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Studies of microbial communities by targeted sequencing of rRNA genes lead to
recovering numerous rare low-abundance taxa with unknown biological roles. We
propose to study associations of such rare organisms with their environments by a
computational framework based on transformation of the data into qualitative variables.
Namely, we analyze the sparse table of putative species or OTUs (operational taxonomic
units) and samples generated in such studies, also known as an OTU table, by collecting
statistics on co-occurrences of the species and on shared species richness across
samples. Based on the statistics we built two association networks, of the rare putative
species and of the samples respectively, using a known computational technique,
Association networks (Anets) developed for analysis of qualitative data. Clusters of
samples and clusters of OTUs are then integrated and combined with metadata of the
study to produce a map of associated putative species in their environments. We tested
and validated the framework on two types of microbiomes, of human body sites and
that of the Populus tree root systems. We show that in both studies the associations of
OTUs can separate samples according to environmental or physiological characteristics
of the studied systems.

Keywords: metagenome, microbiome, unsupervised analysis, alpha and beta diversity, sparse data, Anets,
qualitative data

INTRODUCTION

The rare low-abundance microbial species, which have been referred to as the “rare biosphere”
(Sogin et al., 2006), have attracted increasing attention in the recent literature because of their
unknown ecology and potential evolutionary and ecological importance (Youssef et al., 2010;
Pedros-Alio, 2012; Coveley et al., 2015; Lynch and Neufeld, 2015; Sharon et al., 2015; Jousset
et al., 2017). Although sequencing errors and undersampling of OTUs may contribute to extent
of the “rare biosphere,” the advent of new bioinformatics tools (Schloss and Westcott, 2011;
Preheim et al., 2013; Edgar and Flyvbjerg, 2015; Sharon et al., 2015; Callahan et al., 2016) as well
as experimental and technological approaches (Jousset et al., 2017) are increasingly compelling
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of the presence and complexity of these rare taxa. Biological
explanations (Pedros-Alio, 2012; Coveley et al., 2015; Lynch and
Neufeld, 2015; Jousset et al., 2017) and other factors, such as poor
taxonomic resolution of short reads, especially for closely related
species or those poorly represented in the genomic database,
incomplete or inadequate sampling, dispersal limitation, spatial
and temporal partitioning of the environment, and the nestedness
of ecological mutualistic networks, may contribute to such results
(Bascompte et al., 2003; Youssef et al., 2010; Rosindell et al.,
2011; Unterseher et al., 2011; James et al., 2012; Mi et al., 2012;
Pedros-Alio, 2012; Suweis et al., 2013).

The numerous rare OTUs are a typical output of 16S rRNA
amplicon sequencing studies, especially those with many and
diverse samples. The resultant sparse datasets present a challenge
for common statistical tools. The data matrix produced by such
studies are usually comprised of species-like groups (rows) and
their abundances calculated as the number of sequencing reads
representing each species across multiple samples (columns).
The species-like groups are typically inferred by a conventional
aggregation of sequences into OTUs based on a sequence identity
threshold or, in more recent work, by amplicon sequence variants
(ASVs) (Callahan et al., 2016; Callahan, 2017). In both cases, most
species-like groups could be representative of species-specialists;
they are not only low in abundance in a given sample, but are also
rare across samples and environments. Known computational
tools for analyzing the sparse data often address the sparsity
problem by filtering out very rare species or by collapsing species
to a higher-level hierarchy. Although the aggregation reduces
sparsity (dominance of zeros in the dataset) of the data, the
OTUs-level insights into the structure of microbiome will be lost.
By excluding the rare OTUs, such as those found in less than
30% of samples, we also may lose information. It is not clear how
extensive this loss might be.

In addition to sparsity, the 16S rRNA gene sequencing
data have other challenges including their compositionality
and dimensionality (essentially greater number of OTUs than
the number of samples). The data compositionality means
that we don’t know the real OTU abundances and have to
deal with proportions of species relative to their sum in each
sample. Several methods have been proposed to address the
challenges (McMurdie and Holmes, 2014; Tsilimigras and Fodor,
2016). The most recent methods proposed to infer species–
species relationships from the 16S rRNA amplicon datasets
include Compositionality Corrected by REnormalization and
PErmutation (CCREPE) (Faust et al., 2012), metagenomeSeq
(Paulson et al., 2013), Sparse Correlations for Compositional
data (SparCC) (Friedman and Alm, 2012), a mixture model
framework (McMurdie and Holmes, 2014), SParse InversE
Covariance Estimation for Ecological Association Inference
(SpiecEasi) (Kurtz et al., 2015), and gCoda (Fang et al., 2017).
Each of the tools addresses dimensionality and compositionality
challenges of the datasets using different computational
approaches. The cumulative sum scaling normalization and the
zero-inflated Gaussian distribution mixture model are used in
metagenomeSeq to account for biases resulting from under-
sampling when selecting the differential abundant OTUs. The
log-ratio transformation and the variance are used in SparCC to

overcome compositionality of the data. The data dimensionality
and compositionality are even more efficiently addressed by
SpiecEasi and gCoda using the data transformation borrowed
from the compositional data analysis and then inferring the
interaction graph from the transformed data by neighborhood
selection or by sparse inverse covariance selection.

All abovementioned tools, however, analyze the OTU table
after filtering out most rare OTUs (Supplementary Figures S1A–
D). In case of SparCC, the filtering is the most stringent because
the algorithm employs log-transformations of the read counts.
The basic assumption of the approach is that all OTUs are
present in the dataset; therefore small values must be assigned
to undetected OTUs to include them in the analysis. The
percentage of rare OTUs may be even greater in studies with
large number of samples or when sampling takes place in more
diverse environments, such as the Human Microbiome Project
(HMP) dataset and the Populus Root Microbiome (PRM) dataset
(Supplementary Figures S1E,F). In the study we have made an
attempt to explore the biological role of the rare low-abundance
OTUs in these two environments using existing data from
Human body sites (2012) and from Populus roots (Shakya et al.,
2013). To reduce the burden of filtering for the rare OTUs and
overcome the problem of compositionality we treat the OTUs
as qualitative variables and apply an analytical tool specific for
analysis of such datasets.

RESULTS

Approach
Our initial analysis of the Human and Populus microbiome
datasets reveals that both datasets are in agreement with the
well-known occupancy–abundance relationship (Gaston, 1996),
which positively links the species abundances and the number
of sites/samples they occupy. We find that in both datasets,
OTUs that are more common across samples are also more
abundant, and rare OTUs across samples are usually less
abundant (Figures 1A,B). Notably, the number of common
abundant OTUs is extremely small in the datasets. Considering
this observation we decided to treat the rare OTUs as qualitative
data by replacing the putative species abundances with the
presence/absence call (0/1 values). Although in this approach
we lose information on abundances, at the same time, the
resulting dataset will not be compositional. In addition, we get
the chance to transform the data to collect additional statistics
on co-occurrences of species with each other and to quantify
interdependencies of the species. The quantification is based on
an assumption that rare OTUs (putative species) are associated
because they are dependent upon one another in each studied
environment. They may be dependent metabolically, when
metabolites produced by one species are consumed by another
species. They also may have similar optimal growth conditions or
offer complementary functions to support microbial community
as a whole (Jousset et al., 2017). All these factors may lead to co-
occurrences of the rare OTUs in the samples. We quantify the
co-dependence of OTUs by calculating a co-occurrence profile of
each OTU with all other OTUs in the data and by interrogating
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FIGURE 1 | Occupancy–abundance relationship. (A) Human Microbiome Project (HMP) dataset (43140 OTUs × 2910 Samples). (B) Populus Root Microbiome
(PRM) dataset (24434 OTUs × 83 Samples).

FIGURE 2 | Computational framework used in the study to explore
associations of rare species.

similarities of the emerged profiles for each pair of OTUs. We
performed the calculations by applying a previously developed
statistical tool, Association Network (Anets) (Karpinets et al.,
2012), used for discovering of associations in qualitative datasets1

and refer to the resultant network as Anets-OTUs.
In addition to that Network, we also build the network

of samples, Anets-Samples, using the same algorithm. By
combining both networks we produce a map where associated
OTUs and associated samples are clustered according to their
presence/absence. This map can be further compared with
characteristics of the studied environments. An overview of this
computational framework is shown in Figure 2 and details of the
implementation are provided in Supplementary Data Sheet S1.

1https://sourceforge.net/projects/Anets/

We also used a simulated dataset (Figure 3A) to illustrate
and explain computations underlying the proposed framework.
In this study, we have two synthetic microbial communities with
four associated species (circles) in the first community and four
associated species (triangles) in the second community. Species in
each community are co-dependent, and therefore more often co-
occur in their parent environment. We made 12 random samples
of species from the communities and organized the sampling
results as an OTU table (Figure 3B) with species/OTUs in rows
and samples in columns. All species identified in the samples are
rare; they are found only in 2–5 out of 12 samples. Thus, we
replaced the species abundances with the presence/absence (1/0)
values.

Association Network of Species
To generate the Anets-OTUs we first transform the OTU table to
produce a new table where rows and columns consist of OTUs
and each cell shows the number of samples where two OTUs co-
occur in the data (Figure 3C). The transformed table, therefore,
gives us the co-occurrence profiles for each OTU with the rest.
We further use these profiles to infer pair-wise associations of
the OTUs (Figure 3D). Although the input of the approach
is OTU table with 1/0 values instead of counts, the statistics
collected in the transformed table produces continuous variables.
The Anets program provides three options to quantify the pair-
wise similarities of the profiles. The options include Spearman
correlation (default), Pearson correlation, and cosine (Jaccard
index). While alternative similarity metrics may be appropriate
for particular datasets, in these studies we found that the Pearson
correlation coefficient was most robust for identifying association
networks. We calculate the Pearson correlation to measure
similarity of the profiles for each pair of OTUs and consider
the OTUs associated if the correlation coefficient R > = 0.30.
The selected pairs of OTUs predict the network (Anets-OTUs)
of seven species with seven associations separated into two
clusters/communities (Figure 3E). The species inferred by the
Anets-OTUs in each cluster correspond to two communities
provided in the mock study (Figure 3A). The algorithm did not
recover only one species from the Environment 1 of the study.
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FIGURE 3 | Generating Anets-OTUs using the simulated study. (A) A simulated study of two synthetic microbial communities: four species shown by colored (red,
green, blue, brown) circles (Community 1), and four different species shown by colored (red, green, blue, brown) triangles (Community 2). The same color of the
species indicates their close taxonomic relationship. To introduce noise in sampling, two species from the second community were added to the first community, and
one species from the first community was added to the second community. Six samples were taken to identify species in each community and to generate an OTU
table with the species abundances. (B) OTU table of the simulated study. (C) The table of co-occurrences for each pair of OTUs. Values of the table show the
number of samples where each pair of species co-occurs. (D) Pair-wise similarities of the co-occurrence profiles for each pair of species. Red colored associations
were used to generate Anets-OTUs. (E) Anets-OTUs. (F) The table of the shared species richness for each pair of samples. Values of the table show how many
OTUs are shared for each pair of samples. (G) Pair-wise similarities of the shared species richness profiles for each pair of samples. Red colored associations were
used to generate Anets-Samples. (H) Anets-Samples. (I) A map of the associated species and samples.
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While, the calculations described in this small illustrative
dataset can be implemented in Excel, in case of real datasets,
with many samples and OTUs, the calculations can be performed
using the Anets program (Karpinets et al., 2012). The program
also calculates the p-value for each association using the Monte-
Carlo simulation. The associated species, therefore, can be
selected using a p-values threshold. The Anets-OTUs produced
for the mock study is small and doesn’t require clustering. For
the real dataset, different algorithms and software tools can be
used to cluster the network as described in Supplementary Data
Sheet S1.

Association Network of Samples
A similar algorithm was used to generate the associations of
samples (Figures 3F–H). In this case we transform the OTU table
to produce a new table where both rows and columns consist
of samples and each cell represents the number of shared OTUs
for each pair of samples. The ecological interpretation of the
number is the shared species richness for a pair of samples. We
consider two samples associated if they have a similar profile of
the shared species richness values across all samples in the dataset.
Such indirect similarity can establish an association between each
pair of samples even if the majority of species in the samples
are not common. Computationally, the algorithm generating the
Anets-Samples (Figures 3F–H) is similar to the algorithm of
the Anets-OTUs (Figures 3C–E). As before, the transposed table
is used to compute profiles of shared species richness values
for the samples (Figure 3F) followed by estimation of pair-wise
correlations (Figure 3G) and clustering (Figure 3H). As we can
see in the Figure 3H, the clustering recovers associations among
9 out of 12 samples in the illustrative study. The final step of
the framework is an integration of the results obtained by Anets-
OTUs and Anets-Samples by building a presence/absence map of
the associated species and samples (Figure 3I).

Applying the Approach to Experimental
Datasets
In order to test our methodology, we employed the described
framework to analyze two well- established and published
experimental datasets from a study of Human Microbiome
Project Consortium, 2012 and from a study of the PRM (Shakya
et al., 2013). In each of these datasets, 16S or 28S rRNA amplicon
sequencing was used to profile the microbiome in different
environments. By applying our methodology in an unsupervised
manner to build a map of associated OTUs and samples, we were
able to test how well the inter-sample associations reproduced
their observed phenotype in the environment, with the added
advantage of studying associations of rare OTUs underlying the
grouping of samples.

Populus Root Microbiome
The dataset (Shakya et al., 2013) includes 2999 fungal OTUs and
24435 bacterial OTUs identified in 84 samples taken in May and
in September from two geographical locations, Tennessee (TN)
and North Carolina (NC) associated with the roots of Eastern
Cottonwood (Populus deltoides) trees at along two different
rivers. The study also collected a set of soil properties and

host characteristics for each of the 23 sampling locations; we
used these metadata to examine their relationships with the
associations of samples discovered by the Anets-Samples.

Examination of the OTU table from the study reveals that
common species (found in ∼60% of samples) or generalists in
Populus root are represented by only 61 OTUs, or 0.22% of
total number of OTUs in the dataset. As expected, the majority
of OTUs had low-abundance and was rare (Figure 1B). After
applying the Anets-OTUs algorithm to the OTU table we found
six large associations of OTUs (p-value < 0.05). A further
enrichment analysis (see section “Materials and Methods”)
attributed each association to a location, TN and NC, and to a
sampling season, May or September (Figure 4A). This analysis
revealed that communities of low-abundance OTUs, were
underlying groups of samples based on known environmental
factors from the study. To further confirm the grouping we built
a heat map of the associated OTUs (horizontal axis) across all
samples (vertical axis) organized by the geographical location and
season and sampling (Figure 4B). While, it can be appreciated
that many rare Anets-OTUs are present across all samples, some
of them often co-occur in samples from a particular location
or a season. The largest microbial association includes OTUs
found in Populus rhizosphere in any season and in any location.
Some associations are more common for TN or NC, and some
associations are more common in September or May. This
pattern suggests a tight link between the identified associations
of the rare OTUs and a particular environmental factor. We
noticed, for example, that a fungal OTU representing the genus
Inocybe was found only in the NC cluster. Indeed, species of
the genera have been tied to their environments rather than
their hosts more than other fungal species (Cripps, 1997). Our
results are consistent with this experimental observation; they
also indicate that the other fungal genera in the cluster, such as
Ceratobasidium, have similar biological characteristics.

The analysis confirms that clustering at low taxonomic levels
may be crucial in discriminating different environments. We
find that although OTUs in each of the associations often
belong to the same phyla, they are more distinct at lower
taxonomic levels, such as order (Supplementary Tables S1A,B).
For example, microbial communities of Populus roots in both
locations, TN and NC, include phylums Proteobacteria with less
number of OTUs in NC (Supplementary Table S1A). At the
level of order, however, the Proteobacteria in NC had greater
richness (10 orders) when compared with TN (seven orders), and
included Rhodocyclales, Syntrophobacterales, Rhodobacterales,
and Burkholderiales orders that were not observed in TN.
Microbial communities in both locations, TN and NC, also
included numerous species from phylum Acidobacteria. The
microbial community in TN, however, was dominated by the
order Solibacterales; this taxa, however, was not found in NC.
This example clearly demonstrates that by analyzing the dataset
at the level of OTUs and collapsing them after linking their
associations to environments may be a better strategy for
exploration of subtle difference among microbiomes in similar
environments.

By applying the Anets-Samples algorithm to the OTU table
we revealed two distinct clusters of samples in the PRM dataset
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FIGURE 4 | Associations of rare species and samples in PRM study. (A) Communities of associated fungal and bacterial OTUs discovered by the Anets-OTUs
algorithm in rhizoshpere of Populus deltoides. Nodes in the network indicate OTUs and edges indicate pair-wise association between them. The node color shows
the community (cluster) assignment inferred by clustering. (B) Presence–absence map of the associated OTUs; the cell color is red if OTU is present in the sample
and it is black if OTU is absent. OTUs are grouped according to the microbial communities inferred by Anets-OTUs and sorted by mean abundance; samples are
grouped according to clusters inferred by Anets-Samples and sorted by the shared richness. (C) Two associations of Populus rhizoshpere samples with the shared
species richness revealed by Anets-Samples; color indicates samples taken in NC (red) and in TN (green). (D) Hierarchical clustering of the soil properties; brackets
indicate three cluster of soil samples with distinct soil properties: green bracket indicates the cluster of soil samples that correspond to the association of rhizosphere
samples in TN, red bracket indicates the cluster of soil samples that correspond to the association of rhizosphere samples in NC, black bracket and black squares
indicate samples that don’t found as associated by Anets-Samples.
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(Figure 4C). Within each cluster, all samples had similar profiles
of the shared species richness across all samples (p < 0.01).
Furthermore, there was a clear association with metadata
of the study, with the first cluster representing a subset of
samples from TN, and the second cluster representing a subset
of samples from NC. Eight samples did not associate with
either cluster. These results mirror the results of Shakya et al.
(2013) that used variance partitioning of transformed datasets
to show that watershed (TN vs. NC), season, and sampling
site within a watershed, respectively, had the greatest effect on
community structure followed by other factors. To determine
other environmental factors contributing to the separation of
samples in two clusters we examined the variance partitioning
of the bacterial OTUs within each cluster with respect to host
and soil properties, geographic locations, seasons, and diversity
of corresponding fungal community. The analysis was performed
the same way as in the original study (see section “Materials
and Methods”). A large proportion of variance (67.8%) of
the bacterial OTUs across all samples was unexplained in the
original study, whereas only 9% of variance was explained by
soil properties. In contrast, among the samples that were selected
by the Anets-Samples as significantly associated, only 25% of
variance remained unexplained, while the greatest proportion
of the variance (30.1%) was attributed to the studied soil
properties (Supplementary Figure S2). The expected proportion
of the variance estimated by the permutation test, via a random
selection of the same number of samples, would be only
19%.

To examine the effect of soil on the separation of samples
in more detail we hierarchically clustered 16 soil properties
measured in the study and found that two associations
discovered by the Anets-Samples in Populus deltoides rhizosphere
(Figure 4C), correspond to two distinct soil clusters inferred
from the soil properties (Figure 4D). This relationship was not
found in the original study and again suggesting the importance
of rare microbial species for differentiating subtle environmental
conditions in addition to the traditional methods that more
heavily weight species abundance and dominant taxa. In case of
PRM we observe that a set of TN samples found as associated
by Anets share relatively greater Zn, Mn, and Ca contents in
the soil and a greater soil pH. A set of associated NC samples
share relatively low values of these soil characteristics. Those
samples, either from TN or NC, that are not identified by Anets-
Samples as significantly associated, have a variable content of
the soil properties as well as relatively greater sand content
and lower clay and organic matter contents than the associated
samples. The results point to the soil properties as a crucial
factor underlying similarity of microbial communities in Populus
deltoides rhizosphere.

Microbiomes of Human Body Sites
The HMP dataset has been characterized in several publications
(Faust et al., 2012; Project, 2012; Aagaard et al., 2013) and
includes samples obtained from 18 different body sites of 180
healthy men and women. As noted before (Figure 1A), the
majority of OTUs in the dataset is rare and has low-abundance.
Considering the large size of the OTU table produced in the

study we started the analysis with the construction of the Anets-
Samples (Figures 3F–H) to find associations (clusters) of samples
with similar profiles of the shared species richness and to discard
samples-outliers. Most samples (74%) in the dataset were found
to be associated (p-value < 0.01) with at least one other sample in
the network. Visualization and clustering of the network using
the Markov clustering algorithm (MCL) (Van Dongen, 2008)
revealed seven large disconnected component and 206 clusters
(Supplementary Figure S3). We next used an enrichment analysis
(see section “Materials and Methods”) to annotate the inferred
clusters by sample metadata (sex of the human subject, body site,
and sub-site) and to assign significantly enriched body sites and
sub-sites to the clusters. Figure 5A shows components of the
network comprised of oral and skin samples colored according
to sub-sites. Samples that belonged to a particular subsite tended
to cluster together according to the Figure and to the enrichment
analysis. Thus, the Anets-Samples allowed us to predict origin
of samples from different oral sub-sites, such as keratinized
gingiva, buccal mucosa, hard palate, saliva, throat, and tongue.
There were also several distinct associations of samples originated
from multiple skin subsides. Interestingly, one association of
samples (cluster 16 in Figure 5A) was comprised of male human
subjects.

We further focused the analysis on 314 skin samples that
represent three distinct, disconnected in the Anets-Samples,
clusters labeled by black ovals in Figure 5A. To reveal
communities of microbial OTUs discriminating these clusters we
built the Anets-OTUs using, as input, an OTU table comprised
of these 314 samples in columns and 43140 OTUs in rows.
The generated Anets-OTUs included 412 associated OTUs (p-
value < 0.001); and subsequent clustering of the network
revealed four major microbial communities (Figure 5B). The
enrichment analysis showed statistically significant links between
the communities and the Anets-Samples clusters (Supplementary
Table S2). The map generated from the initial dataset by
extracting abundance values of the associating OTUs further
confirmed the links (Figure 5C). Importantly, the three distinct
clusters of samples, originated from skin of different human
subjects, have significant differences in microbial communities
at the OTU level, although most OTUs contributing to the
difference belonged to the genus Propionibacterium. Indeed,
microbial community 1 comprised of OTUs of the genus
Propionibacterium (Figure 5B) was significantly enriched in
Anets-Samples clusters 2 and 10 (Figure 5A), but not in
Anets-Samples cluster 16 (Figure 5A). Microbial community
2 comprised of a distinct set of OTUs from the same
genus (Figure 5B) was significantly enriched only in Anets-
Samples cluster 2 (Figure 5A). The third microbial community
comprised of OTUs of the genera Propionibacterium and
Actinomycetales (Figure 5B) was enriched in Anets-Samples
cluster 10 (Figure 5A), and the fourth microbial community
(OTUs from the genera Staphylococcus and Propionibacterium)
was enriched in Anets-Samples cluster 16 comprised of male
human subjects. The p-value 0.01 (Fisher exact test) was used
as the significance threshold in the enrichment analysis. Thus,
the OTU level clustering was important to discriminate microbial
communities of the clustered samples.
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FIGURE 5 | Associations of rare species and samples in the HMP study. (A) Associations of oral and skin samples. Samples in the networks are represented by filled
circles colored according to the sampling sub sites in the HMP study. Edges between circles indicate significant association between samples in terms of the shared
species richness. Red and black ovals label associations predicted by clustering of the Anets-Samples. Name of each cluster was inferred by the enrichment
analysis as described in Section “Materials and Methods.” Black ovals indicate clusters (2, 10, and 16) that were further analyzed by the Anets-OTUs algorithm.
(B) Associations of rare species discovered by Anets-OTUs in samples comprised clusters 2, 10, and 16. Small components of the network are not included. OTUs
are represented by nodes (filled circles) where color indicates different clusters inferred by Markov clustering. The largest clusters are referred as communities. Edges
between nodes represent significant associations (p < 0.001) between a pair of OTUs. They are labeled by black ovals and have associated bar charts showing the
number of OTUs from most abundant taxonomic ranks labeled as G (Genus) and O (Order). (C) Heat map of abundances (in terms of sequencing reads) of
associating microbial OTUs (horizontal axis) in three distinct clusters of samples (vertical axis) collected from the human skin. OTUs are grouped according to the
microbial communities inferred by Anets-OTUs and sorted by mean abundance; samples are grouped according to clusters inferred by Anets-Samples and sorted
by the shared richness. Each cell shows the number of OTU reads. Color of cells in the map shows the number of reads representing the OTUs in the sample: 10
reads or more (dark orange), from 1 to 10 reads (light orange), and not represented by reads (gray). Cluster IDs indicated in (A,B) are shown in vertical and horizontal
bars of the heat map respectively.
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FIGURE 6 | Principal coordinates analysis (PCoA) plots and Anets-Samples for oral samples with or without rare OTUs. (A) PCoA plot generated by including rare
OTUs. (B) PCoA plot generated by excluding rare OTUs. (C) Anets-Samples generated by including rare OTUs. (D) Anets-Samples generated by excluding rare
OTUs. Large clusters (more than 10 samples) are bordered by rectangles.

Validation of the Anets Algorithm
We use 1250 oral samples of HMP to investigate the robustness
and limitations of the Anets algorithm, to compare it with other
methods and to explore potential biases and confounding factors.

Library Size as Potential Confounding Factor
The Library Size (LS) affects the number of identified rare species
and, therefore, may introduce a technical bias in the OTU
table if there are significant differences in LSs among studied
environments. We explore this affect using known annotations
of oral samples by subsites. Specifically, pair-wise comparisons
were performed among all the subsites in terms of the library
size and then in terms of the number of rare OTUs. We find that

log-transformed values of the library size in the oral samples have
a normal distribution (Supplementary Figure S4). Significant
differences between average values (Wilcoxon test) were observed
for 2 out of 15 pair-wise comparisons (Supplementary Figure S5),
and only for one comparison, “Tongue dorsum” versus “Hard
palate,” the difference in LS is also associated with the significantly
different number of rare species (Supplementary Table S3). In
general, most rare OTUs are the least abundant and the mean
number of such OTUs is significantly different in 60% subsite
pairs (Supplementary Figure S6 and Supplementary Table S3).
When we consider less rare OTUs we find a significant increase
in the mean abundance of the OTUs (Supplementary Figure
S6) and significant decrease in the % of subsite pairs that are
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significantly different in terms of the number of rare OTUs, from
60 (occupancy threshold 1%) to 40, 20, and 13% (occupancy
threshold 5, 10, and 25%, respectively) (Supplementary Table
S3). According to the results, the LS may be a confounding
factor in the analysis of rare OTUs, although the different
LS doesn’t necessary translate to different number of rare
species, at least for oral subsites. There is a clear trend for
oral subsites to be less different in terms of the number of
rare OTUs when we increase the occupancy threshold. This
trend, however, doesn’t associate with different LSs of the
subsites.

Importance of Rare OTUs for Anets-Samples
Construction
We further explore how important rare and common taxa for
correct grouping of samples. We separated species identified in
1250 oral samples to two groups, rare (occupancy is between
0.5 and 25% samples) and common (occupancy > 25%). Then
we generated three OTU tables; comprised of only rare OTUs,
rare and common OTUs, and only common OTUs. We find
that considering only rare OTUs we reduce the resolution of
the Principal coordinates analysis (PCoA) plot (Supplementary
Figure S7A). In case of Anets-Samples (Supplementary Figure
S7B), we actually increase the resolution and were able to detect a
batch effect among oral samples. The effect was probably masked
by the presence of common species because we didn’t observe the
effect if we use OTU table with only common OTUs (Figure 6D)
or with common and rare OTUs (Figure 6C). In spite of the
batch effect, the grouping of samples within the large batch
(Supplementary Figure S7B) was consistent with the studied oral
subsites, although not as evident as for Anets-Samples based on
a combined set of rare and common OTUs (Figure 6D). The
PCoA plots generated for OTU tables by including or excluding
the rare OTUs were rather similar (Figures 6A,B) suggesting
that we will not significantly effect the interpretation of the
results by excluding rare species in the PCoA. However, by
excluding the rare species when building Anets (Figure 6D),
we essentially decrease our chance to cluster samples according
to subsides (Figures 6C,D, right sides) and also decrease the
number of associated samples (p > 0.05) from 1082 (87%) to
981 (78%). The results demonstrate high sensitivity of the Anets
algorithm to signals from both, rare and more abundant, OTUs.
The result is not surprising. To build Anets we have to collect
additional statistics on co-occurrence of species with the rest
and on the shared species richness to establish the pair-wise
associations in Anets-Samples and in Anets-OTUs. By excluding
some species, either less abundant or more abundant, we loose
information important for the analysis and impair the results.
Building Anets after filtering common species, however, may
allow us to see biases obscured by the presence of common
taxa.

Topological Differences Between Networks
Generated Using Anets and Unweighted UniFrac
Distances
UniFrac is widely used distance metric incorporating
phylogenetic information to compare microbial communities.

All taxa, common and rare, are included in calculation of the
distance. The metric, therefore, may be an alternative way
to construct the network of samples by incorporating the
phylogenetic signals from rare species. We have compared
the network of samples generated by Anets with those based
on the Unweighted UniFrac (UUF) distances. The ‘phyloseq’
package (McMurdie and Holmes, 2013) was used to calculate
the UUF distance for each pair of oral samples. Two networks
were generated with thresholds for the distance to be equal 0.95
and 0.98. We chose these thresholds because we find it difficult
to break the UniFrac-based networks into clusters because of
low clustering coefficients and high centralization if compared
with the Anets-Samples (Supplementary Table S4). We could
increase the clustering coefficient and reduce centralization by
increasing the distance measure but it also reduced the number
of nodes in the UUF network. Using a looser threshold (0.95)
we had 1243 nodes that were vastly interconnected by 68284
edges into one large cluster (Supplementary Figure S8). By
increasing the distance threshold to 0.98 we generated a network
with 868 samples and 6457 edges and a greater clustering
coefficient (Figure 7B). The generated clusters, however, were
not as consistent with the annotation of subsites as in case of
Anets-Samples network (Figure 7A). Although in general all
three networks showed the same trend of separation of subsites
‘keratinized gingiva’ and ‘bunccal mucosa’ from ‘saliva,’ ‘tongue
dorsum,’ and ‘throat,’ it was easier to cluster the Anets-based
network, and, importantly, many large clusters in the Anets
network were enriched with samples originated from the same
subsite (Figure 7A, right side). The comparison reveals a distinct
topology of the Anets network if compared with UUF-based
networks and a better association of the topological structure
with oral subsites. The more centralized topology of the UUF-
based network may be suitable for a global overview of the
samples. The Anets-based network may perform better if we
want a greater level of detail and more granularity in grouping
the samples.

Robustness of the Anets Algorithm
Several different factors including sampling strategy and sample
handling, the choice of universal 16S rRNA gene PCR primers,
DNA extraction methods, amplification artifacts, such as
chimeras, and computational methods employed to produce the
OTU table from sequencing reads may contribute to different
results in the 16S rRNA gene profiling studies. All of them can
affect the number of rare species and the produced Anets. To
evaluate the robustness of the algorithm we explore changes
in the structure of Anets based on OTU tables constructed
by different processing pipeline, by different 16S rRNA gene
variable region for sequencing, and by a different subset of
oral samples. Namely, we consider three different OTU tables
produced for oral samples by two commonly used 16S rRNA
amplicon data processing pipelines, MOTHUR (Schloss et al.,
2009) and QIIME (Caporaso et al., 2010) that utilize different
algorithms to construct the OTU table. The former OTU table
was produced by a high quality-filtering MOTHUR pipeline
(Schloss et al., 2011) with low overall chimera rate. The formation
of the chimeric sequences is a well-known factor contributing
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FIGURE 7 | Networks of oral samples and their clustering by the Markov clustering algorithm (MCL) with the same parameters. (A) The network was generated
using Anets-Samples algorithm. The large clusters (more than 10 samples) are bordered by rectangles. (B) The network was generated using Unweighted UniFrac
(UUF) distances as measure of pair-wise similarity of the samples (nodes) with the threshold 0.98.

to erroneous OTUs and to overrated species richness (Ashelford
et al., 2005). We also compared OTU tables generated by QIIME
pipeline from sequencing of 16S rRNA gene variable regions 1–
3, referred as HMP v13 (Q), and variable regions 3–5, referred
as HMPv35(Q). These three OTU tables were generated for
the same subset of 1250 oral samples. In addition, we included
an OTU table (QIIME pipeline, v35) produced for a different
subset of 1025 oral samples in the comparison. We refer to the
table as HMPv35(Q) validation. The tables were downloaded
from the NIH Human Microbiome Project websites and were
comprised of different number of OTUs, from 8640 OTUs in
HMPv13(M) to 26399 OTUs in HMPv35(Q) Validation. Most
OTUs (95–97%) in the tables were rare OTUs (found in less than
25% samples). The Anets-Samples was generated for each OTU
table and visualized by Cytoscape using the same parameters.
Comparison of the produced networks reveals not only their
similar statistical characteristics (Supplementary Table S5), but
also a similar trend in grouping of samples among subtypes
(Figure 8). The MOTHUR and QIIME networks, however, were
surprisingly different in their ability to separate different subsites
(Figures 8A,B). The MOTHUR network performed well in
separating tongue dorsum and throat from other subsites, but
not as good in separating keratinized gingiva and buccal mucosa,
while the QIIME v13 network performed better in separating
keratinized gingiva and buccal mucosa from other subsites, and
not as good for tongue dorsum and throat. The difference persists
when we run Anets with different parameters. An interesting

symmetrical structure, related to the batch effect, was revealed
in the Anets-samples produced for OTU table HMPv35(Q)
(Figure 8C). The upper part of the network represents samples
sequenced by J. Craig Venter Institute (JCVI) and the lower part
representing samples sequenced by other sequencing centers.
Importantly, each side of the network demonstrated similar
grouping of samples into subtypes regardless of the batch
affect. The network generated for a different subset of oral
samples, HMPv35(Q) Validation, reveal a similar batch effect
with separation of samples into subsites within each batch. Based
on the results we conclude that the Anets algorithm recover
similar groupings of samples from OTU tables produced by two
commonly used 16S rRNA amplicon data processing pipelines
regardless of the observed batch effects and type of sequencing
(v13 or v35) as well as from an OTU table comprised of different
samples from the same environments.

DISCUSSION

In this proof of concept study we aimed to demonstrate the
use of the Anets-based computational framework for linking
associations of rare OTUs to their environment. Results of
the study demonstrate that a combination of the Anets-
OTUs and Anets-Samples has a potential to serve as a
powerful unsupervised methods for discovering relationships
and associations of rare species from phylogenetic marker gene
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FIGURE 8 | Anets-Samples generated for different OTU tables comprised of oral samples. (A) OTU table generated by QIIME pipeline from sequencing of 16S rRNA
gene variable regions 1–3. (B) OTU table generated by MOTHUR pipeline from sequencing of 16S rRNA gene variable regions 1–3. (C) OTU table generated by
QIIME pipeline from sequencing of 16S rRNA gene variable regions 3–5. (D) OTU table generated by QIIME pipeline from sequencing of 16S rRNA gene variable
regions 3–5 of a distinct set of oral samples.

datasets used in microbiome studies. Applying the framework
to analyses of microbiomes in Populus roots and on Human
body sites we were able to reproduce associations of samples in
these complex environment and associations of species that were
consistent with the existing metadata and the analyses described
in the previous literature. In case of Human microbiomes we were
able to identify associations of co-dependent rare OTUs and link
them to sub-sides of the human body. Similar observations were
reported by Ding and Schloss (Ding and Schloss, 2014) using the
Dirichlet multinomial mixture models (Holmes et al., 2012).

An important observation from the analysis of Populus
and Human microbiomes by the approach is a close link
between the rare microbial OTUs and specific environmental
conditions. To explain the importance of rare putative species
for classification of the environments we propose that the high-
abundance OTUs are common among sampled environments

because the environments have some common conditions
stimulating outgrowth of the same putative species. The rare low-
abundance OTUs are rare because each of these environments
also has some specific conditions or microenvironments.
These specific microenvironmental conditions may stimulate
the growth species represented by rare OTUs. Although they
are rare, they may be crucial for recovering the micro-
environmental differences in microbiomes of the environments.
It is possible that these rare OTUs, therefore, may be a better
computational target for quantification of subtle differences
among most variable properties of the environments, and
their presence/absence pattern can be used for additional
comprehensive classification of samples from the environments.
New approaches to ‘denoising’ sequencing data that avoid
collapsing OTUs to higher taxonomic levels or a priori OTU
similarity thresholds, such as ASVs approach (Callahan, 2017),
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might also further increase the ability to recover the micro-
environmental differences among samples.

Although the results show the importance of rare OTUs in
discriminating oral subsites and in revealing batch effects, they
don’t prove that the rare OTUs are real. Further experimental
studies are necessary to provide a direct evidence of their
existence. Models of microbial communities where a signal from
rare species can be captured and compared with signals from
common species would be also helpful to explore rare species and
to validate the approach. There are, however, some challenges in
developing a realistic model of microbial communities. Available
computational tools, such as “SPIEC-EASI” R package (Kurtz
et al., 2015) generate a synthetic OTU data using a random
selection of species. The randomness contradicts the major
assumption of the Anets algorithm that the selection of species
in the sample is not random. In addition, the OTU tables
simulated by a random selection don’t necessary conform to the
occupancy–abundance relationship (Gaston, 1996) observed in
real settings.

The transformation of OTU table into the OTU
presence/absence values for analysis by Anets places some
limitations and constraints on the approach. One such constraint
is the presence of many common OTUs, such as found in more
than ∼75% samples. The loss of abundance data is another
limitation. The information can be important for understanding
dominant taxa and their interdependencies with each other and
members of the rare biosphere. Another important condition
for successful application of the approach is the species co-
dependence in the studied environments. The condition is
important to observe similar co-occurrence profiles for the
associated OTUs and to simplify their clustering. Although this
assumption is consistent with known metabolic and functional
dependences of microbial species in different environments
(Jousset et al., 2017), these dependences are not always the major
factors that discriminate environments in a particular study.

Further studies are necessary to validate the proposed
framework, to extend it by incorporating additional statistical
tools, to provide guidelines on setting parameters for the
Anets-Samples and Anets-OTUs, to explore different measures
of similarity and their cutoffs, and to clarify limitations of
the approach. Further work is also necessary to streamline
all calculations in a package. At this point, the computations
proposed in the framework are implemented by different
programs, such as Anets (Karpinets et al., 2012), Cytoscape
(Smoot et al., 2011), mcl (Markov clustering) (Van Dongen,
2008), as well as by simple in-house scripts written in R (see
“Operating Procedure to generate Anets” in Supplementary Data
Sheet S1). Importantly, the Anets program was implemented for a
single processor to cope with a data of small scale and complexity.
The program will be slow in processing large OTU tables
generated by increasingly complex datasets. It is important to
increase scalability of the algorithm by parallelizing independent
computation steps and by designing efficient representation of
the sparse data for better memory management.

We have thus taken the first initial steps in incorporating the
“rare biosphere” of microbial community data and linking their
contribution to environmental and phenotypic characteristics via

the Anets algorithm. More interesting relationships may be found
by this approach as the rate of accumulation of microbial data
in different environments continues to increase and the cost of
sequencing continues to decrease. We believe that the Anets
technique holds unexplored potential for an in-depth analysis
of the data. The approach is useful to reveal inherent patterns
in the data without a priori knowledge of factors influencing
the microbial communities as well as to visualize the patterns as
networks or maps.

MATERIALS AND METHODS

Mock Dataset
The dataset was generated manually to illustrate the ANETs
approach, and represents an oversimplified case of two artificial
environments populated by eight hypothetical species. The
environments were randomly sampled in 12 locations as
described in Figure 3A in more detail. The major goal of the
dataset was to provide an intuitive illustration of the proposed
framework.

Populus Root Microbiome Dataset
The dataset was described by Shakya et al. (2013). It includes
84 samples that represent a combined (fungal and bacterial)
microbiome in rhizoshpere (46 samples) and endosphere (38
samples) of 23 mature Populus deltoids trees growing in
Tennessee (11 trees) and North Carolina (12 trees) taken in May
(23 rhizosphere samples and 21 endosphere samples) and in
September (23 rhizosphere samples and 17 endosphere samples).
Bacterial (16S rRNA) and fungal (28S rRNA) genes from the
samples were sequenced to estimate the abundance of fungal
and bacterial OTUs and their association with plant phenotypic,
genotypic, and environmental parameters. We initially explore
abundance–occupancy relationships in the dataset using all
rhizosphere and endosphere samples of the study (Figure 2) and
then focused our further analysis on 46 rhizosphere samples.
The OTU table for these samples was processed using the
Anets tool in two ways: (1) to build the association network of
OTUs, Anets-OTUs, and (2) to build the association network
of samples, Anets-Samples. The Anets-Samples was generated
using the Pearson correlation as the measure of association for
each pair of samples and a p-value threshold equal 0.01. The
Anets-OTUs was generated using OTUs that occurred in 10 or
more samples. This threshold was necessary to reduce time and
memory used by the Anets program for processing the data.
The p-value threshold was set to 0.05. Markov clustering (Van
Dongen, 2008) with the inflation value 1.8 was used to cluster
the networks, and Cytoscape (Smoot et al., 2011) was used
to visualize the networks. Soil properties for samples collected
near 23 trees were analyzed using hierarchical clustering. All
soil parameters were normalized before the clustering using
the average value of the parameter and its standard deviation.
The hierarchical clustering of soil samples was performed using
Pearson correlation as the similarity metric and centroid linkage
as the clustering method. The analysis was implemented using
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the Cluster 3 program (Eisen et al., 1998). The Java Treeview2

was used to visualize the clusters. The ‘vegan’ R package
(Dixon, 2003), function ‘capscale,’ was used to calculate variance
partitioning the same way as in the initial study (Shakya et al.,
2013).

Human Microbiome Dataset
The dataset was downloaded from the HMP website http://www.
hmpdacc.org/HMQCP/. The dataset is based on the analysis of
16S rRNA gene variable regions 1–3 (V13) and includes 2910
samples obtained from 18 different body sites of 180 healthy
men and women. Each site was represented by 145–190 samples,
except the vagina (87–89 samples). The data is described in
more detail by the Human Microbiome consortia publications
(Project, 2012). The input for the analysis was the OTU
table generated by the project from sequencing reads by the
QIIME (Quantitative Insights Into Microbial Ecology) software
(Caporaso et al., 2010). The table is comprised of 43140 OTUs
and 2910 samples. For the cluster enrichment analysis we used
publically available sample metadata, sex of the participant and
body site.

The downloaded OTU table was processed using the Anets-
Samples algorithm to build the association network of samples.
The network was generated using the Pearson correlation as
the measure of association for each pair of samples and the
p-value threshold 0.01. The p-values were calculated using a
Monte Carlo simulation approach as described before (Karpinets
et al., 2012). The network was visualized using edge-weighted
(by p-value) spring embedded layout in Cytoscape (Smoot et al.,
2011). The Anets-OTUs was generated for a subset of 314
skin samples selected by the analysis as significantly associated
(clusters with IDs 2, 10, and 16 in Figure 2). The OTUs
table of the samples was used as input for the Anets-OTUs
algorithm with the following parameters: the minimum number
of samples per OTU is 15, and a p-value threshold is 0.001. The
stringent thresholds were important to limit memory use and
the processing time for the Anets program. Markov clustering
(Van Dongen, 2008) with the inflation value 1.8 was used to
cluster the networks, and Cytoscape (Smoot et al., 2011) was used
to visualize the networks and the clustering results. An edge-
weighted (by p-value) spring embedded layout was used for the
network visualization.

Enrichment Analysis
The analysis was used to find samples enriched in each
cluster of OTUs in the Anets-OTUs and to find phenotypic
or environmental characteristics enriched in each clusters of
samples in the Anets-Samples. In both cases the analysis was done
using the Fisher’s exact test to examine independence of rows and
columns in a two-dimensional contingency table generated by the
following algorithms.

We identified samples enriched in the cluster of OTUs (Anets-
OTUs) by linking each clustered OTU to the sample and finding
those samples that have the greatest representation by OTUs
within the cluster. We used the fisher.test() function in R to

2http://sourceforge.net/projects/jtreeview/

calculate probability that the number of OTUs representing a
sample in the cluster is significantly greater than the number
expected by randomly selecting OTUs in the cluster from a
set of all associated OTUs, regardless of sample of origin. All
associated OTUs were found as a set of unique OTUs associated
significantly (p-value < 0.05) with at least one other OTU in
the Anets-OTUs. We classified the associated OTUs in two
ways: if the OTU belongs to the sample or not, and if the
OTU belongs to the cluster or not. Using this classification
we created the contingency table with the number of the
sample’s OTUs in the cluster, the number of associated OTUs
in the sample, the number of OTUs in the cluster that are
not from the sample, and the number of associated OTUs that
are not found in the sample. Because we performed several
statistical tests simultaneously on the same data set, p-values
calculated by the Fisher exact were adjusted using Bonferroni
correction.

Specific characteristics (such as soil conditions in the
Populus rhizosphere dataset or body subsites in the HMP
dataset) enriched in the cluster of samples (Anets-Samples)
were identified by linking each sample to the characteristics
and revealing the characteristics represented by the greatest
number of samples within the cluster. We used the Fisher’s
exact test to calculate probabilities that number of samples
representing a characteristic within the cluster is significantly
greater than the number expected by randomly selecting samples
into the cluster from a set of all associated samples. In this
case the background of the comparison was a set of all
associated samples; they were classified for each cluster and each
characteristic to create the contingency table as (i) representing
the environmental/phenotypic characteristic or not and (ii)
belonging to the cluster or not.

Generating Networks and Their
Statistics for Validation
All datasets for validation were downloaded from the HMP
website from the link https://www.hmpdacc.org/hmp/HMMCP/
for 16S rRNA amplicon datasets processed by QQIME and
the link https://www.hmpdacc.org/hmp/HMQCP/ for datasets
processed by MOTHUR software package using a high stringency
approach (Schloss et al., 2011). The ‘phyloseq’ R package
(McMurdie and Holmes, 2013) was used to download the
datasets, to create OTU tables for oral samples for comparisons,
to filter OTUs by occupancy, to generate the UUF distances
(default parameters) and to produce PCoA plots (distance
measure was set to ‘binary’). The Anets-Samples were generated
using Pearson correlation as measure of similarity and setting
p-value threshold to 0.05. The networks were loaded into
Cytoscape software, visualized using spring embedded layout
without edge weighting and clustered using MCL algorithm
by a Cytoscape plugin ‘clusterMaker2’3 by setting the inflation
value to 2.0. Another Cytoscape plugin ‘Network Analyzer’4 was
used to explore topology of the networks and to produce their
statistics.

3http://www.rbvi.ucsf.edu/cytoscape/clusterMaker2/
4http://apps.cytoscape.org/apps/networkanalyzer
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