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Abstract 
 
To discern speech or appreciate music, the human auditory system detects how pitch increases or 
decreases over time. However, the algorithms used to detect changes in pitch, or pitch motion, 
are incompletely understood. Here, using psychophysics, computational modeling, functional 
neuroimaging, and analysis of recorded speech, we ask if humans detect pitch motion using 
computations analogous to those used by the visual system. We adapted stimuli from studies of 
vision to create novel auditory correlated noise stimuli that elicited robust pitch motion percepts. 
Crucially, these stimuli possess no persistent features across frequency or time, but do possess 
positive or negative local spectrotemporal correlations in intensity. In psychophysical 
experiments, we found clear evidence that humans judge pitch direction based on both positive 
and negative spectrotemporal correlations. The observed sensitivity to negative correlations is a 
direct analogue of illusory “reverse-phi” motion in vision, and thus constitutes a new auditory 
illusion. Our behavioral results and computational modeling led us to hypothesize that human 
auditory processing employs pitch direction opponency. fMRI measurements in auditory cortex 
supported this hypothesis. To link our psychophysical findings to real-world pitch perception, we 
analyzed recordings of English and Mandarin speech and discovered that pitch direction was 
robustly signaled by the same positive and negative spectrotemporal correlations used in our 
psychophysical tests, suggesting that sensitivity to both positive and negative correlations 
confers ecological benefits. Overall, this work reveals that motion detection algorithms sensitive 
to local correlations are deployed by the central nervous system across disparate modalities 
(vision and audition) and dimensions (space and frequency). 
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Introduction 1 
 2 
From discriminating phonemes to being moved by Bach’s Partitas, detecting changes in pitch 3 
over time, or pitch motion, is fundamental to human audition. Indeed, in everyday speech we use 4 
both intonation and lexical tones — including complex rising and falling pitches — to signify 5 
meaning (1-3). In English, for instance, rising pitch at the end of a sentence signifies a question. 6 
In Mandarin Chinese, changes of pitch within words conveys fundamental differences in 7 
meaning. But how does the human auditory system detect changes in pitch?  8 
 9 
Changes in pitch can, in principle, be detected in at least two ways. First, listeners could identify 10 
an auditory “object” corresponding to the pattern of frequencies made by a voice or any other 11 
sound source (e.g., a friend’s speech, a violin, etc.). If at the next instant in time the object 12 
moved to higher frequencies, listeners would infer a rising pitch, or the opposite if the object 13 
moved to lower frequencies (Fig. 1A). By identifying and tracking auditory objects, listeners can 14 
perceive changes in the object’s pitch over time. In vision, humans use this “feature tracking” 15 
approach as one mechanism for detecting motion (4).  16 
 17 
An alternative method for detecting changes in pitch would be to compute local correlations in 18 
sound volume over time at nearby frequencies. These local correlations would enable listeners to 19 
infer whether pitches are rising or falling without the added burden of first identifying auditory 20 
objects. Methods like these are the basis of canonical models for spatial motion detection in 21 
vision (5, 6). They can be dramatically revealed by visual illusions involving negative 22 
correlations, including “reverse phi” phenomena (5-7). Thus, at least in vision, humans use both 23 
object-tracking and intensity correlations to detect motion in the environment (8, 9).  24 
 25 
Object tracking is a plausible method for detecting changes in pitch. Humans are clearly adept at 26 
identifying and tracking auditory objects: In the well-known “cocktail party” effect, guests at a 27 
noisy party can pick out and track a single voice in a sea of other voices (10-12). More generally, 28 
listeners can group nearby frequencies into auditory objects, which strongly influences the 29 
perception of rising and falling pitch (13). Likewise, the perception of continuity with rising and 30 
falling tones is also consistent with tracking auditory objects (14), and psychophysical studies of 31 
frequency change detection have tended to use isolated frequencies or persistent sound spectra in 32 
which auditory object tracking is possible (15-18). Studies also show that pitch change 33 
discrimination can occur over seconds, suggestive of object tracking (19).  34 
 35 
What are the neural correlates of detecting rising and falling tones? Neurophysiological studies 36 
have shown that both subcortical neurons (20, 21) and cortical neurons (22, 23), including in 37 
primates (24), respond selectively to rising or falling tones in a narrow range of frequencies. 38 
They achieve this selectivity by nonlinearly combining different frequency inputs at different 39 
delays. Moreover, studies of many cortical auditory neurons have characterized complex 40 
spectrotemporal receptive fields, which show how responses depend on different frequencies 41 
over time (25, 26). Thus, although neural responses to auditory stimuli with local 42 
spectrotemporal correlations have not been measured to date, neurons with appropriate 43 
spectrotemporal tuning could detect such correlations. Neurons that detect rising or falling tones 44 
could in principle support algorithms that detect pitch motion by object tracking but could also, 45 
crucially, support those that work by sensing spectrotemporal correlations. It thus remains 46 
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unclear whether the human auditory system can use spectrotemporal correlations to perceive 47 
directed changes in pitch. In this study, we hypothesize that detecting local spectrotemporal 48 
correlations is a fundamental computation of the human auditory system.  49 
 50 
Results 51 
 52 
Spectral motion without features 53 
 54 
We set out to test whether humans can detect auditory motion based on local spectrotemporal 55 
correlations. To do this, we adapted a stimulus used to study visual motion detection (27, 28) to 56 
develop new correlated noise auditory stimuli that use increments and decrements in volume to 57 
generate local correlations in volume at specific offsets in frequency and time (see Methods). 58 
We designed four stimuli with positive or negative correlations in volume at an offset of 1/6 59 
second, with the frequency directed either upward or downward by 1/15 octave (Fig. 1B, S1). 60 
These sounds were inharmonic, so that fundamental frequencies could not be used to judge pitch 61 
changes (29, 30). We presented these stimuli to participants for 2 seconds and asked them to 62 
report whether they perceived the sound as having a rising or falling pitch profile over time. 63 
 64 
Participants reported that upward-directed positive correlations rose in pitch over time, while 65 
those with downward directed positive correlations fell in pitch over time (Fig. 1C, Supp. Movie 66 
1). This psychophysical result demonstrates that humans can identify rising or falling pitch based 67 
on local correlations alone, without persistent auditory objects.  68 
 69 
Remarkably, when we presented stimuli with negative correlations in frequency and time, 70 
participants reported the opposite percepts (Fig. 1C, Supp. Movies 1 and 2). That is, the 71 
upward-directed negative correlations sounded like they were falling in pitch, while the 72 
downward directed negative correlations sounded like they were rising in pitch. Participants who 73 
consistently perceived rising or falling pitch in the stimuli with positive correlations also 74 
consistently perceived rising or falling pitch in the stimuli with negative correlations (Figure 75 
S1). This striking illusion demonstrates that humans are sensitive not just to positive 76 
spectrotemporal correlations, but to negative ones as well. This result is a direct analog to 77 
illusory reverse-phi visual motion percepts, which have been reported across many species and 78 
phyla (5, 7, 31-33).  79 
 80 
How does the strength of these spectrotemporal correlations relate to perception? To answer this 81 
question, we varied the coherence of the stimulus and again asked participants to judge whether 82 
tones were rising or falling in pitch (Fig. 1D). We titrated the coherence of the stimuli from 1 to 83 
0 by randomly replacing correlated time-frequency elements with random ones, such that the 84 
coherence represented the fraction of original correlations remaining (see Methods). With high 85 
coherence, participants perceived rising and falling pitches in a pattern similar to the first 86 
experiment (Fig. 1C). As coherence decreased, however, the probability of judging a sound as 87 
rising tended towards chance (0.5). There were no significant differences between the curves for 88 
(↑ +) and (↓ -) or (↓ +) and (↑ -) (p > 0.05 for each, as measured by a two-way, repeated 89 
measures ANOVA), meaning that inverting the stimulus correlation and direction led to 90 
indistinguishable percepts. These results reveal a clear monotonic relationship between the 91 
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strength of spectrotemporal correlations and the strength of pitch change percepts, both for 92 
positive and for negative correlations. 93 
 94 
In vision, object tracking can integrate information between the two eyes, while correlation 95 
based algorithms rely on correlations within each eye (9). We next asked if spectrotemporal 96 
correlations for pitch motion detection are computed monaurally or binaurally. The structure of 97 
our correlated noise stimulus is created by summing a random binary mask with itself at a 98 
frequency-time offset (Fig. 1E, Methods). This allowed us to play one binary mask to the left 99 
ear and a shifted one to the right ear, so that neither ear alone would be presented with any 100 
correlations. In this context, detecting spectrotemporal correlations can only proceed by 101 
integrating information across the two ears. We played all four types of binaural correlations to 102 
participants and asked them to judge whether they heard rising or falling sounds. They reported 103 
the same pattern of percepts as in the monaural stimuli, though with average reported directions 104 
somewhat closer to chance. This demonstrates that the perception of rising or falling pitch can 105 
use information from both ears to integrate volume information to compute spectrotemporal 106 
correlations. This is consistent with data showing that many cortical auditory neurons integrate 107 
signals from both ears (34). 108 
 109 
Tuning of human spectrotemporal correlation detectors 110 
 111 
Our next step was to characterize the spectral and temporal tuning of the correlation sensitivity 112 
we had observed. To do this, we designed a different kind of stimulus, one inspired by random 113 
dot kinetograms in visual neuroscience (35). In these stimuli, a medium intensity sound that 114 
played at all frequencies was interrupted by brief pips at different frequencies, 50 ms in duration 115 
(24). These pips either increased the volume of a specific frequency or decreased it to zero (Fig. 116 
2A, see Methods). After an initial set of pips were placed randomly in frequency and time, we 117 
added a second set of pips with a specific delay in time and change in frequency, yielding 118 
correlated pip pairs. These pairs had positive correlations when both pips were loud or both were 119 
silent, and negative correlations when one was loud and one was silent. This allowed us to create 120 
auditory stimuli with upward and downward-directed pairs of pips with positive or negative 121 
correlations (Fig. 2B). Like the stimuli used in Fig. 1, these stimuli had no auditory objects that 122 
persisted in time or frequency, but crucially, they allowed us to vary the delay continuously 123 
between correlated pips. 124 
 125 
We first used these stimuli to map out the sensitivity to different delays between individuated 126 
tones. We kept the frequency change at 1/15 octave and swept values of the delay between 127 
correlated pips while asking participants to judge whether the pitch was rising or falling over 128 
time (Fig. 2C). For both negative and positive correlations and upward and downward-directed 129 
displacements, we found that peak directional sensitivity occurred at a delay of around 40 ms. 130 
This peak did not change appreciably when the pip duration was shortened to 20 ms (Fig. S2). 131 
According to models for visual motion estimation, this peak sensitivity value reflects the typical 132 
relative delays in the circuits detecting local motion signals (27). The delay seen here is on a 133 
similar timescale, though is slightly longer than delays measured by similar experiments in 134 
human and fly visual systems (27, 36).  135 
 136 
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We then measured sensitivity to the magnitude of displacements in frequency space. Using a 137 
similar method, we set the delay to 40 ms and varied the frequency displacement within a pip 138 
pair (Fig. 2D). We found that peak sensitivity occurred for tone displacements of 1/15th octave, 139 
though there was still significant direction-selectivity at 2/15th octave displacements (p < 0.05 140 
for both positive and negative correlations by a paired t-test). This result shows that correlation-141 
based motion detectors in the human auditory system are most sensitive to small shifts in 142 
frequency in the vicinity of 1/15th of an octave (4.7% changes in frequency) or less. This result 143 
is consistent with peak sensitivity for changes in complex sounds (37) and with the smaller 144 
values of frequency discrimination thresholds in humans (15). 145 
 146 
Sensitivity to spectrotemporal volume patterns 147 
 148 
Our positive and negative correlation stimuli each consist of multiple patterns in volume over 149 
frequency and time. Upward-directed positive correlation (↑ +) stimuli consist of both loud-loud 150 
and soft-soft combinations, whereas the negative versions (↑ –) consist of both loud-soft and 151 
soft-loud combinations. Prior work using long-lasting spectrotemporal correlations in auditory 152 
stimuli has suggested that humans are selectively sensitive to loud-loud combinations (38). Are 153 
humans sensitive to all four pairwise combinations, or to just a subset of them? To address this 154 
question, we generated new correlated pip auditory stimuli (Fig. 3A) where each stimulus had 155 
paired pips of only one of the four types: loud-loud, soft-soft, loud-soft, or soft-loud (see 156 
Methods). We asked participants to judge whether these different stimuli were rising or falling 157 
and recorded their responses (Fig. 3B). Participants were sensitive to all four different pairings 158 
with both upward and downward displacements.  159 
 160 
In visual motion detection, one generalization beyond pairwise correlations involves so-called 161 
triplet correlations (39, 40). In vision, triplet correlations are patterns that contain spatiotemporal 162 
correlations over three points in space and time, but no pairwise correlations, and can elicit 163 
visual motion percepts in humans (39, 41), flies (41, 42), and fish (43). Visual motion detection 164 
algorithms are sensitive to this higher-order correlative structure, but is the same true in 165 
audition?  When participants were presented with auditory analogs of visual triplet correlation 166 
stimuli (see Methods), they did indeed perceived auditory motion (Figure S3) and did so in a 167 
pattern much like that found in fly and fish visual perception. This correspondence across both 168 
species and modalities points to significant similarities in the neural algorithms used by animals 169 
in processing auditory and visual motion. 170 
 171 
Psychophysical and cortical signatures of opponent subtraction of spectral motion signals 172 
 173 
When we presented positively and negatively correlated stimuli, we observed a striking 174 
symmetry: Tuning of negative correlation percepts matched the tuning of positive correlation 175 
percepts, but in the opposite direction (Fig. 2). This clear symmetry is highly suggestive of an 176 
opponent architecture. To investigate this, we first built a simple motion energy model unit to 177 
describe a hypothetical directionally tuned auditory neuron (Fig. 4A). The model unit filtered 178 
sound intensity linearly over frequency and time in a pattern that enhanced upward-directed 179 
spectral motion, similar to prior suggestions (44), before sending the signal through a quadratic 180 
nonlinearity (6). When we presented this model with correlated pip stimuli (Fig. 2), it responded 181 
at an elevated baseline level but with deviations that depended on the direction and sign of the 182 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 3, 2024. ; https://doi.org/10.1101/2024.08.03.606481doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.03.606481
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 
 

stimulus correlation (Fig. 4B). As designed, it responded more to upward-directed positive 183 
correlations than to downward-directed ones. Since this model relies solely on pairwise 184 
correlations, it was also expected that negative correlation stimuli elicited equal and opposite 185 
deviations to positive correlation stimuli. Crucially, however, in this model, negatively correlated 186 
stimuli exhibit a different tuning from oppositely directed positive stimuli; that is, inverting the 187 
correlation is not equivalent to inverting the direction (i.e., the temporal delay). 188 
 189 
We next created an opponent signal by subtracting signals from two model units with opposite 190 
directional tuning (Fig. 4C). This opponent signal responded to positively correlated stimuli with 191 
positive and negative values when they were directed upward and downward (Fig. 4C, green). 192 
Critically, this opponent signal has an important symmetry: Responses to negatively correlated 193 
stimuli have the same tuning as positively correlated stimuli in the opposite direction. Thus, 194 
upward-directed negative correlation stimuli yield the same responses as downward-directed 195 
positive correlation stimuli. We also derived this result analytically (see Methods): When 196 
motion energy signals are opponently subtracted, negative correlation stimuli elicit mean 197 
responses that match oppositely directed positive correlation stimuli. 198 
 199 
To demonstrate that our data contained this symmetry, we compared percepts of negative 200 
correlation stimuli to percepts of positive correlation stimuli in the opposite direction, for both 201 
frequency change and delay time tuning (Fig. 4D, E, replotting data from Fig. 2). The curves 202 
appeared to fully superimpose. ANOVA tests confirmed that there was no measurable difference 203 
between the positive correlation curves and the flipped negative correlation curves (see figure 204 
legends for statistics). This robust symmetry between positive and negative correlation stimuli 205 
has also been found in visual motion detection in fruit flies (27) and in humans (36). 206 
 207 
In primate vision, opponent subtraction occurs in visual area V5, also called MT (45, 46), which 208 
has been shown to be causally involved in visual motion percepts (47). Similarly, flies also 209 
subtract visual motion signals with opposing preferred directions (48). Motivated by our 210 
psychophysical results, analogies with vision, proposals for opponent subtraction to determine 211 
spectral direction (16), and by spectral direction opponent auditory cells found in bats (49), we 212 
reasoned that human auditory cortex might possess signatures of opponent processing.  213 
 214 
We followed the logic of previous functional magnetic resonance imaging (fMRI) studies that 215 
identified opponent signals in human cortical area MT and used visual stimuli that summed 216 
motion in opposite directions (50). To start, we assume that cortical voxels involved in detecting 217 
spectral motion contain units that respond preferentially to rising tones and units that respond 218 
preferentially to falling tones, but none that respond to both (Fig. 4F) (51). Such a voxel should 219 
thus respond reliably to stimuli containing either rising or falling tones. The key distinction 220 
between a system with or without opponency lies in its response to a summed stimulus that 221 
contains superimposed rising and falling tones: If units are opponent, then the summed stimulus 222 
should cause a decrease in voxel activity due to a net suppression of signals in units with 223 
opponent responses (50). We therefore designed simple stimuli consisting of rising tones, falling 224 
tones, or their sum (Fig. 4G, S4) and presented them to subjects while measuring blood-oxygen-225 
level-dependent (BOLD) signals via fMRI. 226 
 227 
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We searched within a broad auditory cortex mask for voxels that responded more to the non-228 
summed (rising or falling) stimuli than to the summed (opponent) stimulus (see Methods). 229 
Strikingly, at both group and individual levels, a bilateral region within superior temporal cortex 230 
was significantly more activated by the non-summed stimuli than by the summed stimulus (Fig. 231 
4H, I), consistent with opponency. The group map extended over multiple bilateral functional 232 
subregions of the human auditory cortex (52), including core regions A1 and RI, Area 52, and 233 
lateral and medial belt regions (Fig. S4). According to the opponency hypothesis, activity in 234 
opponent voxels should be similar in magnitude for rising and falling stimuli and suppressed for 235 
the summed stimulus. Thus, we wanted to ensure that our result followed this symmetry and was 236 
not biased by either the rising or falling stimulus alone (see Methods). Activity in putative 237 
opponent regions was indeed comparable for rising and falling tones (Fig. 4J). Overall, our 238 
fMRI findings demonstrate that a key result from our behavioral studies — the clear symmetry 239 
between positive and negative correlation percepts — lead to a specific neural hypothesis that 240 
was borne out in neuroimaging data. To our knowledge, this general region of human auditory 241 
cortex has not previously been identified as a potential locus for opponent spectral motion 242 
signals. 243 
 244 
Positive and negative correlation spectrotemporal cues signal tone modulation in speech 245 
 246 
Is there an ecological advantage in detecting both positive and negative spectrotemporal 247 
correlations? To address this question, we chose to look at human speech, where tone modulation 248 
contains critical semantic information in both tonal and non-tonal languages (1-3). Since humans 249 
are sensitive to both positive and negative pairwise correlations in frequency and time, we 250 
hypothesized that these correlations could convey information about the direction and speed of 251 
tone modulation in human speech. Following in the tradition of relating auditory processing to 252 
natural sounds (53), we  analyzed corpora of spoken English and Mandarin and examined how 253 
tone modulation is related to underlying positive and negative pairwise spectrotemporal 254 
correlations in volume (Fig. 5, Methods).  255 
 256 
Our analysis took several steps. First, we computed spectrograms for each of the speech 257 
recordings (Fig. 5A, top). We then used an optical flow algorithm to estimate the change in tone 258 
at each point in time – that is, the degree to which the sound was rising or falling in frequency at 259 
each time (Fig. 5A, bottom, see Methods). Next, we binarized the spectrogram and looked for 260 
specific patterns of volume in frequency and time, examining all four combinations of loud and 261 
soft: loud-loud, soft-soft, loud-soft, and soft-loud (Fig. 5B). We next computed the local net 262 
signal for each pattern at each frequency and time by subtracting the downward directed patterns 263 
from the upward directed ones (Figs. 5C, D). Finally, we averaged these local net signals over all 264 
frequencies to obtain a net pattern signal (Figs. 5C, D). Computing net pattern signals is 265 
consistent with the opponency we observed psychophysically and in fMRI (Fig. 4). For the loud-266 
loud patterns, there was a positive correlation between the time trace of the net pattern signal and 267 
the tone change. For the loud-soft patterns, the correlation was negative. The clear suggestion is 268 
that negative correlations contain information about tone changes that could be useful to listeners 269 
in detecting rising and falling tones in speech. 270 
 271 
To see whether this result generalized, we analyzed hundreds of speech snippets that totaled over 272 
90 minutes in English and 40 minutes in Mandarin Chinese (Fig. 5E, F, see Methods). In 273 
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English, the tone changes should be dominated by intonation, while in Mandarin Chinese, the 274 
tone changes should reflect both intonational and within-syllable changes in tone (1-3). We 275 
reproduced the analysis of the different volume patterns, and then correlated the net signal for 276 
each pattern with the computed change in tone. In both English and Mandarin Chinese, the two 277 
positive correlation patterns (loud-loud and soft-soft) produced a strong positive correlation (𝑟 >278 
0.5) with the intonation velocity, whereas the two negative patterns (loud-soft and soft-loud) 279 
produced a strong negative correlation (𝑟 <– 0.5) (Fig. 5E, F). These results show that all four 280 
patterns could be useful in estimating tone changes in speech. The negative stimulus correlation 281 
produced an anti-correlation with tone changes, which explains why they elicit percepts in the 282 
opposite direction: upward directed negative correlations indicate downward directed tone 283 
changes. We obtained similar results when we processed with the spectrograms with continuous 284 
rather than digital operations to obtain positive and negative spectrotemporal correlations in the 285 
speech data (see Methods, Fig. S5). Thus, this analysis provides an ecological explanation of the 286 
observed inverted percepts to negative auditory correlations.  287 
 288 
Discussion 289 
 290 
In the studies reported here, we have demonstrated that humans are sensitive to local 291 
spectrotemporal correlations in volume over frequency and time as they discern whether a sound 292 
is rising or falling in pitch (Figs. 1-3). Participants were equally sensitive to both negative and 293 
positive spectrotemporal correlations, a pattern that mirrors a powerful visual phenomenon, the 294 
reverse-phi illusion, in a different modality (audition) and over a different dimension of motion 295 
(frequency). Inspired by our behavioral results showing symmetry between inverting correlation 296 
and inverting direction, we hypothesized that the human auditory system might implement 297 
opponent subtraction, echoing a similar operation in visual motion detection. Using fMRI, we 298 
discovered that, like visual cortex, regions within human auditory cortex show signatures of 299 
opponency (Fig. 4). Finally, we demonstrated that negative spectrotemporal correlations likely 300 
act as reliable cues to assess tone changes in speech (Fig. 5). 301 
 302 
The stimuli we developed here (Figs. 1-3) in some ways resemble Shepard tones (54), which 303 
were designed to sound like they are unceasingly rising or falling. However, Shepard tones 304 
consist of periodic auditory features that persist over frequency and time (similar to Fig. 4F). 305 
Thus, the rising or falling of a Shepard tone could be assessed by simply tracking auditory 306 
features over time. The auditory stimuli we developed and investigated here, however, have no 307 
such persistent features –– a rising or falling percept must instead depend on the detection of 308 
positive and negative pairwise spectrotemporal correlations within the stimulus. Thus, the strong 309 
percepts of rising and falling tones, which depended on the sign of the correlation, reflect an 310 
authentic auditory illusion in which there is no true rising or falling tone but only the imposition 311 
of specific spectrotemporal correlations in volume. 312 
 313 
Sensitivity to spectrotemporal correlations in judging pitch direction likely acts in coordination 314 
with other algorithms for judging changes in pitch. In particular, changes in frequency can be 315 
judged over gaps of seconds (37), which points to a different system for such judgements. 316 
Similarly, judgements about relative pitch can be made using fundamental frequencies in 317 
harmonic sounds (29, 55). These examples suggest that auditory spectral motion processing is 318 
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similar to visual motion processing, where positional changes can be detected by both local 319 
correlational algorithms and by slower, longer range object-tracking algorithms (8).   320 
 321 
We found regions in both primary and non-primary auditory cortex across both Heschl’s gyrus 322 
and the superior temporal gyrus (STG) that may perform opponent computations to resolve net 323 
pitch direction (Fig. 4H, I). How might this relate to the neural underpinnings of speech 324 
perception? Human auditory cortex displays regional specialization, with areas that selectively 325 
encode different aspects of speech, primarily in the STG (56-59). Our results are broadly 326 
consistent with findings that regions within STG encode variability in speaker intonation and 327 
lexical tone (59, 60). Moreover, our observation that significant portions of Heschel’s gyrus also 328 
showed spectral motion sensitivity is broadly consistent with other work (61), though we saw the 329 
effects bilaterally (Fig. S4) and, critically, with an opponent signature. Our results thus suggest 330 
that opponency may be a signature of pitch direction processing in circuits involved in simple 331 
pitch computations (in primary areas) and in more complex perceptual tasks like speech 332 
processing (in non-primary areas).  333 
 334 
Canonical algorithmic models for motion detection are sensitive to negative correlations (5, 6), 335 
and more neurophysiologically-inspired models for motion detection are similarly sensitive to 336 
negative correlations (62, 63). At the single neuron level, units in rodent (22), bat (23), and 337 
primate (24) auditory cortex display spectrotemporally oriented receptive fields, which should 338 
confer sensitivity to both positive and negative spectrotemporal correlations (Fig. 4) (6). Our 339 
results suggest that neurons with this type of sensitivity could underlie spectrotemporal 340 
correlation detection in humans. Meanwhile, our psychophysical and fMRI results also suggest 341 
that units in multiple regions of auditory cortex exhibit directional opponency, a property 342 
observed in bat auditory neurons (49). This direction opponency could arise in primary motion 343 
detectors (64), or be the result of subtracting opposing cortical or subcortical motion signals (21). 344 
 345 
There are well-established similarities in the processing of visual motion between invertebrates 346 
and vertebrates (65-67), phyla that diverged hundreds of millions of years ago. Our study shows 347 
that local correlational algorithms for motion detection also span modalities, since human 348 
audition and vision appear to employ similar computational motifs. Audition thus joins olfaction 349 
(68) as a non-visual sense where pairwise, local correlations can generate rich motion percepts. 350 
In these experiments, sensitivity to pairwise stimulus correlations also includes sensitivity to 351 
negative correlations. This sensitivity to negative correlations is due in part to the mathematics of 352 
computing correlations (see Methods) (6, 40), providing a conceptual framework for 353 
understanding the neural detection of motion that spans modality and species.  354 
 355 
Lastly, negative correlations sensed in audition likely act as useful cues to infer real-world 356 
changes in the frequency domain (Fig. 5), just as they may help in visual motion detection (69, 357 
70). Thus, the illusory pitch motion described here is not just an interesting laboratory 358 
epiphenomenon. Rather, it reflects neural sensitivity to the statistics of the auditory world, with 359 
direct implications for everyday speech and music perception. 360 
 361 
Contributions 362 
PAV and DAC designed auditory stimuli. PAV and SDM acquired data. PAV, SDM, and DAC 363 
analyzed and interpreted data. PAV, SDM, and DAC wrote the paper. 364 
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Figures 372 
 373 

 374 
Figure 1. Humans detect auditory motion in pairwise frequency-time correlations. 375 

A) Simple schematic of a rising sound written on a music staff and in frequency-time. 376 
B) Diagrams showing sample (top) and actual (bottom) stimuli. Frequency-time correlations 377 

can be directed either upward or downward and be either positively or negatively 378 
correlated. 379 

C) Perceived direction of stimuli with varying direction and correlation. Mean ± SEM over 380 
N=10 subjects.  One-sample t-tests revealed significant deviations from chance (0.50) in 381 
pitch direction judgements in all four stimulus conditions (all ps < 10-5). Pitch direction 382 
judgements in the random stimulus condition were not significantly different from chance 383 
(p = 0.45). Error bars represent mean ± SEM (N = 10). 384 
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D) Perceived direction of stimuli with varying degrees of correlation (coherence) in the 385 
stimulus.  The upward directed positive and downward directed negative curves were not 386 
significantly different (p > 0.05 by a two-way, repeated measures ANOVA); similarly, 387 
the downward directed positive and upward directed negative curves were also not 388 
significantly different (p > 0.05, same test). Both ANOVAs revealed significant main 389 
effects of coherence on pitch direction judgements (all ps < 10-5). Error shading 390 
represents ± SEM (N = 10). 391 

E) Diagram showing how binaural stimuli were presented to each ear.  392 
F) Perceived direction of stimuli with varying directions and correlations using binaural 393 

presentation.  One-sample t-tests revealed significant deviations from chance (0.50) in 394 
pitch direction judgements in all four stimulus conditions (all ps < 10-3). Pitch direction 395 
judgements in the random stimulus condition were not significantly different from chance 396 
(p = 0.72). Error bars represent mean ± SEM (N = 10). 397 

  398 
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 399 
Supplemental Figure S1.  400 

A) Stimulus autocorrelation plots at different note and time offsets for the stimuli in Figure 401 
1B. The stimuli have positive or negative correlations at a single spectrotemporal offset, 402 
directed either upward or downward in frequency over time. These plots are normalized 403 
so that the origin has correlation of 1. 404 

B) Correlation between perception of positively correlated and negatively correlated stimuli. 405 
To obtain the positive correlation values, we averaged P(rising) for the upward directed, 406 
positive correlation stimuli with 1-P(rising) for the downward directed, positive 407 
correlation stimuli. To obtain the negative correlation values, we averaged P(rising) for 408 
the downward directed, negative correlation stimuli with 1-P(rising) for the upward 409 
directed, negative correlation stimuli. Correlation coefficient is the Pearson correlation, 410 
and a 95% confidence interval is noted. 411 

  412 
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 413 
Figure 2. Correlation detection is tuned to small frequency changes and short delays in time. 414 

A) Diagram showing a correlated pip pair with a frequency displacement (Δ note) and a 415 
delay between pips. 416 

B) Spectrotemporal diagrams of 4 different correlated pip stimuli directed upward and 417 
downward with positive and negative correlations. Pip duration in these experiments was 418 
50 ms. 419 

C) Perceived direction of stimuli with Δ note = +1 and varying pip delays; positive pip 420 
correlations (top) and negative pip correlations (bottom). One-way, repeated measures 421 
ANOVAs for the positive and negative correlation curves revealed significantly different 422 
responses across pip delays (all ps < 10-21). Gray lines are individual participant curves. 423 
Error shading represents ± SEM (N = 13). 424 

D) Perceived direction of stimuli using varying note intervals and 40 ms pip delays; positive 425 
pip correlations (top) and negative pip correlations (bottom). One-way, repeated measures 426 
ANOVAs for the positive and negative correlation curves revealed significantly different 427 
responses across note intervals (all ps < 10-12). Gray lines are individual participant 428 
curves. Error shading represents ± SEM (N = 13). 429 
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 430 
Supp. Fig. 2. Interval sweep with a different pip duration. 431 

A) Perceived direction of positively correlated stimuli with varying pip delays and 20 ms 432 
pips. Sensitivity tends to peak around 40 ms delays, similar to the data in Figure 2C. A 433 
one-way, repeated measures ANOVA revealed significantly different responses across 434 
pip delays (p < 10-10). Error shading represents ± SEM (N = 9). 435 

B) Perceived direction of negatively correlated stimuli with varying pip delays and 20 ms 436 
pips. Sensitivity tends to peak around 40 ms delays, similar to the data in Figure 2C. A 437 
one-way, repeated measures ANOVA revealed significantly different responses across 438 
pip delays (p < 10-8). Error shading represents ± SEM (N = 9). 439 
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 440 
Figure 3. Sensitivity to all four pairwise loudness combinations contribute to rising and falling 441 
pitch perception.  442 

A) Frequency-time diagram of 4 different pip combinations, presented with 40 ms delays. 443 
B) Probability of perceiving rising pitch for each of the four loudness combinations directed 444 

upward (left) and downward (right). Paired t-tests comparing upward- versus downward-445 
directed stimuli for each matched pair revealed significant direction selectivity across all 446 
pitch direction judgements (all ps < 10-4). Error bars represent mean ± SEM (N = 10). 447 
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 448 
Supplemental Figure S3. Human auditory sensitivity to 3-point glider stimuli resembles visual 449 
sensitivity in different species. 450 

A) Diagram of 3-point glider stimuli in frequency and time (39). 3-point glider stimuli 451 
contain correlations between triplets of points as denoted by the barbell diagrams, and 452 
contain no pairwise correlations. Thus, motion percepts with these stimuli would have to 453 
rely on correlations beyond pairwise ones. 454 

B) Perceived direction of 3-point glider stimuli. Participants heard rising and falling tones in 455 
these triplet correlation stimuli. Error bars represent mean ± SEM (N = 10). 456 

C) Net perceived direction of 3-point glider stimuli with positive and negative correlations. 457 
The net probability rising is computed by subtracting the downward directed P(rising) 458 
from the upward directed P(rising) in panel (B). Positively correlated stimuli were 459 
perceived as falling, while negatively correlated stimuli were perceived as rising. Paired 460 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 3, 2024. ; https://doi.org/10.1101/2024.08.03.606481doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.03.606481
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 
 

t-tests revealed significantly different responses to positively and negatively correlated 461 
diverging gliders, and to positively and negatively correlated converging gliders (all ps < 462 
10-3). Error bars represent mean ± SEM (N = 10). 463 

D) Net perceived direction of 3-point glider stimuli across various visual systems. Data is 464 
replotted from prior publications for fruit flies (41), larval zebrafish (43), a machine 465 
learning algorithm (69), and human visual psychophysics (41). Human auditory percepts 466 
resemble fruit fly and zebrafish visual percepts and machine learning responses, but not 467 
the human visual percepts. 468 

  469 
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 470 
Figure 4.  Bilateral regions of human auditory cortex show signatures of opponency. 471 

A) A simple model auditory unit that responds more to upward direction spectral motion 472 
than downward directed spectral motion. The stimulus spectrogram is convolved with an 473 
upward-oriented spectrotemporal filter before the result is squared, as in a motion energy 474 
model (6). 475 
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B) Mean response of the unit to correlated pip stimuli with different delays and correlation 476 
signs, corresponding to upward and downward directed positive and negative 477 
correlations. 478 

C) As in (B), but for an opponent signal, consisting of an upwardly tuned unit response 479 
minus an identical unit tuned to downward motion. 480 

D) Comparison of P(rising) for positive and negative correlation stimuli sweeping time 481 
interval, aligning upward directed positive correlation stimuli with downward directed 482 
negative correlation stimuli. Data replotted from Figure 2. The curves were not 483 
significantly different (p > 0.05 by a two-way, repeated measures ANOVA). 484 

E) As in (D) but for sweeping the tone difference. The curves were not significantly 485 
different (p > 0.05 by a two-way, repeated measures ANOVA). 486 

F) Conceptual schematic of opponency in brain regions. An opponent voxel/region would 487 
respond strongly to rising and falling tones but be suppressed by the sum of the two 488 
stimuli. 489 

G) Stimulus design. Stimuli were rising, falling, or summed rising and falling. 490 
H) Group level analysis. A bilateral region within auditory cortex responded less to summed 491 

stimuli than non-summed stimuli. Cluster-corrected with false positive rate at p < 0.05 492 
with a cluster-forming threshold of 20 voxels. 493 

I) Individual level analysis. Regions in auditory cortex across subjects responded less to 494 
summed stimuli than non-summed stimuli. Cluster-corrected with false positive rate at p 495 
< 0.05 with a cluster-forming threshold of 20 voxels. 496 

J) Control analysis showing symmetric beta values in response to rising and falling stimuli  497 
in individually defined opponent ROIs (p > 0.05 via one-sample t-test). (Note that all beta 498 
values are relative to an implicit baseline that includes responses to ambient scanner 499 
noise.) Error bars represent mean ± SEM (N = 5). 500 

  501 
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 502 
Supplemental Figure S4. Further method and result details from fMRI opponency experiment. 503 

A) Depiction of actual stimuli used for the opponency experiment. 504 
B) Time course of fMRI trial structure. 505 
C) Group level analysis showing bilateral regions within auditory cortex that demonstrate 506 

significant opponent properties. Black outline reflects significant clusters from Figure 507 
4H. Colored patches show cortical regions in accordance with (52). RI = retroinsular 508 
cortex; Mbelt = medial belt of auditory cortex; Lbelt = lateral belt of auditory cortex; 509 
Pbelt = parabelt region.  510 
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 511 
Figure 5. Rising and falling tone in spoken language can be detected through both positive and 512 
negative pairwise correlations. 513 

A) Spectrogram of voice saying, “Anyone lived in a pretty how town (with up so falling 514 
many bells down)” (top). Intonation velocity estimate from spectrogram (bottom, see 515 
Methods). Positive tone changes correspond to rising frequencies in the sound. 516 

B) Binarized spectrogram from (A) (top). Four distinct loud and soft frequency-time 517 
combinations in the binarized spectrogram (bottom).   518 

C) Net loud-loud instances at each frequency and time in the binarized spectrogram in (B) 519 
(top). Red is +1, blue is –1, white is 0. Frequency-averaged net loud-loud signal (bottom).   520 
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D) Net soft-loud instances at each frequency and time in the binarized spectrogram in (B) 521 
(top). Red is +1, blue is –1, white is 0. Frequency-averaged net soft-loud signal (bottom). 522 

E) Correlations between the tone change estimate at each time and the frequency-averaged 523 
net signals for loud-loud, soft-soft, loud-soft, and soft-loud patterns. Data from English 524 
speech corpus (71). 525 

F) As in (E) but for Mandarin speech corpus (72). 526 
  527 
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 528 
Supplemental Figure S5. Multiplicative interactions of amplitude derivatives are informative 529 
about intonation direction. 530 

A) Correlations between the tone change estimate at each time and a continuous correlator 531 
model using only positive signals (+,+), only negative signals (–,–), and mixtures of the 532 
two (+,– and –,+) (see Methods). The correlations comprising the net signal were 533 
obtained by taking the derivative of the spectrogram amplitude in time, then multiplying 534 
derivatives of neighboring frequencies with a time-step delay and subtracting a mirror 535 
image product. Signals were rectified before multiplication to obtain the four pairs of 536 
multiplied signals, which together add up to a full correlator model. The net signals 537 
computed from (+,+) and (–,–) pairs correlated positively with tone change, while the net 538 
signals from (+,–) and (–,+) pairs correlated negatively with tone change. Data from 539 
English speech corpus (71). 540 

B) As in (A) but with data from Mandarin speech corpus (72). 541 
  542 
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Supp. Movie 1. Demonstration of positive and negative pairwise correlations using ternary 543 
correlated noise stimuli, as in Figure 1. 544 
 545 
Supp. Movie 2. Demonstration of positive and negative pairwise correlations using ternary 546 
correlated noise stimuli, analogous to the stimuli in Supp. Movie 1 but in visual motion 547 
detection (27).   548 
  549 
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Methods 550 
 551 
Psychophysical measurements 552 
 553 
All participants (N = 33; 12 female; mean age: 23.3 years, range of 18 years to 32 years) 554 
provided informed, written consent in accordance with procedures approved by the Yale 555 
University Institutional Review Board. To measure human psychophysical curves (Figures 1-3), 556 
we recruited participants with self-reported normal hearing from within the university 557 
population. Participants were seated in a quiet room, wearing headphones (Model DT 770 PRO, 558 
Beyerdynamic, Heilbronn, Germany) to listen to various sound stimuli and make perceptual 559 
judgments. The sounds were created in Matlab and presented using Psychtoolbox (73-75) on a 560 
Macbook Pro, using its native soundcard. Participants adjusted the volume to a comfortable 561 
level, which we estimated to typically be around 60 dB. Each sound was played for 2 seconds, 562 
after which participants were cued to judge, to the best of their ability, whether it sounded like a 563 
rising or falling tone. To ensure they understood the task, participants went through several 564 
example sounds with the researcher before beginning the experiment. Participants usually 565 
completed two experiments lasting approximately 15 minutes each. The data was analyzed using 566 
custom code written in Matlab. The code to produce the sounds, all anonymized data, and the 567 
code used to analyze the data and produce Figure 1-3 are all publicly available at: [GitHub 568 
repository here, to be made available on publication]. 569 
 570 
Creating correlated sounds 571 
 572 
We created complex sounds containing multiple frequencies, following the design of visual 573 
stimuli that have been informative in that field. To do this, we created a comb of constant carrier 574 
frequencies, with frequencies ranging over 6 octaves from 200 Hz to 6400 Hz, with 15 575 
frequencies per octave, equally spaced in log-space. The sampling frequency was chosen to be 576 
20 kHz for all experiments. Each carrier frequency was then multiplied by a slower, time varying 577 
envelope, before the frequencies were summed to make the overall waveform for that sound. 578 
Mathematically, the sound waveform, 𝑤(𝑡), looks like: 579 

𝑤(𝑡) = 	/𝜃!𝑚!(𝑡) sin(2𝜋𝑓!𝑡)
"

!#$

	 580 

Where the 𝑓! is the indexed carrier frequencies, 𝑡 is sampled at 20 kHz, and the value 𝜃! was 581 
chosen to roughly equalize the perceptual salience of the different frequencies, using the ISO 582 
standard 226 at 60 dB. (We note that in various tests in lab, this perceptual salience scaling was 583 
not critical for the percepts we measured; since we included it in initial experiments, we included 584 
it for all stimuli in this study.) It remains to compute the suite of 𝑚!(𝑡) envelope functions to 585 
create each sound. The envelope functions were computed as outlined below. All envelope 586 
functions are computed to have non-negative binary or ternary values, and were filtered with a 587 
25 ms low-pass filter in the ternary stimuli (Fig. 1) and at 0.5 ms low-pass filter in the pip stimuli 588 
(Figs. 2 and 3) to eliminate sharp transitions. After all waveforms 𝑤(𝑡) were created, they were 589 
scaled to have a minimum value of –1 and maximum value of +1.  590 
 591 
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Ternary pairwise correlations (Figure 1B-D).  592 
To create sounds with only local, pairwise correlations between specific frequency and time 593 
offsets, we followed a protocol used in prior visual experiments (27, 28, 76). Based on informal 594 
experiments attempting to optimize our own percepts, we discretized frequencies into 15 notes 595 
per octave and time into 1/6 second frames. This change in frequency is similar to the most 596 
salient change in frequency in a prior study (37). We then created an initial binary mask in this 597 
coarse-time representation, 𝐵!%, where 𝑖 indexed the frequency and 𝑗 the time step in 1/6 second 598 
intervals. In each trial, each element of 𝐵 was chosen from a Bernoulli distribution with 599 
probability 0.5, then centered to have values of ±1/2 instead of 0 and 1. A ternary mask, 𝑀, was 600 
created by the following formula: 601 
 602 

𝑀!,% = 𝐵!,% + 𝑃𝐵!'(,%'$ 603 
 604 
The mask is thus the binary matrix added back to itself with a displacement in frequency of 𝑑 =605 
±1 for upward and downward directed correlations. The mask is ternary, with values of 0, 1, and 606 
–1. The correlation parity is chosen by 𝑃 = ±1, so that the offset matrices are added to create 607 
positive correlations and subtracted to create negative correlations. The discrete autocorrelation 608 
function of this mask 𝑀 is equal to: 609 
 610 

𝐶),* =
1
2𝛿),+𝛿*,+ +

1
4𝑃E𝛿),(𝛿*,$ + 𝛿),,(𝛿*,,$F 611 

 612 
Where the 𝛿!,% terms are Kronicker delta functions (see Fig. S1). Importantly, the elements in the 613 
mask are not deterministically the same or different at the spectrotemporal offset of the 614 
correlated displacement, so that spectral patterns vary substantially at each temporal update of 615 
the stimulus. 616 
 617 
A continuous time expression for the autocorrelation function is available in a prior work 618 
describing similar stimuli in vision (28).  619 
 620 
The coarse-time matrix 𝑀 was recentered to have values of 0, 0.5, and 1, then up-sampled to the 621 
sampling frequency 𝐹- to create 𝑚!(𝑡) at each frequency. The masks were filtered with a 25 ms 622 
low-pass filter to eliminate sharp transitions. 623 
 624 
To create the stimuli with varying coherence, we replaced a fraction of mask elements with 625 
random ternary stimuli, drawn from the values (0, 0.5, 1) with probabilities (0.25, 0.5, 0.25). The 626 
fraction replaced was equal to (1 − 𝐶) where 𝐶 is the coherence value.  627 
 628 
Binaural pairwise correlations (Figure 1D, E).  629 
To play sounds such that correlations only existed by integrating across the ears, we simply 630 
played 𝐵!,% in one ear and 𝑃𝐵!'(,%'$ in the other ear, for the correlations as described above to 631 
create the ternary pairwise correlations. To play these binary masks, we created two masks 632 
𝑀!,% = 𝐵!,% and 𝑀!,% = 𝑃𝐵!±(,%'$ to play to the two ears. The matrices were recentered to have 633 
values of 0 and 1, then up-sampled to the sampling frequency. The masks were filtered with a 0.5 634 
ms low-pass filter to eliminate sharp transitions. 635 
 636 
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Correlated pips with time and frequency offsets (Figure 2).  637 
To create the correlated pip stimulus, we discretized frequency space into 15 tones per octave. 638 
We first initialized our masks 𝑚!(𝑡) to be 0 for all times, sampled at the sampling frequency 𝐹-. 639 
We then placed initial delta-function pips in a Poisson distribution across all frequencies and 640 
times in our sound, at a rate of 4 pips per frequency per second. Positive and negative pips were 641 
equally probable, represented by mask values of ±1. We then created a second set of pips offset 642 
by the selected change in frequency and delay time, according to the two different correlation 643 
types. After imposing the correlations, the overall pip rate became 8 pips per frequency per 644 
second. We then convolved this event-trace with a boxcar function with the length of the pip 645 
duration to create the mask at 𝐹-. Pips had a duration of 40 ms in Figure 2 and 20 ms in Figure 646 
S2. Last, the masks were linearly transformed to be between 0 and 1 and filtered with a 0.5 ms 647 
low-pass filter to eliminate sharp transitions. The loud values corresponded to values of 1 in the 648 
mask, the soft to values of 0, and the background to values of 0.5. 649 
 650 
Correlations between loud and soft pips (Figure 3).  651 
These stimuli were generated similarly to the correlated pips stimulus above. However, only two 652 
thirds of all pips were in correlated pairs of loud-loud, soft-soft, loud-soft, or soft-loud. In the 653 
case of the loud-loud correlated pips, the remaining third of pips consisted of randomly placed 654 
soft pips. In the case of soft-soft correlated pips, the remaining third of pips consisted of 655 
randomly placed loud pips. And in the cases of soft-loud and loud-soft, the remaining third were 656 
equally distributed between soft and loud pips. Thus, the four types had equal numbers correlated 657 
pairs in each stimulus. The overall rate of pips for all stimuli was 6 pips per frequency per 658 
second. 659 
 660 
Triplet correlations (Figure S3). 661 
We made triplet correlation binary masks, discretized in frequency at time, following prior 662 
procedures (39, 41). The frequency was discretized in 15 tones per octave and time was 663 
discretized into 1/6 second frames. The frequencies began at 200 Hz and ranged over 5 octaves. 664 
The masks 𝑚!(𝑡) were linearly transformed to have values of 0 and 1 and were filtered in time 665 
with a 0.5 ms low-pass filter to eliminate sharp transitions. 666 
 667 
Rising, falling, and opponent tones (Figure 5).  668 
To create the rising, falling, and opponent tones used in our fMRI experiment, we used 669 
frequencies discretized into 1/16 octave steps and time discretized into 1/6 second steps. 670 
Ascending tones were created from a binary mask equal to an ascending line of time-frequency 671 
elements in this discretized space (Fig. S5) and descending tones consisted of a descending line 672 
of time-frequency elements. The summed ascending plus descending was the sum of the two 673 
masks. All masks were filtered in time with a 0.5 ms low-pass filter to eliminate sharp 674 
transitions. We switched to 16 steps per octave for this experiment so that the ascending and 675 
descending stimuli never played the same frequency simultaneously, making the addition of the 676 
stimuli more straightforward. 677 
 678 
Code to generate the sounds used in these experiments is available at [GitHub repository on 679 
publication].  680 
 681 
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Model motion energy unit (Figure 4) 682 
 683 
We created a model motion energy unit by convolving a linear filter with a sound spectrogram, 684 
then squaring the result. That is: 685 
 686 

𝑟(𝑡) = E(𝑓$ ∗ 𝑆$)(𝑡) + (𝑓/ ∗ 𝑆/)(𝑡)F
/ 687 

 688 
The filters were chosen to be:  689 
 690 

𝑓$(𝑡) =
𝑡
𝜏/ 𝑒

,0/2 691 

𝑓/(𝑡) = 𝑓$(𝑡 − 𝑇)Θ(𝑡 − 𝑇) 692 
 693 
Where 𝑓/ is just a time-shifted version of 𝑓$ with a time shift of 𝑇 = 40 ms. The function Θ is a 694 
Heaviside step function. The two filters are applied to adjacent frequencies in the spectrogram, 695 
𝑆$(𝑡) and 𝑆/(𝑡), so that the filter enhances signals directed upward over time. 696 
 697 
We computed the mean of 𝑟(𝑡) over time to get the mean response for a given stimuli. Stimuli 698 
were created to match the correlated pip-style stimuli in Figure 2. The opponent response was 699 
computed as 700 
 701 

𝑟344(𝑡) = E(𝑓$ ∗ 𝑆$)(𝑡) + (𝑓/ ∗ 𝑆/)(𝑡)F
/ − E(𝑓/ ∗ 𝑆$)(𝑡) + (𝑓$ ∗ 𝑆/)(𝑡)F

/ 702 
 703 
The second, negative term is the same as the first term but with the filter flipped in frequency 704 
space, so that it corresponds to a downward selective unit. This response was likewise averaged 705 
over time to produce the plots in Figure 4. 706 
 707 
Matlab code to create Figures 4B, C is available at [Github repository on publication]. 708 
 709 
Speech analysis 710 
 711 
Spoken language databases were analyzed to ask how spectrotemporal correlations could act as 712 
indicators for rising and falling tones in speech. Using Matlab, we first loaded short snippets of 713 
speech from two databases: 438 snippets constituting a total of 91 minutes of data from 714 
Librispeech, a corpus of read English (71); and 749 snippets constituting a total of 52 minutes of 715 
data from Magicdata Mandarin Chinese Read Speech Corpus (72), a corpus of read Mandarin. 716 
We computed a spectrogram for each snippet of speech using the Matlab command 717 
spectrogram; we extracted the spectral amplitude at a resolution of 40 samples per second 718 
with no overlap between samples, at 20 evenly spaced frequencies per octave from 100 Hz to 719 
6400 Hz (Figure 5A). We estimated the rising/falling intonation change of the sound at each 720 
point using the Matlab command opticalFlowHS, which uses the Horn-Schunck method (77) 721 
to estimate directional local flow (typically optic flow) between frames. We averaged the 722 
calculated flow over frequencies to compute an estimate of the frequency “flow” with arbitrary 723 
units, which we termed tone change (Figure 5A). This method does not make strong 724 
assumptions about how changes in speech tone or frequency should be computed. It should work 725 
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to extract tone changes from most complex sounds. We then examined estimators of this tone 726 
change as follows: 727 
 728 

1) To compute binary correlations in frequency and time, we first binarized the spectrogram 729 
using Otsu’s method (Matlab command imbinarize) (78), which maximizes the 730 
variance between the binarized time-frequency element amplitudes while minimizing 731 
variance within each of the two categories (Figure 5B). We made 8 new binary 732 
frequency-time data arrays, containing Boolean values at each point in time and 733 
frequency, 𝑉0,5,↑,±,± ≔ EQ𝐴0,5 , 𝐴0'$,5'$T = {±1,±1}F and an equivalent one for 734 
downward directed volume patterns. These matrices are records of the existence of each 735 
pattern of sound intensity at each time and frequency. From these, we computed the net 736 
signal of each pattern at each frequency by subtracting the downward directed matrix 737 
from the upward directed one. We last found the mean net signal over all frequencies for 738 
each pattern (Figure 5C, D). We computed the correlation between these mean net 739 
signals at each time point with the calculated upward or downward flow velocity (Figure 740 
5E, F). Note that the sum of these net pattern signals sum to 0 over the four different 741 
patterns (±,±), so that the 4 signals are not independent. 742 

2) To generate non-binarized correlation plots, we first linearly filtered the spectrogram 743 
amplitudes, 𝐴0,5, to take temporal derivatives: 𝐹0,5 = 𝐴0,5 − 𝐴0,$,5. We then used these 744 
derivatives, 𝐹0,5, which have positive and negative values, as inputs to a Hassenstein-745 
Reichardt correlator model (Hassenstein and Reichardt 1956, Fitzgerald and Clark 2015). 746 
We then computed the net (+,+) correlations, for instance, as 𝑁0,5,',' =747 
X𝐹0,5Y'X𝐹0'$,5'$Y' − X𝐹0'$,5Y'X𝐹0,5'$Y', where [𝑥]' = 𝑥 when 𝑥 > 0 and [𝑥]' = 0 748 
otherwise. A similar process computed the net (–,–), (+,–) and (–,+) correlations. We 749 
averaged these signals over frequency to obtain a single indicator of velocity at each 750 
point in time. These indicators were then correlated with the estimated tone change of the 751 
sound snippet at that point in time (Figure S5). 752 

 753 
Code to analyze the spoken language databases and produce the panels in Figure 5 is available at 754 
[GitHub repository].  755 
 756 
fMRI recordings and analysis 757 
 758 
Whole-brain imaging was performed at the Brain Imaging Center at Yale University, on a 759 
Siemens 3 T Prisma MRI scanner using a 32-channel head coil. Functional data were acquired 760 
with a gradient-echo echoplanar pulse sequence (TR = 0.80 s, TE = 30 ms, flip angle = 52˚, 761 
voxel size = 2.4 mm × 2.4 mm × 2.4 mm, MB acc. factor = 6). T1-weighted MP-RAGE 762 
anatomical images were collected as well (TR = 2.5 s, TE = 2.0 ms, flip angle = 8˚, 208 slices, 763 
voxel size = 1.0 mm isotropic). Functional imaging in our sample (N=5; 1 female; mean age: 764 
26.2 years; authors PAV and SDM were participants in the fMRI study) was performed in ~5-765 
minute runs, with the total number of functional runs per participant ranging from 3-5. Fifteen 766 
auditory stimuli were presented per run in an event-related design (5 each of three stimulus 767 
types: rising, falling, and summed). Each stimulus lasted for 13.33 s, separated by an inter-trial 768 
interval (ITI) of 4 s. The order of the three stimulus types was randomized in each run. 769 
Participants passively listened to the tones and were not required to render any responses. MRI-770 
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optimized noise-canceling headphones (Optoacoustics OptoACTIVE III) were used to limit 771 
effects of background scanner noise and the noise-cancelling software was trained on the EPI 772 
sequence sound features before each session using a brief calibration run.  773 
 774 
The fMRI-Prep toolbox was used for preprocessing (79). The anatomical image was corrected 775 
for intensity non-uniformity (INU) with N4BiasFieldCorrection (80) and used as T1w-reference. 776 
The T1w-reference was then skull-stripped with a Nipype implementation of the 777 
antsBrainExtraction.sh workflow in ANTs, and tissue segmentation of cerebrospinal fluid (CSF), 778 
white-matter (WM), and gray-matter (GM) was performed on the brain-extracted T1w using 779 
FFAST (FSL 6.0.5) (81). Volume-based spatial normalization to standard (MNI) space was 780 
performed through nonlinear registration with antsRegistration (ANTs 2.3.3). For each of the 781 
BOLD runs, a reference volume and its skull-stripped version were generated using a custom 782 
methodology of fMRIPrep. Head-motion parameters were estimated using MCFLIRT (FSL 783 
6.0.5) (82) and BOLD time-series were resampled into native space by applying the transforms 784 
to correct for head-motion, and the BOLD reference was co-registered to the anatomical 785 
reference using mri_coreg (FreeSurfer) followed by FLIRT. Co-registration was configured with 786 
6 DOF. Several confounding time-series were calculated based on the preprocessed BOLD: 787 
framewise displacement (FD), DVARS and three region-wise global signals. The BOLD time-788 
series were resampled into standard space, and volumetric resamplings were performed using 789 
ANTs. 790 
 791 
Our main analyses involved constructing general linear models (GLMs) to quantify the effects of 792 
the three stimulus types within auditory cortex. GLM analyses were performed using Nilearn 793 
(83). Confound regressors of no interest (generated using fMRIPrep, see above) were entered 794 
into each GLM. These included six standard motion regressors, the framewise displacement time 795 
course, and white matter and global signal time courses. Each stimulus type (rising, falling, and 796 
summed) was modeled using boxcar regressors over the entire stimulus presentation phase 797 
(13.33 s) of the relevant trials, and was convolved with the canonical double-gamma 798 
hemodynamic response function. The main contrast of interest at the group and individual levels 799 
compared BOLD responses to the non-summed directional stimuli (i.e., rising and falling) to the 800 
summed stimuli (i.e., superimposed rising + falling). The contrast was designed to highlight 801 
deviations from a null hypothesis of equivalent responses between directional and opponent 802 
stimuli. Individual subject runs were combined in a fixed effects analysis and then brought to the 803 
group level for mixed-effect analyses, where we controlled the false positive rate at p < 0.05 with 804 
a cluster-forming threshold of 20 voxels. Critically, individual-level results for all subjects were 805 
also analyzed and displayed, using the same thresholding parameters. All contrasts were 806 
performed within an a priori anatomical mask that consisted of any voxels crossing the 50% 807 
probability threshold within a combined bilateral probabilistic atlas (Harvard-Oxford) that 808 
included both the STG  and Heschel’s gyrus. Individual and group results were projected onto 809 
the standard (MNI) cortical surface (FreeSurfer) for visualization. 810 
 811 
A simple control analysis was also performed to ensure that the non-summed > summed results 812 
were not driven by a single non-summed stimulus (e.g., rising or falling) having a proportionally 813 
larger response, but rather by symmetric responses to the rising and falling stimuli. To perform 814 
this control analysis, we first extracted individualized regions of interest (ROIs) from the non-815 
summed > summed contrast (using the threshold described above), and then extracted average 816 
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beta values within that ROI for each stimulus type. We note that while this was of course not an 817 
unbiased ROI relative to the hypothesis that non-summed stimuli would on average show 818 
stronger activity than summed, it was unbiased relative to the hypothesis of symmetric responses 819 
to rising versus falling tones.  820 
 821 
Opponency implies a symmetry in responses with opposite correlations in opposite directions 822 
 823 
The motion energy model uses pairwise correlations to extract motion information from input 824 
stimuli and seems to accurately represent important aspects of cellular physiology (6). In the 825 
motion energy model, stimuli over space and time, 𝑆(𝑥, 𝑡), are convolved with a space-time 826 
oriented linear filter, 𝐻(𝑥, 𝑡). (In this section, we will derive results in space, but a frequency 827 
variable 𝑓 could substitute for 𝑥 and this approach would apply sound intensity over frequency 828 
rather than light intensity over space.) The result of the convolution is squared to obtain a 829 
response: 830 
 831 

𝑟(𝑥, 𝑡) = 	^_𝑑𝑥7𝑑𝑡7𝐻(𝑥7, 𝑡7)𝑆(𝑥 − 𝑥7, 𝑡 − 𝑡7)`
/
	832 

	833 
This response is stronger, on average, to stimuli with motion in the preferred direction than in the 834 
null direction. The preferred direction corresponds to the orientation of the filter 𝐻 in space time, 835 
which amplifies signals when the motion direction aligns with the filter orientation. When the 836 
response is averaged over time and space, it yields a pleasing form in Fourier space, such that the 837 
mean response is the dot product of the stimulus power with a weighting function (6): 838 
 839 

⟨𝑟⟩ = _𝑑𝑘𝑑𝜔e𝐻f(𝑘, 𝜔)e/e𝑆g(𝑘, 𝜔)e/ 840 

	841 
Where 𝐻f and 𝑆g are the Fourier transforms of 𝐻 and 𝑆. Therefore, to understand responses of this 842 
model, it is useful to compute the power spectrum of the stimulus. 843 
 844 
For a random dot kinetogram in which the dots are displaced by 𝛥𝑥 in space and 𝛥𝑡 in time, the 845 
covariance density, 𝐶, of the stimulus is a function of the offsets in time and space, 𝑥 and 𝑡: 846 
 847 

𝐶(𝑥, 𝑡) = 𝛽𝛿(𝑥, 𝑡) + 𝛼𝛿(𝑥 − 𝛥𝑥, 𝑡 − 𝛥𝑡) + 𝛼𝛿(𝑥 + 𝛥𝑥, 𝑡 + 𝛥𝑡)	848 
	849 

Where the first term is the stimulus autocovariance and the remaining two terms correspond to 850 
correlations in the stimulus at offsets of (𝛥𝑥, 𝛥𝑡) and (−𝛥𝑥,−𝛥𝑡). For random dot kinetograms, 851 
𝛽	 < 	1 and 𝛼 can take on positive or negative values for positively and negative correlated 852 
random dot kinetograms. This derivation is in continuous space, using Dirac delta function 853 
correlations; a similar result with discrete time and frequencies was found earlier in the methods 854 
for the ternary stimuli. The power spectrum of the stimulus is the Fourier transform of this 855 
covariance function: 856 
 857 

e𝑆g(𝑘, 𝜔)e/ =_𝑑𝑥𝑑𝑡𝑒!89𝑒!:0𝐶(𝑥, 𝑡) = 𝛽 + 𝛼	cos(𝜔𝛥𝑡 + 𝑘𝛥𝑥)	858 

	859 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 3, 2024. ; https://doi.org/10.1101/2024.08.03.606481doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.03.606481
http://creativecommons.org/licenses/by-nc-nd/4.0/


33 
 

The power is highest/lowest along lines of constant phase in cosine, or when 𝜔∆𝑡 + 𝑘∆𝑥	 = 	𝑛𝜋. 860 
When the 𝛼 is negative, for negative correlation stimuli, this effectively changes the phase of the 861 
cosine by 180 degrees. The motion energy model says the mean response to such a stimulus, for 862 
a unit with filter 𝐻, is: 863 
 864 

⟨𝑟⟩ = _𝑑𝑘𝑑𝜔e𝐻f(𝑘, 𝜔)e/(𝛽 + 𝛼 cos(𝜔𝛥𝑡 + 𝑘𝛥𝑥))	 865 

	866 
This is the type of curve shown in Figure 4B, in which there is a baseline response determined 867 
by 𝛽 and the integral of e𝐻f(𝑘, 𝜔)e/. There is a modulatory term that depends on 𝛼 and the dot 868 

product of e𝐻f(𝑘, 𝜔)e/ with cos(𝜔𝛥𝑡 + 𝑘𝛥𝑥), which gives the modulation a directional tuning. 869 
This form means that the modulation inverts when the sign of the correlation (sign of 𝛼) inverts. 870 
If there is a peak response to a stimulus with correlation 𝛼 at a specific ∆𝑡 and ∆𝑥, then the peak 871 
will be equal and opposite when 𝛼 is inverted. Importantly, however, the peak is not the same 872 
when the direction of the stimulus is inverted, that is when 𝛥𝑥 → −𝛥𝑥.  873 
 874 
However, if we compute an opponent response, in which we subtract the response with one filter 875 
orientation from the response with the opposite filter orientation (inverting the 𝑘 in the Fourier 876 
domain), then we find: 877 
 878 

p𝑟;<<q = 	_𝑑𝑘𝑑𝜔 re𝐻f(𝑘, 𝜔)e/ − e𝐻f(−𝑘,𝜔)e/s E𝛽 + 𝛼	cos(𝜔𝛥𝑡 + 𝑘𝛥𝑥)F	879 

p𝑟;<<q = 𝛼_𝑑𝑘𝑑𝜔 re𝐻f(𝑘, 𝜔)e/ − e𝐻f(−𝑘,𝜔)e/s Ecos(𝜔𝛥𝑡 + 𝑘𝛥𝑥)F	880 

	881 
Here, we see that the opponent subtraction causes the 𝛽 term to drop out entirely so that the 882 
remaining term is just proportional to 𝛼, the correlation in the stimulus. The mean opponent 883 
response can be computed for correlation stimuli with parameters 𝛼, Δ𝑡, and Δ𝑥: 884 
p𝑟;<<(𝛼, Δ𝑡, Δ𝑥)q. Because of the directional opponency, the response inverts when the stimulus 885 
is reversed in space: 886 
 887 

p𝑟;<<(𝛼, Δ𝑡, Δ𝑥)q = −p𝑟;<<(𝛼, Δ𝑡, −Δ𝑥)q 888 
 889 

And because of the proportionality with the correlation, the response inverts when the stimulus 890 
correlation is inverted: 891 
 892 

p𝑟;<<(𝛼, Δ𝑡, Δ𝑥)q = −p𝑟;<<(−𝛼, Δ𝑡, Δ𝑥)q 893 
 894 
Therefore, for an opponent signal, inverting the correlation is equivalent to inverting the 895 
direction of the signal: 896 
 897 

p𝑟;<<(−𝛼, Δ𝑡, Δ𝑥)q = p𝑟;<<(𝛼, Δ𝑡, −Δ𝑥)q 898 
 899 
For any set of filters, as long as they are opponently subtracted, inverting the sign of the 900 
correlation is identical to inverting the direction of the stimulus, when computing the 901 
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spatiotemporal average response. So when stimuli can be generated that have autocovariance 902 
structures like those in the ternary scintillator (Fig. 1) or in a random dot kinetogram (Fig. 2), if 903 
the computation is based on pairwise correlations and is opponent, the equations above show that 904 
the response will always be inverted when the stimulus correlation is inverted, and always be 905 
equivalent to inverting the direction of the stimulus. Therefore, opponency implies the sort of 906 
inversion symmetries we observed in our data, where inverting the correlation sign generates 907 
percepts with the same tuning as inverting the direction of the stimulus (Fig. 4D, E, but also 908 
visible in Figs. 1-3). Opponency also implies the sort of consistent symmetries between positive 909 
and negative correlation stimuli observed in human motion perception (36). We note that it is 910 
also possible to achieve this kind of symmetry using precisely defined filters that lead to 911 
opponent properties in single units, without a subtractive step (64).   912 
 913 
 914 
 915 
  916 
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