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Abstract. The Saccharomyces cerevisiae a-factor 
receptor (STE3) is subject to two modes of endocyto- 
sis: a constitutive process that occurs in the absence of 
ligand and a regulated process that is triggered by 
binding of ligand. Both processes result in delivery of 
the receptor to the vacuole for degradation. Receptor 
mutants deleted for part of the COOH-terminal cyto- 
plasmic domain are disabled for constitutive, but not 
ligand-dependent internalization. Trans-acfing mutants 
that impair constitutive endocytosis have been isolated. 
One of these, renl-1, is blocked at a late step in the 
endocytic pathway, as receptor accumulates in a pre- 

vacuolar endosome-like compartment. REN1 is identi- 
cal to VPS2, a gene required for delivery of newly 
synthesized vacuolar enzymes to the vacuole. Based 
on this identity, we suggest a model in which the 
transport pathways to the vacuole-the endocytic path- 
way and the vacuolar biogenesis pathway-merge at an 
intermediate endocytic compartment. As receptor also 
accumulates at the surface of renl cells, receptor may 
recycle from the putative endosome to the surface, or 
REN1 may also be required to carry out an early step 
in endocytosis. 

NDOCYTOSIS of cell surface receptors plays a vital role 
in cell physiology. Endocytosis of some receptors, 
for example, the transferrin or LDL receptors, is the 

first step in the delivery of essential nutrients to the cell. En- 
docytosis of other receptors, particularly hormone recep- 
tors, serves to control receptor abundance and therefore the 
cell's sensitivity to hormone. Most receptor-mediated en- 
docytosis is thought to occur via clustering of receptors at 
clathrin-coated pits, which pinch off from the surface giving 
coated vesicles. Once internalized, receptor and ligand pass 
through early and late endosomal compartments. From these 
compartments the endocytic pathway branches, allowing ei- 
ther recycling back to the cell surface or delivery to the lyso- 
some for hydrolysis (for reviews see Goldstein et al., 1985; 
Schlessinger, 1988; Gruenberg and Howell, 1989; Kornfeld 
and Melman, 1989; Griffiths and Gruenberg, 1991; Pfeffer, 
1992). 

Many features of endocytosis, including the requirement 
for initial association with clathrin pits, vary among receptor 
types. Some receptors, for example the low-density lipopro- 
tein (LDL) ~ receptor, associate spontaneously with the pits 
and are internalized at a constant rate irrespective of their 
liganded state (Anderson et al., 1978). Other receptors, for 
example the EGF receptor, associate with clathrin pits only 
when bound by ligand, and thus it is the ligand binding event 

1. Abbrevian'ons used in this paper: ALP, alkaline phosphatase; CPY, car- 
boxypeptidase; DB, digestion buffer; LDL, low-density lipoprotein; SB, 
sample buffer; vps, vacuolar protein sorting. 

that triggers endocytosis (Schlessinger et al., 1978; Maxfield 
et al., 1978). Receptor types also have different destinies 
once internalized. LDL and its receptor dissociate in the 
early endosome. The receptor is then recycled to the surface 
while the ligand is delivered to the lysosome for hydrolysis 
(Basu et al., 1981). On the other hand, both EGF and its 
receptor are delivered to and degraded in the lysosome (Car- 
penter and Cohen, 1976). 

Although there is a sophisticated picture of the initial 
events of endocytosis and the subsequent membrane traffic, 
the mechanisms that underlie and regulate the processes are 
poorly understood. In particular, aside from clathrin and 
clathrin-associated proteins termed adaptins (Pearse and 
Robinson, 1984), which are involved in coated pit forma- 
tion, and rab proteins, a class of GTP-binding proteins some 
of which have been found associated with early and late en- 
dosomes (Chavrier et al., 1990; van der Slijs et al., 1991, 
1992; Bucci et al., 1992), the molecules that catalyze and 
control each step of the endocytic pathway are unknown. 
With the expectation that a genetic analysis would contribute 
to the identification of such molecules, we have investigated 
the internalization of the pheromone receptors of the yeast 
Saccharomyces cerevisiae and have begun to isolate mutants 
defective for internalization. Pheromone receptors enable 
cell-cell communication as a prelude to mating of the two 
haploid cell types, a and ot (Herskowitz, 1989). Each cell 
type secretes a unique peptide pheromone-a-factor by a 
cells and a-factor by ct cells-and expresses at its surface a 
receptor for the pheromone secreted by the other cell type. 
Binding of pheromone to its cognate receptor activates an in- 
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tracellular signal transduction pathway that leads to the phys- 
iological alterations that permit mating. 

The pheromone receptors are members of a large family 
of G protein-coupled receptors initially defined by the 
/~-adrenergic receptor and the rhodopsins (Dohlman et al., 
1991). Although receptors of this family often show little se- 
quence identity, they do share structural similarities. In par- 
ticular, they are characterized by an NH2-terminal domain 
with seven hydrophobic, presumably membrane-spanning 
segments followed by a hydrophilic COOH-terminal domain 
oriented toward the cytoplasm. In cases where it has been 
examined, deletion of the bulk of the COOH-terminal do- 
main does not interfere with ligand binding or G protein 
coupling, indicating that the seven transmembrane segment 
domain suffices for these functions. Deletion of the receptor 
COOH-terminal domain results in a heightened and pro- 
longed response to ligand, implying that this domain func- 
tions to attenuate receptor activity (Konopka et al., 1988; 
Reneke et al., 1988; Dohlman et al., 1991; C. Boone, N. 
Davis, and G. Sprague, manuscript submitted for publi- 
cation). 

Endocytosis of the seven transmembrane segment recep 
tor family has not been extensively studied. Treatment of an- 
imal cells with ~-adrenergic agonists results in a rapid loss 
of surface binding sites, implying that the receptor has been 
internalized (Benovic et al., 1988). Whether these receptors 
associate with clathrin pits has not been investigated. Studies 
with yeast have suggested that the a-factor receptor is also 
likely subject to endocytosis. First, treatment with a-factor 
results in the loss of surface binding sites (Jenness and 
Spatrick, 1986). Second, the a-factor ligand is internalized 
and degraded by a pathway that involves an intracellular 
vesicular compartment, perhaps an endosome (Jenness and 
Spatrick, 1986; Chvatchko et al., 1986; Singer and Riez- 
man, 1990). Because degradation of t~-factor requires vac- 
uolar protease activity, it is presumed that the ligand is deliv- 
ered to the vacuole, an organelle equivalent to the lysosome. 
Third, disruption of the yeast clathrin heavy chain gene 
(Payne and Schekman, 1985; Lemmon and Jones, 1987) 
reduces the rate of a-factor uptake (Payne et al., 1988). Re- 
cently several mutants that block either the uptake or degra- 
dation of u-factor have been isolated (Wichmann et al., 
1992; Raths et al., 1993). However, for neither wild-type 
ceils nor these endocytosis mutants has the fate of the recep- 
tor itself been investigated. 

In this paper we demonstrate endocytosis of the phero- 
mone receptors by examining the receptor protein directly. 
We focus on the a-factor receptor and measure its stability 
and location in the presence and absence of pheromone. We 
conclude that this receptor is subject to two apparently dis- 
crete modes of endocytosis, both of which deliver the protein 
to the vacuole for degradation. One mode is constitutive, oc- 
curnng in the absence of a-factor ligand, whereas the second 
mode is triggered by ligand. Receptor mutants deleted for 
part of the COOH-terminal domain are defective for consti- 
tutive endocytosis but normal for ligand-stimulated endocy- 
tosis. We also report the isolation of trans-acting mutations 
that block receptor endocytosis or subsequent steps in the 
endocytic pathway (ren mutations). Our characterization 
suggests that the wild-type REN1 product acts relatively late 
in the endocytic pathway, as internalized receptor accumu- 
lates in a prevacuolar endosome-like compartment in renl 

mutants. Based on the identity of renl with vps2, a class E 
vps mutant (defective in vacuolar protein sorting), we sug- 
gest a model in which the two transport pathways to the 
vacuole-endocytic transport and the transport of newly syn- 
thesized vacuolar enzymes-merge at an intermediate en- 
dosomal compartment before vacuolar delivery. 

Materials and Methods 

Plasmids 

pSL552 (Bender and Sprngue, 1986) has S'/E3 under the control of the 
GAL/promoter carded on YCp50. pSL1922 is the same as pSL552 except 
for the A365 mutation, a deletion of 310-bp extending from the STEal SalI 
site to the PstI site. In-frame fusion required addition ofa  12-bp SalI linker 
to the PstI end from which the 3' overhang had been removed by treatment 
with the Klenow fragment of DNA polymerase. This resulted in the inser- 
tion of an arginine codon between codon 365 and the two COOH-terminal 
STE3 codons. 

pSL2099 has the c-myc 9El0 epitope fused to the COOH terminus of 
GAL/-STE3, carded on the LEU2 CEN/ARS vector pRS315 (Sikorski and 
Hieter, 1989). 18 new codons, including the c-myc epitope (Evan et al., 
1985) were inserted in-frame at the STE3 Pstl site disrupting only the three 
final STE3 residues; the resulting COOH-terrnina125 residues of this fusion 
protein are now ENTGSKMEQKLISEEDLFLDRGP (protein sequence 
from STE3 is underlined). 

Strains 

SY1793 is a MATc~ mfa/A mfa2A derivative of Sc252 (Whiteway et al., 
1990), created by GAL-HO promoted mating type interconversion and two- 
step gene replacement at the MFA loci (Table I; Jensen and Herskowitz, 
1984; Rothstein, 1991). In addition, the pheromone-dependent FUS1 UAS 
replaced the HIS3 UAS at the HIS3 locus (Stevenson et al., 1992). The dele- 
tion endpoints of mfalA and mfa2A are the same as for previously reported 
disruption alleles, mfal::LEU2 and mfa2::UK43 (Michaelis and Her- 
skowitz, 1988). 

SY1817 is a ste3A derivative of SY1793 made by two-step gene replace- 
ment. This deletion removes the b-TE3 coding sequence and UAS, and ex- 
tends from an RsaI site 417 bp upstream of the AUG, to a Sacl site 111 bp 
downstream of the stop codon (Hagen et al., 1986). SY1884 is a pep4A 
derivative of SY1817 (Rothman et al., 1986). GAL/-bTE3 (SY2152) or 
GALI-STE3A365 (SY2132) were constructed by two-step gene replacement 
at the STE3 locus of SY1884. 

SY1369 is a Met + revertant of YYl152 (Clark et al., 1988). ste3A 
(SY1372), GALI-STE3 (SY1426) and GALI-STE3A365 (SYI610) alleles 
were inserted into the chromosome of SY1369 by one step replacement 
of ste3::URA3, selecting for Ura- derivatives with 5-fluoro-orotic acid 
(Boeke et al., 1984). SY1683 is a pep4A derivative of SY1372 (Rothman 
et al., 1986). SY1553 is a MA/h version of SY1426 made via an HO-induced 
mating type switch. SY1616 is a pep4::UK43 derivative of SY1426 made 
by one step gene replacement (Rothman et al., 1986). SY1498 is amata/  
derivative of SY1426 carrying XhoI linker insertion mutation 23 (Tatchell 
et al., 1981). 

ten/4 was isolated in a matad cell carrying the MATer plasmid pSL602 
(Bender and Sprague, 1986). Loss of pSL602 yielded SY1534. MATa 
(SY1560) and MA/h(SY1614) derivatives of SY1534 were created by HO- 
promoted mating type interconversion. SY1650 is a MATer ren/4 segregant 
derived from a backcross of SY1614 to SY1426. The GAL/-S/F_3 constructs 
in SY1426 and SY1560 were replaced with the natural S/E3 promoter by 
the two step method yielding SY1574 and SY1579, respectively. 

SY1675 is MA~ GA/d-S'/F,3 pep4::URA3 segregant from a cross be- 
tween SY1553 and SY1616. SY1744 and SY1745 are MATer STE3 
pep4::URA3 and MATa STE3 segregants of a cross between SY1574 and 
SY1675. 

The GA/_d-bqE3A365(c-myc) strain SY2559 was constructed by two step 
gene replacement at the bqE3 locus of SY1683. The C-terminus of STE3 
A365 construct (described for pSL1922) was tagged at its SalI site with the 
in-frame insertion of 18 new codons including the c-myc 9El0 epitope (Evan 
et al., 1985) between Asp 365 and Gly 469. The resulting C-terminal 25 
residues of this fusion protein are now YVDGSKMEQKLISEEDLF- 
LDRG_.PP (protein sequence from STE3 is underlined). 

SY1745 was made GAL/-STE2 via the two step method yielding SY1960; 
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for this SFE2 allele, a 326-bp GALI,IO UAS fragment substitutes for the 
360-bp HindlII fragment that includes the natural STE2 UAS. SY2029 is a 
MATa GALI-STE2 pep4::URA3 segregant of a cross between SY1744 and 
SY1960. SY2041 is a MA~ GALI-STE2 renl-I segregant of a cross between 
SY1579 and SY1960. 

Antisera 
Rabbit antiserum raised against TrpE-STE3 fusion protein (Clark et ai., 
1988) was affinity-purified using the fusion protein antigen coupled to 
CNBr-activated Sepharose 4B (Sigma Immunochemicals, St. Louis, MO; 
Roberts et al., 1991). This fusion has the COOH-terminai 183 residues of 
STE3. Another aliquot of this antiserum was affinity-purified using a TrpE- 
STE3A365 fusion. 

Rabbit antiserum against the STE2 protein was a generous gift from 
James Konopka (Konopka et ai., 1988). Affinity-purified alkaline phospha- 
tase (ALP) rabbit antiserum was generously provided by Chris Raymond 
(University of Oregon). Mouse mAb-1 reactive with the c-myc epitope was 
purchased from Oncugene Science Inc. (Manhasset, NY). 

Cell Labeling and Immune Precipitation 
Exponential cultures of cells (2 × 107/mi) growing at 30°C in sup- 
plemented minimal medium lacking methionine and cysteine were pulse- 
labeled for 10 rain with [35S]methionine (0.5 mCi/ml) and then chased 
with subsequent addition methionine and cysteine to 50 #g/ml. To prepare 
protein extracts, 250 #1 of the labeled cell culture was collected by centrifu- 
gation, suspended in 150 #1 digestion buffer (DB; 1.4 M sorbitol, 25 mM 
Tris/C1 pH 7.5, 10 mM sodium azide, 10 mM potassium fluoride, 2 mM 
MgCI) with 0.3 %/3-mercaptoethanol and oxaiyticase (Enzogenetics, Cor- 
vallis, OR) at 600 U/ml, and incubated at 30°C for 30 rain. Spheroplasts 
were pelleted, suspended in SDS-PAGE sample buffer (SB; 40 mM Tris/C1 
pH 6.8, 8 M urea, 0.1 mM EDTA, 1% ~3-mercaptoethanol) with 2.5% SDS, 
and then lysed at 100°C for 5 rain. Protein extract was diluted 20-fold into 
immune precipitation buffer (IP; 10 mM Tris/C1 pH 8.0, 0.1% Triton X-100, 
2 mM EDTA) with 0.5 mM PMSE 1 #g/ml leupeptin, 1 #g/nil pepstatin 
and 0.5% IgG-Sorb (The Enzyme Center, Maiden, MA). After 15 rain at 
0°C, IgGSorb was removed by centrifugation and STE3 antiserum was 
added to the supernatant at 1:200. After 1 h at 0°C, IgGSorb was added 
to 0.5 %. After 30 rain further incubation, immune complexes were washed 
four times with IP plus 0.1% SDS. Precipitated protein was eluted from the 
antibody-IgGSorb complex by suspension in SB with 5 % SDS and incuba- 
tion at 100°C for 5 rain. The protein was then subjected to SDS-PAGE. 

Immunoblots 

To prepare protein extracts for Western blotting, 1.5 x l0 s log-phase cells 
grown at 30°C were pelleted, immediately frozen on dry ice, and then 
stored at -70°C. Cell pellets were thawed by suspension in 100/~1 of SB 
with 5% SDS and transferred to a 1.5 ml microfuge tube containing an 80 
#1 volume of glass beads. After being vortexed for 10 min, samples were 
incubated at 37°C for 10 rain. 25 #1 of SDS-PAGE sample buffer was added, 
samples were vortexed for 2 rain, and then 10 #1 of the supernatant fraction 
from a 5-min microfuge spin was s u b j ~  to electrophoresis. Protein was 
transferred to nitrocellulose and treated with antibody. For STE3 detection, 
antiserum that had been affinity purified against the large TrpE-STE3 fu- 
sion was used at 1:10,000. For STE2, antiserum was used at 1:500 dilution. 
Primary antibodies were detected with an HRP-conjugated anti-rabbit IgG 
second antibody followed by the ECL chemiluminescent system (Amer- 
sham Corp., Arlington Heights, IL). 

Susceptibility to External Proteases 
At indicated times, 2 x 106 cells from a culture pulse labeled with 
[35S]methionine (as described above) were incubated for 20 rain at 0°C 
with an equal volume of ice-cold medium containing 20 mM potassium 
fluoride and 20 mM sodium azide. Cells were collected by centrifugation, 
suspended in 100 #1 DB with 0.5% /3-mercaptoethanol and incubated at 
37°C for 30 rain. One half of the sample was treated with protease, with 
addition of a one-quarter volume of 2,500 U/nil Pronase (in DB) for 60 rain 
at 37°C. The other half was processed identically in parallel except that no 
protease was added. Protease was removed via two washes of the pelleted 
cells with 200 #1 DB with 1 mM PMSE Cells were then treated as described 
above for spheroplasting, extract preparation, and immune precipitation of 
STE3. 

When Western analysis was used to assess susceptibility of receptor to 

external protease, the procedure was modified in several ways. For each 
timepoint, 3 x l0 s cells were collected and prepared as above except that 
they were incubated in 0.5 ml DB with 0.5% B-mercaptoethanol at 37°C 
for 30 min before protease treatment. Proteolysis was terminated with the 
addition of TCA to 17%, samples were frozen on dry ice and then further 
processed as described (Ohashi et al., 1982), except that the TCA-extracted 
protein was precipitated for 10 rain at 0°C, followed by a 10-rain microfuge 
spin at 4°C. The pellet was washed once with acetone, dessicated, and dis- 
solved at 70°C for 5 rain in 100 #l SDS-PAGE sample buffer, 10 #l of which 
was then subjected to SDS-PAGE and immunoblotting. 

As a control, accessibility of a cytoplasmic protein, phosphoglycerate ki- 
nase (PGK), was assessed with this protocol. No effects of protease treat- 
ment were observed. However, when Pronase was added subsequent to 
spheroplasting and treatment with 1% Triton X-100, PGK was found to be 
completely degraded. 

Cell cultures were treated with a-factor by addition of an equal volume 
of cell-free filtrate prepared from a saturated culture of EGI23 cells trans- 
formed with the a-factor overproduction plasmid pKKI6 (Kuchler et ai., 
1989). Mock a-factor preparations were obtained from the isogenic 
mfal::LEU2 mfa2::UR43 strain SM1229. 

Quantitation of Mating 
To qnantitate the mating efficiency of various MAT, strains after shut-off 
of receptor synthesis, 107 MATa cells (strain 227) were mixed either with 
2 x los MATt~ cells from a log phase YEPGaiactose (2%) culture or with 
2 × 106 cells from a YEPGaiactose culture to which 3% glucose had been 
added during the final 2 h of growth. The mating mixtures were collected 
on nitrocellulose filters, and the filters were placed on YEPGaiactose (2 %) 
plates or on YEPGlucose (2 %) plates. After 6 h at 30°C, the number of 
diploids was titered by suspending the cells and plating them on medium 
selective for diploids. Mating efficiency is expressed as the number of 
diploids divided by the total number of MATa cells present on control filters 
that did not contain the MATa mate. 

Isolation often Mutants 
Cultures from 12 colonies of mata/GAL/-STE3 strain SY1498 carrying the 
MAT, plasmid pSL602 were treated with either 5.0, 1.5, 0.5% or no ethyl 
methane sulfonate for 1 h as described (Moir et al., 1982). Cells were then 
plated on 2 % gaiactose minimal plates lacking uracil at a density of 3,000 
viable cells per plate. Colonies were replica-plated to minimal glucose (2 %) 
plates that had been spread with about 5 x 107 MATa cells (strain 227) in 
0.3 rod of YEPD. Colonies that gave a strong mating reaction were picked 
for further study. Cells mutagenized with 1.5% ethyl methane sulfonate 
yielded mutants at a frequency of "o10 -3. On the other hand, no mutants 
were found in a screen of 20,000 unmutagenized cells. 

From lO s colonies, 70 colonies that exhibited a strong mating reaction 
were picked. Of these, 45 mated when both growth and mating were done 
on glucose medium, a protocol that should preclude receptor synthesis. 
These wore presumed to be defective for glucose repression of the GAL pro- 
moter and were therefore discarded. To determine whether the remaining 
mutants carried dominant or recessive mutations, they were crossed to 
mata/strain SY1498, and the mating phenotype of the resulting diploids was 
assessed by the same protocol used in the original mutant screen. 12 
diploids showed strong mating and therefore the corresponding, mutants 
were presumed to carry dominant mutations. The other 13 mutants carried 
recessive mutations. 

Indirect Immunofluorescence 
Preparation of fixed, spheroplasted ceils for indirect immunofluorescence 
was carried out essentially as described (Roberts et ai., 1991), except that 
oxalyticase at a final concentration of 20 #g/ml was used for spheroplasting. 

For detection of the receptor with the STE3 antiserum, antibodies that 
had been affinity-purified against the truncated fusion protein TrpE-STE3 
A365 were used. These should react equally well with the STE3A365 recep- 
tor as they do with the wild-type protein. After incubation with the STE3 
antibodies, used at a 1:20 dilution, signal was further amplified through 
three subsequent incubations with secondary antibodies (purchased from 
Jackson ImmunoResearch Laboratories Inc., West Grove, PA) used at 2 
#g/nil: (a) goat anti-rabbit IgG; (b) rabbit anti-goat IgG; and (c) fluorescei- 
nated goat anti-rabbit IgG. Antibody incubations were 1 h at room temper- 
ature. 

For the double-staining of myc-tagged receptor and ALP, mouse mAb-I 
(Oncogene Science Inc.) was used at a dilution of 1:20, while the rabbit anti- 
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Table L Yeast Strains 

Strain Genotype Reference 

227 MATalysl Herskowitz lab strain 

EG123 MATa ura3 leu2 trpl can1 his4 Siliciano and Tatchell, 1984 
SM1229 isogenic to EG123, except mfal::LEU2 mfa2::URA3 Michaelis and Herskowitz, 1988 

YYl152 MATtx ste3::URA3 ura3 leu2 met14 ade2-1 °¢ adel Clark et al., 1988 
his6 trp l ~ 

SY1369 isogenic to YYl152, except Met + this work 
SY1372 MATct ste3A this work; A 
SY1426 MATct GAL1-STE3 this work; A 
SY1498 matal GAL1-STE3 this work; A 
SY1534 matal GAL1-STE3 renl-1 this work; A 
SY1553 MATa GAL1-STE3 this work; A 
SY1560 MATer GAL1-STE3 renl-1 this work; A 
SY1574 MATc~ STE3 this work; A 
SY1579 MATct STE3 renl-1 this work; A 
SY1610 MATc~ GAL1-STE3A365 this work; A 
SY1614 MATa GAL1-STE3 ten1-1 this work; A 
SY1616 MATc~ GAL1-STE3 pep4::URA3 this work; A 
SY1650 MATtx GAL1-STE3 renl-1 this work; A 
SY1653 MATc~ GAL1-STE3 renl-1 pep4::URA3 this work; A 
SY1675 MATa GAL1-STE3 pep4::URA3 this work; A 
SY1683 MATc~ ste3A pep4A this work; A 
SY1684 MATct GAL1-STE3A365 pep4::URA3 this work; A 
SY1744 MATa STE3 pep4::URA3 this work; A 
SY1960 MATa STE3 GAL1-STE2 this work; A 
SY2029 MATa STE3 GAL1-STE2 pep4: :URA3 this work; A 
SY2041 MATa STE3 GALI-STE2 renl-1 this work; A 
SY2559 MATtx GAL1-STE3A365(c-myc) pep4A this work; A 

Sc252 MATa ura3-52 leu2-3,112 adel Whiteway et al., 1990 
SY1793 isogenic to Sc252, except MATct FUS1-HIS3 mfalA this work 

mfa2A 
SY1817 MATc~ ste3A this work; B 
SY1884 MATc~ ste3A pep4A this work; B 
SY2132 MATct GAL1-STE3A365 pep4A this work; B 
SY2152 MATc~ GAL1-STE3 pep4A this work; B 

Strains designated "A" in the reference column are isogenic to SY1369, except as indicated. Strains designated "B ~ are isogenic to SY1793. 

ALP antiserum, which had previously been affinity purified and adsorbed 
against cells deleted for the ALP structural gene (pho8,~), was used at 1:10. 
Detection of the myc antibody involved addition of 5/~g/ml biotinylated goat 
anti-mouse, followed by 5/,g/ml fluoresceinated streptavidin. Visualization 
of the anti-ALP antibodies was achieved via addition of 5 #g/ml rhedamine- 
conjugated goat anti-rabbit secondary antibodies. 

Results 

Rapid, Ligand- independen t  Endocy tos i s  De l ivers  
the a-factor  R e c e p t o r  to the  Vacuole 

As noted in the introduction,  analysis of  the abundance  o f  

Figure 1. Turnover and sur- 
face accessibility of the 
a-factor receptor. (,4) A wild- 
type MATtx strain (SY1574) 
and its isogenic pep4::URA3 
derivative (SY1744) were la- 
beled for 10 min with 
[3SS]methionine as described 
in Materials and Methods. 
Samples were taken 2, 15, 30, 
and 60 rain after initiation of 
the chase, and then extracts 

were prepared and treated with STE3 antiserum. Immunoprecipitates were subjected to SDS-PAGE and STE3 was visualized by autoradiog- 
raphy. (B) MATtx pep4::URA3 cells (strain SY1744) were labeled for 10 min with [35S]methionine. Samples were taken 1, 10, 60, and 
90 min after initiation of the chase. Cells were digested with 1 mg/ml Pronase (+),  or mock digested with no protease ( - )  for 1 h at 
37°C. Extracts were prepared and treated as described above. The upper panel shows immune precipitated full-length STE3. The panel 
below shows an over-exposed portion of the same gel, with the arrow indicating the position of the 30-kD COOH-terminal STE3 digestion 
product. 
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Figure 2. Indirect immunofluorescence of the c-myc-tagged recep- 
tor. MATtx pep4::URA3 cells (SY1616) cells carrying a GAL/- 
STE3-myc construct (pSL2099) were grown for 4 h in the presence 
of 2 % galactose, and 3 % glucose was then added to repress further 
synthesis of the receptor. Samples to be prepared for microscopy 
were removed just prior to (0 h), and 2 h subsequent to the addition 
of glucose (2 h). Cells were fixed and prepared for immunofluores- 
cence as described in the Materials and Methods. Fixed cells were 
treated with two antibody preparations, the anti-myc mAb-I and 
affinity-purified polyclonal antiserum raised against the vacuolar 
membrane protein, ALP. As a control for background cross- 
reactivity of the anti-myc mAb, SY1653 cells transformed with the 
vector plasmid pRS315 were processed in parallel (no c-myc). The 
top panel shows a representative cell from each strain visualized 
by Nomarski microscopy. The middle panel shows the same cell 
stained with the anti-myc antibody. The bottom panel shows stain- 
ing with antibodies to vacuolar alkaline phosphatase. 

Figure 7. Immunofluorescent 
detection of the c-myc-tagged 
STE3 A365 receptor after 
treatment of cells with phero- 
mone. MATer GALI-STE3 
A365(c-myc) pep4A cells 
(SY'2559) were grown for 4 h 
in the presence of 2 % galac- 
tose, chased for 1.5 h with the 
addition of 3% glucose. Treat- 
ment with pheromone en- 
tailed the inclusion of a-factor 
during the glucose chase 
period. Cells were fixed and 
prepared for immunofluores- 
cence as described in 
Materials and Methods. Fixed 
cells were treated with two an- 

tibody preparations, the anti-myc inAbd and affinity-purified poly- 
clonal raised against the vacuolar membrane protein, ALP. The top 
panel shows a representative cell that has or has not been treated 
with a-factor visualized by Normarski microscopy. The middle 
panel shows the same cells stained with the anti-myc antibody. The 
bottom panel shows staining with the ALP-specific antibodies. 

surface binding sites suggests that the yeast a-factor receptor 
is subject to ligand-mediated endocytosis (Jermess and Spat- 
rick, 1986; Chvatchko et al., 1986). To analyze receptor fate 
directly in both the absence and presence of pheromone, we 
developed antibodies that recognize the COOH-terminal 
hydrophilic domain of  the a-factor receptor, STE3 (Clark et 
al., 1988). 

We first examined the stability of  STE3 protein in the ab- 
sence of  added a-factor in wild-type cells, as well as in 
pep4A cells, which are deficient for vacuolar protease activ- 
ity. STE3 protein was labeled with [35S]methionine in a 
pulse-chase protocol, immunoprecipitated from cell ex- 
tracts, and subjected to polyacrylamide gel electrophoresis. 
As shown in Fig. 1 A, STE3 was unstable in wild-type cells, 
exhibiting a half-life of  ,x, 20 min. In contrast, the receptor 
was extremely stable in the pep4A background, showing a 
half-life much greater than 2 h. Because of  the possibility 
that a culture of  a cells could contain low levels of  a-factor 
(for instance, due to rare mating type switches) we also ex- 
amined STE3 protein turnover in MATot PEP4 cells deleted 
for the a-factor structural genes MFAI and MFA2. In these 
cells, the kinetics of  STE3 turnover were identical to wild- 
type cells, indicating that turnover is indeed ligand indepen- 
dent (data not shown). 

The rapid rate of  receptor degradation and the dependence 
of  this degradation on vacuolar proteases suggests that newly 
synthesized receptor is delivered to the cell surface, but re- 
sides there only a short time before being internalized and 

Figure 10. Indirect immunofluorescence of the c-myc-tagged recep- 
tor in rerd cells. MATc~pep4::URA3 cells (SY1616) or MATc~ renl 
pep4::URA3 cells (SY1653) transformed with GALI-STE3-myc 
plasmid pSL2099 were grown for 4 h in the presence of 2 % galac- 
tose, 3% glucose was added, and growth continued for an addi- 
tional 30 min. Cells were fixed and prepared for immunofluores- 
cence as described in Materials and Methods. Fixed cells were 
treated with two antibody preparations, the anti-myc mAb-1 and 
affinity-purified polyclonal antiserum raised against the vacuolar 
membrane protein, ALP. As a control for background cross- 
reactivity of the anti-myc mAb, SY1653 cells transformed with the 
vector plasmid pRS315 were processed in parallel (no c-myc). The 
top panel shows a representative cell from each strain visualized 
by Nomarski microscopy. The middle panel shows the same cell 
stained with the anti-myc antibody. The bottom panel shows stain- 
ing with the ALP-specific antibodies. 
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delivered to the vacuole for degradation. As one test of this 
interpretation, we labeled receptor by a pulse-chase pro- 
tocol and measured its susceptibility to digestion when 
whole ceils were treated with exogenous protease (Trueheart 
and Fink, 1989). pep4A cells were used to preclude endoge- 
nous turnover of the receptor. As seen in Fig. 1 B, a small 
fraction of the STE3 protein, labeled during a 10-min 
[3sS]methionine pulse, was susceptible to protease after 1 
min of chase. This susceptibility is revealed both by a reduc- 
tion in the amount of full-length (48 kD) protein and by the 
appearance of a 30-kD digestion product. The mass of this 
product, coupled with its reactivity to the STE3 antiserum, 
implies that it corresponds to the seventh transmembrane 
segment and the COOH-terminal cytoplasmic domain. After 
10 rain of chase, •70% of the radio-labeled receptor is sus- 
ceptible to proteolysis by exogenous protease. We interpret 
these results to mean that only a small fraction of receptor 
synthesized during the 10-rain pulse has been delivered to 
the cell surface by 1 rain into the chase period but that the 
majority of the newly synthesized receptor is at the cell sur- 
face 10 min into the chase period. At longer chase times, the 
radio-labeled receptor is resistant to exogenous protease, 
suggesting that receptor that had been at the surface has been 
internalized (Fig. 1 B, 60- and 90-min timepoints). This in- 
ternalization requires energy metabolism, as receptor re- 
mains susceptible to protease if potassium fluoride and so- 
dium azide (10 mM each) are added 10 min into the chase 
period (data not shown). 

As a second test of the idea that cell surface receptor is 
subject to constitutive internalization and delivery to the 
vacuole by an endocytic pathway, we determined the location 
of receptor by indirect immunofluorescence microscopy. For 
this analysis, STE3 was tagged at the COOH terminus with 
the c-myc 9El0 epitope (Evan et al., 1985), which is recog- 
nized by a mouse mAb. The tagged receptor complemented 
ste3 mutations, and like wild-type STE3, showed rapid turn- 
over (data not shown). To facilitate detection of the receptor- 
derived immunofluorescence signal, the c-myc-tagged STE3 
was placed under the control of the inducible GAL/ pro- 
moter. Expression from the GAL/ promoter results in a 
10-20-fold over-production of the STE3 protein (data not 
shown), but this over-production caused no change either in 
the receptor's sorting to the surface or its subsequent inter- 
nalization. In particular, as shown below, STE3 protein ex- 
pressed from the GAL/ promoter showed rapid PEP4- 
dependent turnover (see Fig. 3). Moreover, the kinetics of 
receptor delivery to the surface and subsequent internaliza- 
tion as measured by protease susceptibility in GALI-STE3 
pep4A cells paralleled the kinetics shown in Fig. 1 B (data 
not shown). 

We examined the receptor's location both under conditions 
of continuous synthesis and 2 h subsequent to a glucose- 
mediated repression of new receptor synthesis (Fig. 2). The 
cells arepep4A so that receptor degradation is blocked. Un- 
der conditions of ongoing receptor synthesis, the receptor 
was found to locate to two distinct places-the cell surface 
and an internal compartment. This internal compartment is 
inferred to be the vacuole because the same compartment is 
stained by antibodies to the vacuolar membrane protein, 
ALP. Moreover, receptor staining overlays the vacuole, as 
defined by depressions seen by Nomarski microscopy (Fig. 

Figure 3. Turnover of the 
COOH-terminal Truncated 
Receptor. MATc~ ste3A cells 
(SYI817) carrying GAL/- 
STE3 (pSL552) or GAL/- 
STE3A365 (pSL1922) were 
grown to log phase on galac- 
tose medium. Receptor syn- 
thesis was shut off with the 
addition of 3 % glucose. Sam- 
pies were taken just before 

glucose addition and at 1 and 2 h after glucose addition. STE3 was 
visualized by Western analysis of extracts. Molecular weight stan- 
dards (in kilodaltons) are indicated at fight. 

2). 2 h subsequent to the shut-off of new receptor synthesis, 
no surface staining was evident. Rather, essentially all of the 
receptor-derived fluorescence signal was seen to overlay the 
vacuole. Loss of surface fluorescence likely reflects the inter- 
nalization of surface receptor and its delivery to the vacuole. 

As a further test of the conclusion that the a-factor recep- 
tor is routed to the vacuole via endocytosis from the cell sur- 
face, we examined the effect of the secl '~ mutation on recep- 
tor location. At the restrictive temperature, delivery of 
newly synthesized proteins to the surface is blocked in 
secl '~ ceils; surface-targeted proteins instead accumulate in 
secretory vesicles (Novick and Schekman, 1979). In con- 
trast, delivery of proteins whose primary destination is the 
vacuole proceeds normally in secl cells (Stevens et al., 
1982; Roberts et al., 1989). After temperature shift of MATot 
pep4A secl ~ cells, expression of a GAL/-driven c-myc-tagged 
STE3 protein was induced with galactose and receptor 
visualized by immunofluorescence. No vacuolar staining 
was seen (data not shown). Instead dispersed punctate cyto- 
plasmic staining was found often concentrated near the 
growing end of the cell (data not shown). Thus, delivery of 
receptor to the vacuole requires prior delivery to the cell 
surface. 

Receptor COOH-terminal Truncation Mutants Are 
Disabled for Constitutive Endocytosis 

Mammalian cell surface receptors that undergo constitutive, 

Figure 4. Susceptibility of the 
COOH-terminal truncated 
receptor to exogenous pro- 
tease. MATot pep4::URA3 
cells that were GALI-STE3 
(SY1616) or GALI-STE3A365 
(SY1684) were grown for 
2.5 h in the presence of 2 % 
galactose, 3% glucose was 
added, and growth continued 
for 2.5 h. Whole cells were 
digested with 1 mg/ml Pro- 
nase (+), or mock digested 
with no protease ( - )  for 1 h at 
37°C. Subsequently, extracts 
were prepared and subjected 
to Western analysis using 
STE3 antiserum. Molecular 
weight standards (in kilodal- 
tons) are indicated at right. 
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ligand-independent endocytosis have been found to have se- 
quences in their cytoplasmic domains that direct sequestra- 
tion into clathrin coated pits and subsequent internalization 
(Trowbridge, 1991). Receptor mutants deleted for these "en- 
docytosis signals" do not get internalized. To examine the 
role of STE3 protein's 187-residue COOH-terminal cytoplas- 
mic domain in receptor endocytosis, we constructed STE3 
mutants partially truncated for this domain. These mutants 
retain the ability to function in signal transduction as they 
fully complemented ste3A alleles. The receptor structural 
genes were placed under control of the inducible GAL/pro- 
moter and the ability of the mutant receptors to be internal- 
ized was evaluated by the same assays used above for wild- 
type receptor: PEP4-dependent turnover, accessibility to 
surface protease, and indirect immunofluorescence. 

To follow turnover, cells with either wild-type or mutant 
receptor GAL/constructs were grown on galactose, to allow 
expression, and then glucose was added to block further syn- 
thesis. At intervals, samples were withdrawn and STE3 
abundance was assessed by Western analysis of cell extracts. 
As with the radioactive pulse-chase experiment, wild-type 
STE3 was rapidly turned over (Fig. 3). STE3A433, missing 
the COOH-terminal 37 residues, showed a stability similar 
to wild-type receptor (data not shown). In contrast. 
STE3A399 and STE3A365, missing 71 and 105 residues, 
were very stable and showed no degradation two hours after 
the block to new synthesis (Fig. 3 and data not shown). The 
degradation of STE3 protein therefore requires a segment of 
the COOH-terminal domain. 

Accessibility of receptor to exogenous protease was as- 
sessed in pep4A cells having either the GALI-STE3 or the 
GALl-STE3A365 construct. Cells were grown in galactose 
for 2.5 h, glucose was added to halt further synthesis, and 
protease treatment was initiated after a 2.5-h incubation in 

the glucose medium. As seen previously with radiolabeled 
STE3 (Fig. 1 B), wild-type receptor accumulated in a pro- 
tease-resistant compartment (Fig. 4), presumably the vacu- 
ole. The protease susceptibility of STE3A365 protein was 
markedly different from wild-type STE3. Even 2.5 h after 
imposition of the glucose block to synthesis all truncated 
receptor was sensitive to external protease, as revealed by 
the disappearance of the 33-kD STE3A365 band and the ap- 
pearance of the 18-kD digestion product. 

Finally, by indirect immunofluorescence microscopy, the 
STE3A365 protein accumulated at the cell surface (Fig. 5), 
whereas wild-type receptor accumulated in the vacuole, as 
before (Fig. 2). The surface accumulation of STE3A365 
does not result from its overproduction from the GAL/pro- 
moter. When expressed from its natural promoter, STE3- 
A365 was stable and exclusively located at the cell surface 
(data not shown). We conclude that the STE3A365 receptor 
is not subject to constitutive endocytosis. 

Ligand-dependent Receptor Internalization 

The experiments described thus far establish that the a-factor 
receptor is internalized continuously in the absence of 
ligand. Does the receptor also exhibit ligand-induced en- 
docytosis? To answer this question we took advantage of 
STE3A365, which is disabled for constitutive endocytosis. 
Synthesis of receptor was induced by growth of GAL/- 
STE3A365pep4A cells in galactose for 90 min and receptor 
was allowed to accumulate at the cell surface during a 60- 
min glucose chase. The location of the receptor was evalu- 
ated by the extracellular protease assay at various times after 
addition of a-factor. In the absence of added a-factor, 
STE3A365 was susceptible to digestion by external protease 
(Fig. 6). In this experiment the cytoplasmic domain diges- 
tion product was run off the gel, so protease susceptibility 
is manifest only by the disappearance of the receptor protein. 
10 min after a-factor addition, a substantial portion of the 
receptor was resistant to protease, and after 90 min, the 
receptor protein was completely resistant to protease. We 
conclude that pheromone caused the receptor to be removed 
from the surface and delivered to an internal cellular com- 
partment. Thus, although STE3A365 is totally disabled for 
constitutive endocytosis, it remains capable of a phero- 
mone-dependent internalization. 

Figure 5. Indirect immunofluorescence of the COOH-terminal 
truncated receptor. MATer pep4A cells harboring either ste3A 
(SY1884), GALI-STE3 (SY2152), or GALI-STE3A365 (SY2132) at 
the chromosomal STE3 locus were grown for 5 h in the presence 
of 2 % galactose, 3 % glucose was added, and growth was continued 
for an additional hour. Cells were fixed and prepared for im- 
rnunofluorescence as described in Materials and Methods. The top 
panel shows a representative cell of each strain visualized by 
Nomarski microscopy. Cell surface depressions correspond to 
vacuoles. The panels below show the same cells under fluorescent 
conditions, stained with STE3 antiserum. 

Figure 6. Susceptibility of the 
COOH-terminal truncated re- 
ceptor to exogenous protease 
after treatment of cells with 
pheromone. MATt~ GA/d-STF_3 
A365 pep4A cells (SY2132) 
were grown for 1.5 h in the 
presence of 2% galactose, 
chased for 1 h with 3 % glu- 
cose, and then treated with 

pheromone or mock pheromone. At the times indicated, samples 
were removed and 10 mM sodium azide was added. Whole cells 
were then subjected to surface proteolysis with 1 mg/ml Pronase 
(+) for 1 h at 37°C or mock digested ( - )  with no protease. 
STE3A365 protein was visualized by Western analysis. 
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Correlated with the change in subcellular location, phero- 
mone also caused extensive covalent modification of the 
receptor protein, as seen in Fig. 6. Although we have not in- 
vestigated the nature of this modification, it is known that 
other members of this receptor family, including the a-factor 
receptor, show increased phosphorylation on the COOH- 
terminal domain in response to hormone (Reneke et al., 
1986; Dohlman et al., 1991). 

a-factor-dependent internalization was also followed by 
indirect immunofluorescence microscopy. For this experi- 
ment, the STE3A365 receptor was tagged at its COOH ter- 
minus with the c-myc 9El0 epitope (Evan et al., 1985) and 
placed under the control of the GAH promoter. These cells 
were cultured via the galactose-glucose protocol and then 
treated with a-factor or mock pheromone for 1.5 h. The 
mock-treated cells primarily showed surface staining (Fig. 
7). In contrast, after a-factor treatment no surface staining 
was evident. Instead all of the receptor-derived fluorescence 
signal was seen to be vacuolar, showing complete coinci- 
dence with the ALP-derived fluorescence and with the 
vacuolar depressions seen by Nomarski microscopy (Fig. 7). 

Constitutive and Ligand-dependent Endocytosis Are 
both G Protein-independent Processes 

The endocytic uptake of or-factor pheromone and the cor- 
related loss of surface binding sites was found to proceed 
upon pheromone challenge in MATa cells lacking the hetero- 
trimeric G protein (Jenness and Spatrick, 1986; Zanolari et 
al., 1992). To determine whether the constitutive or ligand- 
mediated endocytosis of the a-factor receptor requires the G 
protein, we expressed GALI-STE3 or GALI-STE3A365 re- 
ceptor constructs in diploid cells, which do not transcribe 
the G protein structural genes (Miyajima et al., 1987; Diet- 
zel and Kurjan, 1987; Whiteway et al., 1989). Both constitu- 
tive and ligand-dependent endocytosis proceeded with nor- 
mal kinetics (data not shown). This implies that the 
endocytic machinery recognizes the receptor proper, not a 
G protein/receptor complex. 

Genetic Screen for Transacting Mutants that Block 
Endocytic Turnover of STE3 Protein 

The different locations of wild-type STE3 and STE3A365 
proteins following the galactose to glucose pulse-chase pro- 
tocol might result in different mating capacities for strains 
carrying these constructs. We therefore compared the ability 
of GALI-STE3 and GALI-STE3A365 strains to mate under 
several conditions. When growth and mating were carried 
out on galactose medium, which allows continuous receptor 
synthesis, the strains mated equally well (Table II). However, 

when cells were grown on galactose but transferred to glu- 
cose medium 2 h before mating, GALl-YlE3A365 cells 
mated efficiently, but GAL/-STE3 ceils mated poorly (Table 
1I). The ability of the STE3A365 cells to mate appears to 
reflect the retention of receptor at the surface rather than 
simply the failure to degrade the receptor, as GAL/-STE3 
pep4A ceils mated poorly even though the receptor is stable 
(Table I). 

We took advantage of the mating difference of GALI-STE3 
and GALI-STE3A365 to isolate mutants disabled for recep- 
tor internalization. Mutagenized GAL/-STT,3 cells were 
screened for mutants that showed strong mating following 
glucose-mediated repression of new receptor synthesis, and 
25 mutant colonies were identified (see Materials and 
Methods). To determine whether the mutations were domi- 
nant or recessive, the mutants were mated to a mata/strain 
and the mating properties of the resulting odal- diploid 
assessed in the galactose/glucose protocol (note: odal- 
diploids mate as ot ceils; Kassir and Simchen, 1976). By this 
criterion 12 of the 25 mutants carded dominant mutations. 
Of these, four are likely chain termination mutations in STE3 
because immunoblotting revealed that they expressed trun- 
cated forms of STE3 protein. The other eight dominant mu- 
tations may be STE3 alleles that lead to more subtle altera- 
tions in STE3 or they may be mutant alleles of other genes. 

Analysis of  renl-1 Mutants 

The recessive mutations should identify trans-acting func- 
tions required for endocytosis. We chose a particularly 
strong example of this class for further study. This mutation 
segregated as a single gene uniinked to STE3. As the mutant 
is defective in receptor endocytosis (see below), the gene has 
been named REN1. We quantitated the mating of renl-1 cells 
in the galactose-glucose mating protocol used to isolate the 
mutant. As shown in Table II, renl-1 cells mated as well as 
GALI-STE3A365 cells. Northern blot analysis showed that 
renM does not affect the synthesis or stability of STE3 
mRNA. Moreover, glucose repression of GALI-STE3 
mRNA synthesis occurred with identical kinetics in wild- 
type and renl-1 cells (data not shown). We therefore consid- 
ered it likely that renM affected receptor endocytosis and 
tested the possibility directly. 

Table 11. Mating Capacity of Mutants Defective for 
Endocytosis or Turnover of STE3 Protein 

Efficiency of mating 

Strain Relevant genotype Gai-to-Gal Gal-to-Glu 

SY1426 GAL1-STE3 0.9 0.0003 
SY1610 GAL1-STE3A365 0.8 0.3 
SY1616 GAL1-STE3 pep4::URA3 0.9 0.001 

SY1650 GAL1-STE3 renl-1 0.9 0.3 

Figure 8. Turnover of the a-factor receptor in renl cells. (.4) Wild- 
type MATs GALI-STE3 cells (SY1426), renl-1 mutants (SY1650), 
andpep4::URA3 mutants (SY1616) were grown for 3 h in the pres- 
ence of 2 % galactose, 3 % glucose was added, and incubation was 
continued for several hours. Protein extracts were prepared from 
samples taken just before glucose addition and at 1 and 2 h after 
addition. STE3 was visualized by Western analysis. (B) To assess 
the steady state level of STE3 protein, extracts were prepared from 
exponential cultures of MATot ste3A cells (SY1372), wild-type 
MATt~ cells (SY1574), and MATot rerd-1 cells (SY1579). STE3 was 
visualized by Western analysis. 
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Figure 9. Susceptibility of the 
receptor in renl cells to exog- 
enous protease. The location 
of the receptor in three 
pep4::URA3 strains was as- 
sessed using surface prote- 
olysis. MATt~ GALI-STE3 
(SY1616), MATc~ GALI-STE3 
renl-1 (SY1653), and MATc~ 
GALI-STE3A365 (SY1684) 
cells were grown and treated 
as described in the legend to 
Fig. 3. An immunoblot of the 
resulting cell extracts is 
shown, using STE3 antiserum 
as probe. Note that the elec- 
trophoretic mobility of STE3 
protein from RENI + cells is 

slowed relative to its mobility when extracted from renl-1 cells. 
This mobility shift is most readily observed in pep4 cells and we 
therefore believe that it reflects a modification that occurs in the 
vacuole where the receptor accumulates. Molecular weight stan- 
dards (in kilodaltons) are indicated at right. 

renl-1 Slows STE3 Turnover 

We examined the turnover of wild-type STE3 protein in both 
REN1 ÷ and renl-1 cells using the galactose-glucose pulse- 
chase protocol. In wild-type cells, receptor turnover was 
rapid. In renl-1 cells, however, turnover was slowed con- 
siderably (Fig. 8 A). In separate pulse-chase experiments 
with [3~S]methionine, STE3 expressed from its own pro- 
rooter exhibited a half-life of '~90 rain in the renl-1 back- 
ground (data not shown), compared to 20 min in REN/+ 
cells (Fig. 1). Mutations that slow STE3 protein turnover 
should lead to steady state over-accumulation of the recep- 
tor. In keeping with this expectation, STE3 protein ex- 
pressed from its natural promoter was found to be more 
abundant in renl-1 cells than in wild-type cells (Fig. 8 B). 

The experiments described above established that consti- 
tutive turnover of wild-type STE3 is slowed in renl-1 mu- 
tants. Ligand-mediated turnover of STE3A365 was also 
slowed in renl-1 cells (data not shown). 

STE3 Protein o f  renl-1 Cells Is Susceptible To 
ExtraceUular Protease 

The mating and receptor turnover phenotypes of the renl-1 
mutant are very similar to those of cells expressing 
STE3A365 protein. We were therefore interested to compare 
the location of STE3 protein in renl-1 cells to its location in 
wild-type cells. We first used the extraceUular protease assay 
and the GAL/constructs to evaluate receptor location after 
a galactose to glucose pulse-chase protocol. As expected, 
protease caused essentially no diminution of the full-length 
wild-type STE3 protein expressed in wild-type cells, and 
only a small amount of released cytoplasmic tail digestion 
product was observed (Fig. 9). Under the same conditions, 
all of the STE3A365 protein was susceptible to the protease 
and was converted to its corresponding cytoplasmic domain 
digestion product. The result for ten1-1 cells is intermediate 
between these two extremes. In the renl-1 background, STE3 
protein was partially susceptible to the external protease, and 

a substantial amount of the cytoplasmic tail digestion prod- 
uct was seen (Fig. 9). However, in contrast to the results seen 
for STE3A365, a substantial fraction of total STE3 protein 
was resistant to protease. 

Internalized STE3 Is Extra-vacuolar in renl-1 Cells 

The experiments described above imply that constitutive en- 
docytosis may be impaired, but not completely blocked, in 
the renl-1 background; some receptor clearly is internalized 
by the mutant cells. To determine the location of this inter- 
nalized receptor we stained mutant and wild-type ceils with 
antibodies that recognize the myc-tagged STE3 protein and 
antibodies that recognize the vacuolar membrane protein, 
ALP. 30 min after glucose-mediated shut off of the myc- 
tagged GAL1-STE3 renl-1, but not REN1 ÷ cells, retained a 
significant amount of receptor at the cell surface (Fig. 10). 
Both genotypes also exhibited internal staining for receptor, 
but the pattern of staining was markedly different. In the 
REN1 + background, internalized receptor was vacuolar. 
Receptor staining showed complete colocalization with the 
immunofluorescent signal from the vacuolar marker protein 
ALP. Furthermore both signals coincided with vacuolar 
depressions seen by Nomarski microscopy. Most renl-1 
cells, on the other hand, showed little or no overlap of the 
two signals. Instead, bodies staining brightly for the receptor 
were often seen adjacent to the vacuole. Such bodies may 
represent an intermediate endocytic compartment through 
which the receptor normally passes on its way from surface 
to vacuole. 

Similar extra-vacuolar bodies have recently been de- 
scribed for a subset of mutants defective in vacuolar protein 
sorting, Class E vps mutants (Raymond et al., 1992). vps 
mutants were selected for their aberrant secretion to the cul- 
ture medium of the soluble vacuolar protease, carboxypepti- 
dase Y (CPY) (Bankaitis et al., 1986; Rothman and Stevens, 
1986). The Class E mutant subset secretes ~,40% of newly 
synthesized CPY. In addition, CPY that remains intracellu- 
lar occupies a novel compartment. By immunofluorescence 
microscopy, it is found to stain bodies located just adjacent 
to the vacuole. These structures also contain several other 
vacuolar membrane proteins whose vacuolar delivery is also 
presumably blocked (Raymond et al., 1992). 

Because of this morphological similarity of renl cells with 
Class E vps mutants, we asked if renl showed a vps sorting 
defect for CPY. Indeed, like the Class E vps mutants, renl-1 
cells were shown to secrete some CPY (data not shown). 

Figure 1L Turnover of the 
a-factor receptor. Wild-type 
MAYb (SY1960), ren/-1 
(SY2041), and pep4::URA3 
(SY2029) cells that carry 
GAL/-STE2 at the STE2 locus 
were grown for 3 h in the pres- 
ence of 2 % galactose, 3 % glu- 

cose was added, and growth continued for several hours. Protein 
extracts were prepared from samples taken just before glucose addi- 
tion, and at 1 and 2 h after glucose addition. STE2 was visualized 
by Western analysis using antisera generously provided by James 
Konopka. 
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Given that renl-I cells exhibit a weak vps- phenotype, we 
considered the possibility that renl-1 may be an allele of a 
known VPS gene. Complementation analysis of renl-1 with 
the complete set of vps mutants indicated an identity with 
vps2, a member of the Class E subset (Raymond et al., 
1992). 

Turnover of the t~-factor Receptor Is 
REN1- and PEP4-dependent 

To extend the analysis of receptor turnover, we examined the 
metabolism of the other pheromone receptor, the u-factor 
receptor (STE2), in a variety of genetic backgrounds using 
a GAL/-STE2 construct. Like STE3 protein, STE2 protein 
was degraded rapidly in wild-type cells during the glucose 
chase. The renl-1 mutation slowed this turnover, and pep4A 
blocked turnover altogether (Fig. 11). 

Discussion 

Pheromone Receptors Are Subject to Two 
Modes of Endocytosis 

Two distinct modes of endocytosis appear to operate on the 
yeast a-factor receptor: a constitutive, ligand-independent 
mechanism and a regulated, ligand-dependent mechanism. 
In both types of endocytosis the receptor traverses the same 
subcellular territory, moving from the cell surface to the 
vacuole where it is degraded. 

Three experimental observations established that the 
a-factor receptor is subject to endocytosis in the absence of 
ligand. First, pulse-chase experiments demonstrate that the 
receptor is an unstable protein whose degradation depends 
on vacuolar proteases. Second, using exogenous protease to 
measure the amount of receptor present at the cell surface, 
we found that newly synthesized a-factor receptor remains 
protease sensitive only for a short interval after its delivery 
to the surface, implying a rapid constitutive internalization. 
Finally, indirect immunofluorescence assays show that over 
the same time course the receptor accumulates in the vacu- 
ole. Together our results provide the following picture of the 
dynamics of receptor trafficking. Newly synthesized recep- 
tor is delivered via the secretory pathway to the cell surface 
where it resides only transiently, exhibiting a half-life of 

20 min. Receptor is then internalized and delivered to the 
vacuole where it is degraded. 

A second mode of endocytosis was recognized because of 
the properties of a-factor receptor mutants lacking half of the 
COOH-terminal cytoplasmic domain. These mutants fail to 
undergo constitutive endocytosis, suggesting that the STE3 
A365 and STE3A399 mutations delete "signals" on the recep- 
tor necessary to this process. For example, perhaps these 
signals are required for capture into clathrin-coated pits (see 
below). Despite the block to constitutive endocytosis, these 
mutant receptors are still subject to ligand-mediated endocy- 
tosis. Because the mutant receptors are defective for one 
mode of endocytosis but not the other, we suggest that there 
is at least one mechanistic step that distinguishes the two 
classes of endo~'ytosis. Another possibility is that the en- 
docytosis machinery recognizes a holistic feature of the 
COOH-terminal cytoplasmic domain, perhaps the extent of 
a posttranslational modification. In this view, the COOH- 
terminal receptor mutants after pheromone treatment would 

show the same extent of modification as wild-type receptor 
exhibits in the absence of pheromone. 

The a-factor receptor also exhibits both modes of endocy- 
tosis. By assays identical to those used to analyze the a-fac- 
tor receptor, we showed that the a-factor receptor is subject 
to rapid constitutive endocytosis. Previous studies implied 
that the a-factor receptor was also subject to ligand- 
mediated endocytosis. In particular, it was found that when 
cells were treated with pheromone, cell surface binding sites 
were lost rapidly (half-life ~o20 min) (Jermess and Spatrick, 
1986; Konopka et ai., 1988; Reneke et al., 1988), presum- 
ably reflecting endocytosis of the receptor. Although not the 
focus of these studies, the experiments also provided hints 
that the a-factor receptor undergoes constitutive endocyto- 
sis. In particular, a slow loss of a-factor binding sites was 
observed in the absence of ligand (surface half-life >2 h at 
25°C; about 45 min at 34°C). This rate differs considerably 
from the rapid turnover we observe for both pheromone 
receptors and likely reflects the different protocol used (their 
experiments were carried out in the presence of cyclohexi- 
mide at 25 or 340C). Nonetheless, it seems likely that the 
two experimental protocols reveal the same process, as 
t~-factor receptors deleted for part of the COOH-terminal cy- 
toplasmic domain were blocked for this slow constitutive 
loss of binding sites, but remained competent for the ligand- 
mediated loss (Konopka et ai., 1988). If this interpretation 
is correct, these data again imply that constitutive and 
ligand-mediated endocytosis may have a different mechanis- 
tic basis. 

The rapid constitutive endocytosis of the pheromone 
receptors is not likely due to bulk endocytosis of the plasma 
membrane. Rather, two observations imply that the capacity 
for constitutive endocytosis is specifically built in to these 
proteins. First, the COOH-terminally truncated receptors, 
STE3A365 and STE3A399 fail to undergo constitutive en- 
docytosis presumably because they lack requisite signals. 
Second, the plasma membrane ATPase is turned over very 
slowly, showing a half-life of >10 h (Benito et al., 1991). 

Possible Roles for Constitutive Endocytosis 

Constitutive endocytosis of the pheromone receptors seems 
at first glance to be an unproductive and unnecessary pro- 
cess. What purpose might it serve? Two possibilities are es- 
pecially appealing. First, receptor endocytosis may facilitate 
the switch in receptor type that must occur when yeast cells 
undergo mating-type interconversion. Most wild strains of 
yeast are homothailic and under certain conditions can 
change mating types as frequently as every cell division cy- 
cle. The change is effected by a switch in the genetic informa- 
tion present at the mating-type locus, which then directs the 
synthesis of the receptor and pheromone species appropriate 
for the new mating type. This rapid phenotypic conversion 
of mating type likely requires removal of old receptor be- 
cause cells that express both receptors axe defective for mat- 
ing (Bender and Sprague, 1989). Constitutive endocytosis 
provides a rapid means to achieve removal of old receptor. 

A second role for constitutive endocytosis may be in part- 
ner selection during the mating process, a and t~ cells sense 
the location of nearby potential mating partners, apparently 
by detecting a gradient of pheromone concentration (Jackson 
and Hartwell, 1990a,b). In response, they reorient cell 
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polarity and focus growth toward the partner. Newly synthe- 
sized receptor is therefore deposited at the region of the cell 
surface nearest the partner. The simultaneous removal of 
receptor from other surface sites by constitutive endocytosis 
would reinforce the emerging asymmetric receptor distribu- 
tion. Thus, constitutive endocytosis may be an important 
component of partner selection during the courtship phase 
of mating. In keeping with this possibility, strains expressing 
COOH-terminal truncated receptors are impaired for part- 
ner selection (Jackson and Hartwell, 1990a; C. Boone, N. 
Davis, and G. Sprague, unpublished results). 

In principle, constitutive endocytosis could also serve as 
a means to set the cell's level of sensitivity to pheromone. 
COOH-terminal truncated receptors are defective for consti- 
tutive endocytosis and also confer increased sensitivity to 
pheromone (Konopka et al., 1988; Reneke et al., 1988; C. 
Boone, N. Davis and G. Sprague, unpublished results). 
However, we infer that the correspondence of these two 
receptor properties is fortuitous because renl mutants, 
which are impaired for constitutive endocytosis of wild-type 
receptor, do not show increased sensitivity to pheromone 
(N. Davis and G. Sprague, unpublished results). Thus, it 
seems unlikely that constitutive endocytosis plays a major 
role in determining sensitivity to pheromone. 

Functions Required for Endocytosis 
To begin to identify gene products required for endocytosis 
we developed a screen to isolate mutants defective for the 
process. The screen uses a simple mating assay to reveal mu- 
tants that retain functional receptor at the surface after a shut 
off of new receptor synthesis. In principle, mutants may be 
blocked either at the initial stages of endocytosis or at any 
stage from which endocytic vesicles can recycle to the sur- 
face. In this context, it should be noted that receptors located 
in the vacuole cannot be recycled to the surface. This conclu- 
sion follows from the observation that pep4 mutants, which 
accumulate rec, eptor in the vacuole, cannot mate in the assay 
(Table II). Thus, the mutant isolation scheme will not reveal 
functions that are simply required for vacuolar proteolytic 
activity. The scheme requires that the mutants be defective 
for constitutive endocytosis, but they may also be defective 
for ligand-mediated endocytosis if the two processes share 
common steps. 

Analysis of one mutant strain revealed that constitutive en- 
docytosis is indeed altered. In this renl strain, receptor ac- 
cumulates in two locations-at the cell surface and in an in- 
tracellular compartment that lies near the vacuole. We 
suggest that this compartment represents a yeast endosome. 
The ten/ defect apparently blocks traffic from the putative 
endosome to the vacuole. In animal cells, the endosome 
serves a crossroads where the fate of internalized material 
is decided-whether to continue on to the lysosome for 
degradation or to exit the pathway, as many receptors do, and 
recycle back to the cell surface. If recycling occurs in yeast, 
then the accumulation of receptor at the surface of ten~ mu- 
tant cells could be a secondary result ofa ren/-imposed block 
to vacuolar delivery. Receptor that accumulates in the endo- 
some may be free to recycle back to the surface via an exist- 
ing recycling pathway. Alternatively, the accumulation of 
receptor at the surface may indicate that REM has a direct 
role in receptor internalization. Although our analysis of the 
ren/-1 mutant has focused on constitutive endocytosis, the 

observation that ligand mediated turnover of receptor 
(STE3A365) is slowed in renl-1 cells indicates that REN1 is 
also required for ligand mediated endocytosis. 

The finding that REAr/is identical to VPS2 implies that this 
gene is required for proper function of two modes of trans- 
port to the vacuole-transport of proteins internalized by en- 
docytosis and the transport of newly synthesized vacuolar 
enzymes. One possibility is that these two pathways converge 
at a point before delivery to the vacuole and that REN1/VPS2 
is required to carry out a step after the convergence. Indeed, 
in animal cells, a similar convergence of lysosome biogenic 
and endocytic pathways has been established (Griffiths et al., 
1988). In keeping with this possibility, Class E vps mutants, 
including vps2, accumulate a novel organelle that contains 
a number of newly synthesized proteins normally destined 
for vacuolar delivery: CPY, the vacuolar ATPase, and di- 
amino-dipeptidyl peptidase B (Raymond et al., 1992). (We 
note, however, that not all vacuolar proteins-in particular 
ALP-are  impaired for delivery to the vacuole; for discus- 
sion see Raymond et al., 1992.) These organelles are likely 
identical to those containing internalized a-factor receptor 
that we observe in the ren/mutants. Proof of this will await 
double-stained immunofluorescence showing colocalization 
of endocytosed receptor and vacuolar proteins within these 
presumptive endosomes. 

Although not identified by our small collection of Ren- 
mutants, clathrin appears to be a second function required 
for constitutive endocytosis. As noted in the introduction, 
disruption of the clathrin heavy chain gene leads to a reduc- 
tion in the rate of a-factor uptake (Payne et al., 1988). 
Moreover, we find that a temperature-sensitive mutation in 
this gene leads to a reduction both in the rate of or-factor up- 
take and in the constitutive internalization of the a-factor 
receptor upon shift to nonpermissive temperature (E Tan, 
N. Davis, G. Sprague, and G. Payne, unpublished results). 
The rapid onset of these phenotypes after temperature shift 
implies a direct role for clathrin in the endocytosis of the 
yeast pheromone receptors. 

Recently, three newly identified genes have been suggested 
to have a role in the endocytosis of the yeast pheromone 
receptors (Wichmann et al., 1992; Raths et al., 1993). Mu- 
tation of these genes results in a defect in the uptake and/or 
degradation of the or-factor pheromone, end3 and end4 mu- 
tant cells display surface binding sites for a-factor phero- 
mone but are defective for pheromone uptake, implying that 
they are defective for the initial step of receptor internaliza- 
tion from the surface (Raths et al., 1993). On the other hand, 
the yeast YPT7gene, isolated by virtue of homology to Rab7, 
which encodes a late endosome-associated GTP-binding 
protein in animal cells, may control a later step in the endo- 
cytic pathway. Disruption of YPT7 blocks a-factor degrada- 
tion, but not the initial uptake of pheromone by the mutant 
cells (Wichmann et al., 1992). However, the defect in a-fac- 
tor degradation associated with ypt7 mutants may not be due 
to impaired endocytic transport. Instead, it may reflect im- 
paired vacuolar function. Indeed, ypt7 mutant cells show a 
generalized defect in the processing of vacuolar zymogens as 
well as a grossly disrupted vacuolar morphology (Wichmann 
et al., 1992). 

Our analysis of the endocytosis of the yeast pheromone 
receptors has begun to define discrete steps in a pathway for 
receptor transport connecting the cell surface to the vacuole. 

Davis et al. Receptor Endocytosis in Yeast 63 



The finding that the endocytic and vacuolar biogenic path- 
ways likely converge in yeast, just as they do in animal cells, 
coupled with the involvement of clathrin and the possible in- 
volvement of Rab proteins in both the yeast and animal cell 
processes (Chavrier et al., 1990; van der Slijs et al., 1991, 
1992; Bucci et al., 1992; Wichmann et al., 1992), implies 
that many functions required for endocytosis in yeast will 
have animal cell counterparts. Analysis of additional Ren- 
mutants should identify such functions. 
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