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Abstract: Despite extraordinary advances in fields of immunology and infectious diseases, vaccine
development remains a challenge. The development of a respiratory syncytial virus vaccine, for
example, has spanned more than 50 years of research with studies of more than 100 vaccine candidates.
Dozens of attractive vaccine products have entered clinical trials, but none have completed the path
to licensing. Human immunodeficiency virus vaccine development has proven equally difficult,
as there is no licensed product after more than 30 years of pre-clinical and clinical research. Here,
we examine vaccine development with attention to the host. We discuss how nuclear hormones,
including vitamins and sex hormones, can influence responses to vaccines. We show how nuclear
hormones interact with regulatory elements of immunoglobulin gene loci and how the deletion of
estrogen response elements from gene enhancers will alter patterns of antibody isotype expression.
Based on these findings, and findings that nuclear hormone levels are often insufficient or deficient
among individuals in both developed and developing countries, we suggest that failed vaccine
studies may in some cases reflect weaknesses of the host rather than the product. We encourage
analyses of nuclear hormone levels and immunocompetence among study participants in clinical
trials to ensure the success of future vaccine programs.

Keywords: estrogen; vitamin A; vitamin D; nuclear hormone; nuclear hormone receptors; response
elements; immunoglobulin heavy chain locus; antibody isotypes

Nuclear hormones play an important role in the generation of immune responses and pathogen
control. As a consequence, when nuclear hormone levels are abnormal, immune responses suffer and
risks of infectious diseases (e.g., respiratory syncytial virus (RSV) bronchiolitis) increase [1]. Here we
discuss an additional potential consequence; we propose that abnormal nuclear hormone levels in
clinical trial study participants may hamper the development of new vaccines.

1. The Long Path to RSV Vaccine Licensing

The number of RSV vaccine candidates that have been researched, but that have not achieved
licensure, is high [2–4]. Pre-clinical tests have been conducted in numerous animal species including
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mice, cotton rats, lambs, and non-human primates [5]. Whole virus has been tested, following
inactivation, cold-adaptation, or other forms of attenuation [6–11]. Isolated external and internal
proteins have been tested with a variety of adjuvants [2,12–18]. Protein-based vaccines have most often
included the attachment glycoprotein (G) and/or the fusion protein (F), each of which is instrumental
in virus–cell interactions. Both secreted and membrane protein structures have been tried. Protein
manipulations have included truncation, stabilization, scaffolding, and/or creation of chimeras [19–22].
Vectors for protein delivery have included Newcastle disease virus, human parainfluenza viruses,
Sendai virus, bovine parainfluenza virus-type 3, alphaviruses, adenovirus, vaccinia virus, bacteria,
and plants [23–36]. Virus-like particles (VLPs), virosomes, nucleic acid-based vaccines, and peptides
have been tried [31–35,37–43]. Target populations have included infants, older children, expectant
mothers, and the elderly. While vaccine success has frequently seemed imminent throughout the
decades, no vaccine has reached the finish line despite >50 years of research.

2. Vaccine Development Hurdles in Human Immunodeficiency Virus (HIV) and Influenza
Virus Fields

RSV vaccines are not the only products for which there have been hurdles in recent years.
Human immunodeficiency virus (HIV) vaccine development programs have suffered decades of
disappointment with no licensed vaccine product in sight, and previously-licensed vaccines are
also in the spotlight. In 2016, the Centers for Disease Control and Prevention (CDC) withdrew its
recommendation to administer the FluMist vaccine, a vaccine that had been rigorously promoted in
previous years. One study in 2010 showed <10% seroconversion/seroresponse toward H1N1 and
H3N2 components among recipients of FluMist [44]. Such results encourage researchers to seek
explanations for weak immune responses toward vaccines, with attention not just to vaccine products,
but to the immunocompetence of vaccine recipients.

3. Will Attention to the Host’s Nuclear Hormone Levels Improve Vaccine Success?

Vaccine developers face numerous challenges, as their products must be proven stable,
immunogenic, and safe. Here we consider an additional challenge: insufficient and/or imbalanced
nuclear hormones and immunocompetence in vaccine study participants.

The nuclear hormone receptor superfamily comprises two major classes, I and II. Class I receptors
are homodimers, exemplified by the estrogen receptor (ERα). Class II receptors are heterodimers,
exemplified by the vitamin A and vitamin D receptors (respectively, retinoic acid receptor-retinoid
X receptor [RAR-RXR] and vitamin D receptor-retinoid X receptor [VDR-RXR]) [45–49]. Nuclear
hormone receptors are best known for their ligand-regulated transcription factor function. They are
characterized by an N-terminal domain with activation function (AF-1), a DNA-binding domain (DBD),
and a C-terminal ligand-binding domain (LBD) with activation function (AF-2) [50–52]. It has often
been assumed that nuclear hormone receptors are activated or repressed only by binding their nuclear
hormone ligands, but several other mechanisms can dictate a receptor’s activation status [53–56].

DNA consensus motifs (e.g., retinoic acid response elements [RARE], estrogen response elements
[ERE], and androgen response elements [ARE]) define sites for nuclear hormone receptor binding
throughout the genome. For example, vitamin A and vitamin D receptors, which share the RXR
protein component, often bind a pair of hexameric half-sites, RG(G/T)TCA [57]. The hexamers
are usually separated by a spacer, and each receptor has a preferred spacer size. The estrogen
receptor binds a consensus palindromic motif GGTCAnnnTGACC, as does the androgen receptor
(AGAACAnnnTGTTCT [58,59]). However, rules are not absolute. The binding of receptors to their
ligands and to DNA is promiscuous and receptors need not bind DNA directly. Rather, they can be
tethered to DNA by other factors [50,60,61]. Although nuclear hormone receptors are best recognized
for their transcription factor function, they also confer signals at the cell membrane and by binding
a variety of escorts within extra-nuclear compartments [62].
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Some nuclear hormone receptors have attracted increased attention in recent years, in part
because of dietary and other lifestyle changes that have rendered children and adults deficient or
insufficient in vitamins A and D [63]. Whereas vitamin insufficiencies and deficiencies were once
considered problems only of the developing world, researchers in developed countries are now
discovering frequent cases [64]. Nuclear hormone levels in the human population are not stagnant.
Some individuals have hypervitaminosis while others are vitamin deficient. An expectant mother may
have an estrogen level that is >100× that of a child. There are also concerns about vitamin transport
and function. For example, in the context of obesity, even though serum vitamin A levels may appear
to be adequate, there can be dysfunctional trafficking and storage of vitamins in parenchymal tissues,
including the lungs [65].

As will be described in more detail below, nuclear hormones have profound influences on
adaptive immunity toward pathogens and vaccines. Therefore, we ask whether failed vaccine
clinical trials may in some cases be due to weaknesses in the host’s nuclear hormone levels and
immunocompetence rather than weaknesses in the vaccine product. Generally, when a vaccine
candidate is tested, researchers set a target magnitude and/or target frequency of antibody responses
toward the vaccine. Individuals are then recruited into the study and randomized into test and control
groups. Study participants may be excluded from vaccination if they have a known treatment (e.g.,
steroid treatment) or disease that causes immunodeficiency [37]. However, additional aspects of
immunocompetence are rarely evaluated. If there are not significant differences between test and
control groups or if a target magnitude/frequency of positive antibody responses in the test group
is not met, the vaccine may be considered unacceptable for further study. Either the vaccine concept
is rejected or vaccine modifications are made to improve the product. Rarely is attention given to
the nuclear hormone levels that may render study participants in the test group poorly responsive to
vaccines, and rarely is there a positive control of immunocompetence among study participants.

Given that nuclear hormone levels can fluctuate within populations and can influence
immunocompetence, it is possible that attractive vaccine candidates are in some cases mistakenly
rejected due to weaknesses in study populations. We encourage the future measurement of the hosts’
nuclear hormone levels by vaccine developers to support accurate interpretations of study results and
better solutions when immune responses fail. A correction of host weaknesses, not simply product
weaknesses, may be necessary to expedite vaccine success.

4. Vitamins and the Immune Response

Vitamin levels influence immune responsiveness to vaccines, and abilities to ward off infectious
diseases. In one study by Jones et al., vitamin A levels in humans in the United States correlated with
the magnitude of IgA antibodies and neutralizing antibodies toward influenza virus [63]. In a separate
study, low vitamin levels were correlated with serious disease when children were hospitalized with
RSV or human metapneumovirus [66].

When small animals with vitamin A or A+D deficiencies were tested for responses to influenza
and parainfluenza virus vaccines, both B cell and T cell responses were significantly reduced compared
to controls [67–72]. The IgA response in the respiratory tract, a beneficial first-line-of-defense against
respiratory and intestinal pathogens, was weakened in vitamin-deficient mice [73,74]. Antibody
responses to the Prevnar-13 vaccine (a conjugate vaccine developed against 13 strains of Streptococcus
pneumoniae) were also poor [75].

The World Health Organization (WHO) acknowledges the health risks associated with vitamin
insufficiencies/deficiencies, and therefore supports vitamin supplementation at the time of vaccination
in developing countries (although the positive influence of high-dose vitamin supplements on immune
responsiveness remains a topic of considerable debate) [76–78]. In developed countries, vitamin
deficiencies and insufficiencies are perhaps more prevalent than realized [63], and programs focused
on correcting deficiencies/insufficiencies in developed countries are limited.
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5. Sex Hormones and the Immune Response

Outcomes of infectious diseases and vaccination are not the same between the sexes [79–84].
A well-publicized example of sex differences is ‘man-flu’, the finding that males suffer more than
females from diseases caused by influenza virus [85]. The effect of sex on disease is multi-faceted and
may be due to differences in physical barriers as well as the immune response. Our own analyses
of influenza virus-infected C57BL/6 mice demonstrated a better virus-specific antibody response in
females compared to males, particularly involving the IgG2b subclass [86]. Females also exhibited
higher serum antibody levels than males, again involving IgG2b. But the female immune advantage
was not absolute; when C567BL/6 mice were vaccinated with the pneumococcus vaccine, Prevnar-13,
the males generated the greater magnitude of vaccine-specific antibodies. Such differential effects
between sexes and between antigens may be dependent on the site of immunization (intranasal versus
intramuscular) and the populations of B cells that are targeted. Sex influences on the immune response
exhibit a further level of complexity when nuclear hormone cross-talk is considered. For example,
whereas female C57BL/6 mice had greater total serum IgG2b levels compared to males, the preferences
were reversed when animals were rendered vitamin A deficient [86].

Altogether, results show that nuclear hormones do not act in isolation. Results encourage
comprehensive analyses of nuclear hormones when immune responses are being assessed.

6. Innate Immune Cells Are Influenced by Nuclear Hormones

Virtually every mammalian cell is affected by nuclear hormones. It has often been assumed that
the adaptive immune response is influenced only indirectly, due to innate immune activities that
are affected by hormones. It is well known, for example, that innate lymphoid cells are affected by
vitamin A throughout development [87]. Macrophages and epithelial cells each respond to vitamin A,
albeit with different outcomes [88]. Vitamin levels influence the expression of CD103 on dendritic cells
(DC, as well as on adaptive immune cells), and can, therefore, instruct patterns of DC trafficking and
residence [67,70,89]. Each of the innate cell populations, when affected by vitamins, may subsequently
influence B cell and T cell functions.

7. B Cells Are Influenced by Nuclear Hormones Directly

Might nuclear hormones affect adaptive immunity directly? One effect of estrogen on B cells
is the upregulation of activation-induced deaminase (AID), an enzyme required for class switch
recombination (CSR) and somatic mutation. This phenomenon has been observed more than once,
although researchers disagree on the mechanism of action [90,91].

To further investigate direct influences of vitamin A on B cells, we examined the immunoglobulin
heavy chain gene sequence and queried the presence of nuclear hormone response elements within
the locus. A first discovery was that Sµ, a site essential for the switching of antibody isotypes from
IgM to IgG, IgE, or IgA, defined a hotspot for nuclear hormone response elements [92,93]. We then
performed chromatin immunoprecipitation (ChIP) assays using purified murine B cells stimulated for
one day, and found peaks of estrogen receptor (ERα) binding activity in Sµ and in regulatory elements
including Eµ, and both HS1,2 and HS4 of the 3′ regulatory region, 3′RR [86,93]. These regulatory
regions are well known for promotion and modulation of CSR and heavy chain gene expression [94].
There was also binding of ERα in loci for antibody light chains and T cell receptors [86].

Figure 1 provides an illustration of these findings. Here, a portion of the immunoglobulin heavy
chain locus is mapped using Integrative Genomics Viewer software (IGV, mouse mm9). The reading
frame for immunoglobulin genes is oriented from right to left. Switch sites, constant region genes,
and components of the 3′RR are shown. Switch sites, by definition, mark positions that are cut and
re-ligated after DNA looping to juxtapose V-D-J sequences with Cγ, Cε, or Cα genes (permitting CSR
and the respective expression of IgG, IgE, or IgA).
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Figure 1. Potential retinoic acid response elements (RARE), estrogen response elements (ERE),
and androgen response elements (ARE), ERα binding locations, and CA-rich sequences in the
immunoglobulin heavy chain locus. A map of the immunoglobulin heavy chain locus is shown
using IGV software. Regulatory regions, S regions, and constant regions are indicated. Note that Eµ is
located just upstream of Sµ. The Findseq function was used to identify positions of select sequences.
A negative sign indicates the reverse complement. Sequences included AGCTCA (a potential RARE,
note one mismatch with the consensus), RRYYRnnnTGANC (a potential ERE), GGYYAnnnTGAYY
(a more stringent, potential ERE), ACAACAnnnTGTTCT (a potential ARE, note one mismatch with
the consensus), and ACACACACAC (CA-rich regions). Red rectangles indicate positions of major
and minor ERα binding peaks, previously identified by ChIP analyses with purified B cells (from
C57BL/6 female mice) after a one-day stimulation [86,93]. Not shown are locations for sequences
GGACAnnnTGACC upstream of Sγ2b and TGTTAnnnTGACC near HS4.

As shown, potential RARE half-sites (AGCTCA, note one mismatch with the consensus sequence
described above) and potential EREs (RRYYRnnnTGANC) are prevalent in Sµ, Sε, and Sα regions.
Locations of key major and minor peaks of ERα binding within the immunoglobulin heavy chain locus,
previously discovered by experiments with one-day stimulated, purified murine B cells, are indicated
by red rectangles in Figure 1 [86]. A more stringent, potential ERE (GGYYAnnnTGAYY) coincides with
experimentally-proven peaks of ERα binding in HS1,2 and Eµ. The sequence TGTTAnnnTGACC (note
two mismatches with the consensus ERE) coincides with the peak of ERα binding to HS4. In addition,
a potential ARE (ACAACAnnnTGTTCT) is present in the 3′RR at a site bound by ERα between HS1,2
and HS3B (Figure 1, note one mismatch with the consensus sequence described above).

Figure 1 also shows that repetitive ACACACACAC sequences span the immunoglobulin heavy
chain locus and are often adjacent to regions of ERα binding. These CA-rich sequences are reminiscent
of the heptamer/nonamer sequences that flank V, D, and J sequences of the antibody locus (e.g.,
heptamer CACAGTG), required for hairpin formation and juxtaposition of V, D, and J segments during
B cell development. We propose that the CA-rich sequences identified in Figure 1 similarly assist DNA
looping and gene segment juxtaposition, but in this case for CSR support. When nuclear hormones and
other components of enhanceosomes and switchosomes are appropriately engaged (e.g., the Pax 5 and
RNA pol II proteins known to associate with the HS1,2 enhancer [86,95,96]), CA-rich DNA interactions
may facilitate DNA looping to direct CSR toward a particular S region. We further note that a small peak
of ERα binding appears in a central location (approximate position 114,560 kb in Figure 1) upstream
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of the Sγ2b site and near CA-rich DNA. A potential ERE (GGACAnnnTGACC, note one mismatch
with the consensus) coincides with this ERα binding peak. Perhaps ERα binding to this intermediate
anchor facilitates CSR at Sγ2b under conditions of high estrogen load, a possible explanation for the
IgG2b preference in females. A complex interplay between nuclear hormone ligands, receptors, and
response elements, in conjunction with other enhancosome/switchosome members and CA-rich DNA
may determine the outcomes of CSR and sex-biased antibody expression patterns.

8. Estrogen Response Elements (ERE) and Adjacent Sequences Regulate Antibody Isotype
Expression in B Cells

To test the concept that ERE within regulatory elements influence CSR and antibody isotype
expression patterns, we produced ERE variants in CH12F3 B cells (kindly provided by A. Basu) [97].
This cell line undergoes CSR and a switch from IgM to IgA upon stimulation with IL-4, anti-CD40
and TGF-β. ERE variants were introduced into a subclone of CH12F3 (CH12F3.5B1) using clustered
regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein-9 nuclease
(CRISPR-Cas9) technology. Resultant sequences are shown in Figure 2. Both deletions and insertions
were introduced into the ERE, either in Eµ or HS1,2. As shown, two clones had double deletions
within the Eµ ERE and 1 clone had a double deletion in the ERE in HS1,2. Other clones maintained at
least one chromosome with the wildtype sequence or at least one chromosome with an insertion rather
than a deletion. As shown in Figure 3, when clones were stimulated for three days and then assessed
for IgA production, the three clones with double deletions within ERE (either in Eµ or HS1,2) were
significantly reduced in their ability to produce IgA. In contrast, cells with at least one wildtype ERE or
at least one insertion exhibited IgA production comparable to the control. Results show that EREs are
critical components of regulatory regions in B cells, and that these sequences dictate antibody isotype
expression upon B cell activation. Additional research is encouraged to learn precisely how changes
in nuclear hormone levels alter ligand-receptor interactions at these sites. Given the importance of
these sites, it makes sense that the binding of ERα to ERE (in conjunction with other nuclear hormones
and enhanceosome proteins [95]) will influence the site’s effect on CSR, and that complex cross-talk
between nuclear hormones will influence immune responses toward pathogens and vaccines.

 

Cell Target Chromosome Sequence 
Control Eµ 1: WT TGTTCTGGTTCTGATCGGCCATCTTGACTCCAACTCAACATTGCT 
  2: WT TGTTCTGGTTCTGATCGGCCATCTTGACTCCAACTCAACATTGCT 
    
5A9 Eµ 1: del 8bp TGTTCTGGTTCTGATCGGCCATCT--------ACTCAACATTGCT 
5A9 Eµ 2: del 26 bp  TGTTC--------------------------AACTCAACATTGCT 
    
5B5 Eµ 1: del 5 bp  TGTTCTGGTTCTGATCGGCCA-----ACTCCAACTCAACATTGCT 
5B5 Eµ 2: del 13 bp TGTTCTGGTTC-------------TGACTCCAACTCAACATTGCT 
    
5C6 Eµ 1: Insert 27 bp TGTTCTGGTTCTGATCGGCCATCTTGACTCCAACTCAACATTGCT * 
5C6 Eµ 2: del 34 bp T----------------------------------CAACATTGCT 
    
5D9 Eµ 1: insert 4 bp TGTTCTGGTTCTGATCGGCCATCTTGACTCCAACTCAACATTGCT ** 
5D9 Eµ 2: insert 1 bp TGTTCTGGTTCTGATCGGCCATCTTGACTCCAACTCAACATTGCT *** 
    
1C3 Eµ 1: WT TGTTCTGGTTCTGATCGGCCATCTTGACTCCAACTCAACATTGCT 
1C3 Eµ 2: WT TGTTCTGGTTCTGATCGGCCATCTTGACTCCAACTCAACATTGCT 
--------------- --------- -----------------------  
Control HS1,2 1: WT CCCCATCCCCAAGGCTGGTCAGCCTGGCCAGGTTGGGGTGAACCTGCAG 
  2: WT CCCCATCCCCAAGGCTGGTCAGCCTGGCCAGGTTGGGGTGAACCTGCAG 
    
5E2 HS1,2 1: del 23 bp CCCCATCCCCAAGGCTGGTC-----------------------CTGCAG 
5E2 HS1,2 2: del 13 bp CCCCATCCCCAAGGCTGG-------------GTTGGGGTGAACCTGCAG 

 
Figure 2. ERE variant sequences among CH12F3 clonal derivatives. CRISPR-Cas9 was used to produce
CH12F3 clones with variant ERE. Sequences are shown either in the position of Eµ or HS1,2 for each
chromosome from each clone. Red indicates a deletion (del). Purple indicates an insertion (insert). The
EREs are shown in yellow with the spacer highlighted in blue. A wild-type CH12F3.5B1 cell subclone
served as a control. 1C3 was an additional subclone for which there was no sequence change. Methods:
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The CH12F3 cell line was obtained from A. Basu and then subcloned by limiting dilution. Cells
were grown in Roswell Park Memorial Institute (RPMI) 1640 medium with 10% fetal calf serum
(FCS), 2mM glutamine, 2-mercaptoethanol (55 nM) and penicillin/streptomycin (50 units/mL
each). The subclone CH12F3.5B1 was selected for further use based on its low surface IgA
expression (defined by flow cytometry). ERE variants were introduced into CH12F3.5B1 cells using
CRISPR-Cas9 technology. Guide sequences targeting HS1,2 or Eµwere selected and subcloned into
px458 or px458-mCherry plasmids as described previously [98–100]. Guides were Eµ_Guide_01
(5′-ATGTTGAGTTGGAGTCAAGA-3′) and HS1.2_Guide_01 (5′-CAAGGCTGGTCAGCCTGGCC-3′),
each with no potential off-target sites with less than two mismatches. Guide sequences were subcloned
into PX458 or PX458-mCherry to generate PX458 _Eµ Guide 01 and PX458-mCherry-HS1.2_Guide 01
plasmids as described previously [100]. These plasmids were then introduced into CHF12F3.5B1 cells
using Nucleofector technology (nucleofector program D-023 per manufacturer’s recommendations,
Lonza, Basel, Switzerland). Typically, off-target loci with two or more mismatches are not
cleaved using this strategy. Cells were cloned by limiting dilution and screened to define
the integration event or knockout by targeted next generation sequencing (NGS) using primers
SM132.F-5′-tgtgcagagttggctcacaagggca-3′ and SM132.R-5′-ccttgcccatctcctgtcatgtcct-3′ (for the HS1,2
region) or SM133.mIgha.DS.F- taaccgaggaatgggagtga and SM133.mIgha.DS.R-tggactttcggtttggtggg (for
the Eµ region) with appropriate Illumina sequencing adaptors. Paired-end 150 bp × 150 bp reads were
obtained using Illumina Miseq, joined, and analyzed (Illumina, San Diego, CA, USA). * 27 bp insert
‘CAACCTGGTTGAGACTCCAACTGGTTC’ following the TCT spacer. ** 4 bp insert ‘AATG’ between
TC and T of spacer. *** 1 bp insert ‘T’ immediately following the TCT spacer.
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Figure 3. Double deletions of ERE in Eµ or HS1,2 significantly reduce CSR to IgA. Cells were stimulated
for 3 days using duplicate wells for each variable. Flow cytometry was performed to examine the
frequency of cells expressing membrane IgA before and after stimulation. Percentages of live cells
bearing membrane IgA are shown, with means and standard deviations. Controls were CH12F3.5B1
and 1C3, a clonal derivative of CH12F3.5B1 with no ERE sequence change. Insertions (In) or deletions
(del) for each cell line are noted (See Figure 2 for sequence details). Unpaired T tests identified
significant differences in the percentages of cells bearing membrane IgA after stimulation, when clones
with double ERE deletions were compared to the CH12F3.5B1 control (*, p < 0.05). Repeat experiments
yielded similar results. Methods. Cells were plated in 24 well plates at 5 × 104 cells/well in RPMI with
10% FCS, 2mM glutamine, 2-mercaptoethanol (55 nM) and penicillin/streptomycin (50 units/mL each)
for 3 days, with or without a cocktail of recombinant mouse IL-4 (10 ng/mL, Invitrogen, Waltham,
MA, USA), anti-CD40 (1 µg/mL R&D Systems, Minneapolis, MN, USA), and TGFβ (2 ng/mL, R&D
Systems). For analyses by flow cytometry, cells were pelleted in 1% FCS in phosphate buffered saline
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[PBS]. Cells were incubated with Fc block (anti-CD16/CD32, BD Biosciences, San Jose, CA, USA) for
20′ on ice. Cells were then pelleted and resuspended in an antibody cocktail including APC conjugated
anti-IgM (Invitrogen) and PE-conjugated anti-IgA (eBioscience, San Diego, CA, USA). Incubation was
for 30′ on ice. Cells were washed with 1% FCS in PBS and suspended in buffer with 7AAD (Invitrogen)
to allow for live/dead cell discrimination. Cells were analyzed on a LSR Fortessa X-20 (BD Biosciences,
San Jose, CA, USA). Forward scatter, side scatter, and exclusion of 7AAD were used as parameters to
identify live cell populations. Data were evaluated using FCS Express software (6.06.0014, De Novo
Software, Glendale, CA, USA).

9. Additional Nuclear Hormones

While we have focused here on vitamins and sex hormones, additional nuclear hormones will
influence responses to vaccines and infectious pathogens. Prednisolone, a drug well known for its
inhibition of inflammatory responses caused by autoimmune disease, infection, or other forms of
tissue injury [101,102] binds a class I glucocorticoid receptor. The thyroid hormones bind class II
receptors that share one protein component (RXR) with vitamin A and vitamin D receptors, and
modulate both innate and adaptive immune activities [103]. Bidirectional communications between
endocrine and immune systems influence a variety of cells including monocytes, macrophages, and
lymphocytes [104]. Class III and IV receptors have also been described [56]. The composite of these
and other factors will contribute to the cross-talk described above, both within the nucleus and in
extra-nuclear compartments, to define immune responses toward pathogens and vaccines.

10. Conclusions

We have described the complex influences of nuclear hormones on the immune response and
complex interactions between nuclear hormones and the immunoglobulin heavy chain locus. Nuclear
hormone receptors bind elements throughout the mammalian genome, dictating a vast array of gene
functions. Nuclear hormones will affect the development, maturation, and trafficking of B cells, T cells,
and cells of the innate immune system [87,89,105]. Apart from the CSR described here, it is likely that
nuclear hormones also influence V-J/V-D-J joining, somatic mutation, and affinity maturation [106–108].
With these concepts in mind, we recommend that attention be paid to nuclear hormone levels among
vaccine study participants. Possibly, poor immunogenicity of candidate vaccines is sometimes due to
insufficiencies of the host, not just the vaccine product. By monitoring nuclear hormone levels among
study participants and including positive controls in clinical trials, we may better understand which
host populations are capable or incapable of healthy immune responses toward vaccines. A focus on
accurate analyses of study data and corrections of insufficiencies that exist in host populations may
then expedite the success of vaccine programs.
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Abbreviations

RSV respiratory syncytial virus
HIV human immunodeficiency virus
RAR retinoic acid receptor
RARE retinoic acid response element
VDR vitamin D receptor
ERα estrogen receptor α
ERE estrogen response element
ARE androgen response element
AID activation induced deaminase
CSR class switch recombination
3′RR 3′ regulatory region
ChIP chromatin immunoprecipitation
DBD DNA-binding domain
LBD ligand-binding domain
FCS fetal calf serum
NGS next-generation sequencing
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