafter denoted as PCCI-3,
PCC1-6 and PCC1-9, respectively; 2) a 6-mm-radius seed in PCC
with a center coordinate of [—12 —47 32] (thereafter denoted as
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PCC2-6); 3) a 6-mm-radius seed in mPFC with a center
coordinate of [—1 47 —4] (thereafter denoted as MPFC-6). For
STCN, four 6-mm-radius seed ROIs were selected from the right
al/fO [36, 16, 4], right aPFC [27, 50, 23], JACC/msFC [—1, 10,
46], and right anterior thalamus [10, —15, 8], respectively.

ICA Analysis

Group spatial ICA was carried out using the Infomax algorithm
[21] within the GIFT software (http://icath.sourceforge.net/,
version 1.3 h). The number of independent components was set to
twenty [12]. A template-matching procedure was used to identify
the components representing specific resting state networks [13].
In brief, a template of the resting state network of interest was first
selected, with respect to which a “goodness-of-fit” score were
calculated for each component from the group-average z map (i.e.,
subtracting the z score averaged across the voxels outside the
template from that averaged across the voxels falling within the
template). The component with the highest “goodness-of-fit” score
was considered to reprensent the resting state network of interest.
The template used to identify the ICA component(s) representing
DMN was the group-level DMN derived using sCCA with PCC2-
6 as the initial seed ROI ($<<0.001, uncorrected and cluster size
>5) [13]. For each component, a group-level ¢t map was obtained
with one sample ttest (p<<0.001, uncorrected and cluster size>5).
The group-level ¢ maps of all the components were reviewed by
human raters to identify the components that show similarity to
the typical DMN reported in the literature [2,3,11].
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Figure 3. The stable task control networks (STCN*) derived from two datasets of normal adults groups using sCCA and siCCA. In (A)
and (B), the STCN* obtained with different initial seed regions of interest (ROIs) using sCCA (A) and siCCA (B) are displayed in two saggital slices
(x=+9 and +33). Please refer to the Selection of Initial seed ROIs section for definitions of the abbreviations for the seed ROIls. The seed ROI
“thalamus” and the seed “thalamus (new)” have different center coordinates (i.e., [10, —15, 8] and [18, —9, 0] respectively). The former is obtained
from the literature [3], and the latter is defined based on the siCCA-derived STCN* obtained from the Siemens 1.5 T dataset. White arrows in (B)
indicate the regions (SMA and pre- and post-central gyrus) included in STCN* besides the four clusters analyzed. The VBS: index depicting the
similarity among the STCN* obtained with different initial seed regions of interest was plotted in (C). The abscissa label in (C) describes the initial seed
ROIs being compared. The similarity between the siCCA-derived STCN* and the sCCA-derived STCN*with different initial seed ROIs was evaluated in
(D).

doi:10.1371/journal.pone.0058653.g003

Evaluation of Network Similarity

To evaluate the similarities among the networks derived with
different methods and seed ROIs, the intersection and union of the
networks under concern were calculated. The number of the non-
zero voxels in the intersection and that in the union were counted.
The ratio between the two was defined as voxel-based similarity of
networks (VBS,..). VBS,. has a value between 0 and 1. The closer
to 1 VBS, . 1s, the more similar the networks under concern are.
In a way, VBS,, is similar to Jaccard similarity coefficient [22].

PLOS ONE | www.plosone.org

siCCA-derived resting state brain networks in MDD

patients

A group-level DMN (p<<0.05, FWE corrected, cluster size>20)
for the MDD patients was first obtained with the siCCA approach
as described above. The initial seed ROI used was PCC2-6. The
group-level result was then used as an ROI mask to extract DMN
for each individual subject, which included those voxels whose
time series had a correlation coefficient greater than 0.3 with the
mean time series of voxels within the group-level DMN. Then the
correlations between the volume (i.e., the number of voxels) of
DMN and clinical assessments were investigated. All these results
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Figure 4. Similarity among the DMNs and STCN* obtained from two different datasets evaluated by inter-dataset VBS, ... The
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doi:10.1371/journal.pone.0058653.g004

were compared with those obtained using the traditional sCCA
approach to extract individual DMN.

Results

siCCA vs. sCCA

Figure 2 shows the results regarding DMN derived from the two
datasets. The sCCA-derived DMNs appeared to be influenced by
the selection of initial seed ROI (Fig. 2A). Different aspects (i.e.
radius, coordinates, and located brain regions) of the seed ROI,
however, affected the results differentially (Fig. 2D). For both the
two datasets, the DMNs derived from the concentric ROIs (PCC1-
3, PCC1-6 and PCC1-9) had the least difference (VBS,. =0.855
and 0.849 respectively), while those derived using seeds located in
different brain regions (PCC2-6 vs. vmPFC-6) exhibited the largest
difference (VBS,,.=0.464 and 0.395 respectively).

In comparison, for both datasets, the results of siCCA (Fig. 2B)
remained stable (i.e., VSB,, score close to 1 as shown in Fig. 2D),
regardless of how the seed ROI was selected. Additional slices of
the siCCA results are shown in Fig. 2C. In both datasets, the
siCCA-derived DMN included major brain regions considered to
be part of typical DMN, such as PCC/precuneus, MPFC, IPC,
cerebellum regions (i.e., tonsils and posterior lobes), ITG, PHG,
temporal poles, thalamus and DLPFC (Fig. 2B and 2C). Some of
the DMN structures within them, such as PHG, temporal poles
and thalamus, however, had different peak locations in the two
datasets (indicated by arrows in Fig. 2C). In addition, there were
also differences between the DMN derived from the two datasets
using siCCA. The siCCA-derived DMN using the Philips 3.0 T
dataset included a cluster made up of ACC/caudate/thalamus
(indicated by asterisk in Fig. 2C) similar with previous studies [4],
which was not present in the Siemens 1.5 T results. On the other
hand, presence of bilateral middle OFC in the DMN was found
only for the 1.5 T dataset (indicated by asterisk in Fig. 2C), but not
for the 3.0 T dataset.

The similarity between siCCA-derived DMN and the sCCA-
derived DMN using different initial seed ROI was assessed
(Fig. 2E). It was found that, for both datasets, the siCCA-derived
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DMN was most similar to the sCCA-derived network using PCC2-
6 [4] as the initial seed ROI (VBS,.,=0.729 and 0.601
respectively) rather than using others (VBS,,.; smaller than 0.515
and 0.34 respectively).

Figure 3 shows the resting state functional networks derived
with the seed ROIs considered to be part of STCN using sCCA
(A) and siCCA (B), respectively. The similarity among the
networks derived using different methods and different initial seed
ROI was compared in Fig. 3C and D. For the Philips 3.0 T
dataset, the sCCA-derived networks with different initial seed
ROIs showed large difference (Fig. 3A and C). In contrast, the
siCGCA approach yielded stable results irrespective of which initial
seed ROI was used (Fig. 3B and C). For the Siemens 1.5 T dataset,
however, the use of seed ROI ‘thalamus’ resulted in networks
obviously different from the networks derived with the other three
initial seed ROIs, no matter whether sCCA or siCAA was used
(Fig. 3B). It thus appeared that, for this particular dataset, the
thalamus seed ROI selected based on literature results [3] was not
part of the STCN. Given that the siCAA-derived networks using
al/fO, aPFC and dACC/msFC as the initial seed ROIs were
stable (Fig. 3B and C), the peak location within the thalamic region
of these networks [18, —9, 0] was used as the center coordinate of
a new thalamus seed ROI (thereafter referred as thalamus (new)).
The sCAA-derived network using thalamus [23] as the initial seed
ROI showed improved resemblance to the traditional STCN,
relative to the one using original thalamus seed ROI (i.e., center
coordinate [10, —15, 8]). For both datasets, the seed-independent
siCGCA-derived network included not only all the main nodes
considered to be part of the traditional STCN [3], but also other
regions such as the supplementary motor cortex [24] and pre- and
post-central gyrus (indicated by arrows in Fig. 3B). In order to
distinguish these networks from the typical STCN reported by
Dosenbach et al [3], they were thereafter referred as STCN*. The
siCCA—derived STCN* showed more resemblance to the sCCA-
derived networks using al/fO and dACC/msFC as the initial
seeds than to the sCCA-derived networks using aPFC or thalamus
[23] as the initial seeds.
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Figure 5. Comparison among the sCCA-, siCCA- and ICA-derived default mode networks from two datasets of normal adults
groups. The sCCA- and siCCA-derived results with PCC2-6 as the initial seed ROI are displayed on the left side of the dashed line in one sagittal slice
and two axial slices. The ICA-derived results are displayed on the right side of the dashed line. The three ICA components (C1, C2 and C3) with the
highest ‘goodness-of-fit’ scores, with the sCAA-derived DMN as the template, are shown.

doi:10.1371/journal.pone.0058653.g005

Inter-dataset VBS,,, indices were also calculated to evaluate the
consistency among the resting state networks derived from
different datasets using sCCA and siCCA (Fig. 4). The networks
compared were derived using PCC2-6 and dACC/msFC for
DMN and STCN* as the seed ROIs, respectively. Relative to
sCCA, siCCA improved the inter-dataset consistency of DMN
only slightly (from 0.570 to 0.598), and that of STCN* moderately
(from 0.502 to 0.645).

siCCA vs. ICA

Figure 5 compares the DMNs obtained with sCCA, siCCA and
ICA. The results of sSCAA and siCAA were derived using PCC2-6
as the initial seed ROI. Using the sCAA-derived DMN as the
template, the first three ICA components with the highest
“goodness-of-fit” scores (i.e., C1, G2 and C3) were selected and
presented. For both datasets, the DMNs appeared to have been
decomposed into more than one component. For the Philips 3.0 T
dataset, C1 was mainly composed of the anterior area of DMN
while C2 and C3 constitute the posterior area of DMN as reported
in previous studies [2,11]. For the Siemens 1.5 T dataset, on the

other hand, C1 was mainly composed of the posterior area of

DMN, while the anterior parts were decomposed into C2 and C3.

PLOS ONE | www.plosone.org

DMN of MDD patients extracted by siCCA

The clinical assessments for the MDD patients were: HDRS
23.6*x4.7, HARS 19.2*6.6, and SDSS 8.4*3.6. The DMN
volumes of MDD patients derived with siCCA were significant
larger than that derived with sCCA (p=0.002, two-sample ¢/ test,
Fig. 6). No significant difference was found between siCCA-
derived DMN volumes in MDD patients and those in matched
normal controls (i.e. NC group). Correlation analysis revealed that,
a significant negative correlation existed between the volume of
siCCA-derived DMN and SDSS score in MDD patients
(r=—0.545, p=0.019). In contrast, the sCCA-derived DMN did
not show similar correlation (r = —0.195, p=0.349).

Discussion

To extract a resting state network of interest, the traditional
sCCA approach first calculates correlation coefficients between the
time courses of individual brain voxel and the mean time course of
an initial seed ROI for each subject. Statistical thresholding was
then applied to yield a group-level network. The resting state
networks derived by sCCA may depend on how the initial seed is
selected, demonstrated both by our results and previous studies
[4,10]. One reason for this is that the mean time course of the
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doi:10.1371/journal.pone.0058653.g006

mnitial seed ROI contains not only features characterizing the
resting state network of interest, but also features specific to the
seed ROI itself or the brain region it locates in. The seed ROI-
specific signals may come from the following sources: 1) within a
given resting state network, some nodes may serve as hubs
characterized by having direct connections to nearly all the other
network nodes, while the others may have only indirect
connections among each other. The sCCA-derived resting
networks would thus likely be affected by whether the seed-ROI
is positioned in a hub brain region or in a non-hub brain region, 2)
some brain regions may participate in more than one resting state
networks that overlap with each other, making its time series a
combined result [25]. If the initial seed is positioned in such
regions, the correlation pattern of the seed would reflect all
contributing networks rather than only the one we are interested,
3) the mean time course of the seed-ROI includes contributions
from random background noises, and 4) cross-subjection varia-
tions in connectivity may be different for different nodes in a given
resting state network. Positioning the seed ROI in a brain region
with less cross-subjection variations in connectivity would likely
result in more consistent network.

The initial steps in siCAA were exactly the same as those in
sCCA, namely calculating the resting state network connecting to
the initial seed ROI for each subject and statistical thresholding to
yield a group-level network (Fig. 1). Instead of being considered as
the final result as in sCCA, this group-level network was used as a
new seed ROI to perform the next round of sCCA analysis in
siCCA. Starting from this point, the reference time course for
correlation analyses no longer represent merely the features of the
initial seed ROI, but rather the features of a network with the
initial seed ROI as one of its nodes. Depending on the exact
architecture of the network of interest, the reference time course
may be biased towards the contributions from larger or hub nodes
of the network, while the contributions from the signals specific to
the seed ROI initially selected were diminished. This may explain
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why the siCCA-derived resting state networks are stable and seed-
independent, as long as the initial seed ROIs selected were within
the resting state network of interest (Figs. 2 and 3). This is
supported by the observation that sCCA using major/hub nodes
(such as PCC2 in DMN, and al/fO and dACC/msFC in STCN*)
within the network of interest as the initial seed ROIs yielded
results more resemble to those obtained by siCCA.

There are other mechanisms may have also contributed to the
stability of the siCCAs. For example, the seed ROI in siCCA (i.e.,
starting from the second round of iteration) is made of a group-
level network that may have a much larger size (i.e., in terms of the
number of voxels) than the initial seed ROI selected. A physically
larger seed ROI may have a mean time course with higher signal-
to-noise ratio (SNR), and thus less effect from the background
noises. Moreover, repeated group-level statistical thresholding in
siCCA (Fig. 1B) makes only the voxels with low cross-subject
variations of connectivity properties (i.e., stable at the group level)
were included in the resultant network. The final result of siCCA
thus represents the connectivities of the brain voxels to a refined
network with the initial seed ROI as one of its nodes.

The most important parameter in siCCA is the statistical
threshold for generating the group-level network that could be
subsequently used as the new seed ROI for the next round of
correlation analyses. In this study, we optimized this parameter
empirically to a threshold level of p<<0.05, corrected for family-
wise error and a cluster size>20. It can be shown that a more
lenient threshold would produce more distributed networks, with
an extreme that all brain voxels being classified into two anti-
correlated functional networks [5]. A tighter threshold would
reduce the extent of the network, with an extreme that only the
local connectivities to the initial seed ROI are revealed.

The use of the siCCA approach improved the cross-dataset
consistency between the STCN* obtained from the 1.5 T dataset
and that from the 3 T dataset moderately, but not the cross-dataset
consistency between the DMNs obtained from the two datasets
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(Fig. 4). This is in accordance to the known fact that the resting
state networks may differ among different populations [2,9], and
the extent of cross-subject variations are different for different
resting state networks [2].

The DMN is thought to be related to a series of internal self-
referential brain processes [26,27] and accounts for person’s
individual variability such as task performance [28]. A study in
autism found a correlation between DMN region’s activity and
clinical social impairment scores [29], suggesting that the social
interaction ability was related to DMN. Previous resting state
studies of MDD patients’ brain had revealed a lot of altered
connectivity between regions or regions and networks, and several
results were correlated with clinical symptoms (see ref [30] for
review). In this study, we focus on the basic overall volume
information of DMN rather than the connections. According to
the correlation analysis result, smaller resting state DMN volume
of MDD patients correspond to higher severity of social disability.
As discussed above, a smaller DMN may represents a concen-
trated, autistic ‘self’ that segregated from external milieu or other
brain functions. This correlation may reflect a MDD-based brain
dysfunction as the MDD’s group DMN extracted with siCCA was
used, or reflect subject’s personality features as no significant
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differences were found between DMN and NC group. Either of
them reveals that siCCA could produce more credible information
about the internal functional architecture than traditional sCCA.

In conclusion, the siCCA approach we proposed here is a
reliable method for extraction of resting state networks. The
siCCA-derived resting state networks are stable and seed-
independent, as long as the initial seed ROIs selected were within
the resting state network of interest. Inter-group comparison of the
siCCA-derived resting state networks can be performed in a way
similar to what have been done for ICA-derived resting state
networks [31], but without puzzling over how to select the proper
component(s) to represent the network of interest. It was
demonstrated in the MDD patients that the property of siCCA-
derived resting state networks, such as the volume of DMN,
correlated better with the clinical assessment, than that of the ones
derived with sCCA.
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