Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3-(1,2-Di-p-tolylvinyl)-2-methyl-1Hindole

R. Senthamizhselvi,^a G. Bhaskar,^b P. R. Seshadri,^c* P. T. Perumal^b and K. Illangovan^d

^aDepartment of Chemistry, Easwari Engineering College, Ramapuram, Chennai 600 089. India, ^bOrganic Chemistry Division, Central Leather Research Institute, Chennai 600 020, India, ^cPost Graduate and Research Department of Physics, Agurchand Manmull Jain College, Chennai 600 114, India, and ^dPost Graduate and Research Department of Physics, RKM Vivekananda College, Chennai 600 004, India Correspondence e-mail: seshadri_pr@yahoo.com

Received 6 May 2012; accepted 13 May 2012

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.002 Å; R factor = 0.050; wR factor = 0.159; data-to-parameter ratio = 20.7.

In the title compound, C₂₅H₂₃N, the indole unit makes a dihedral angles of 79.03 (5) and 61.82 (4) $^{\circ}$ with the benzene rings. No classical hydrogen bonds are found in the crystal structure.

Related literature

For the biological activity of indole derivatives, see: Olgen & Coban (2003); Joshi & Chand (1982).

Experimental

Crystal data

C25H23N	V = 3932.7 (16) Å ³
$M_r = 337.44$	Z = 8
Monoclinic, $C2/c$	Mo $K\alpha$ radiation
a = 25.684 (6) Å	$\mu = 0.07 \text{ mm}^{-1}$
b = 9.911 (2) Å	$T = 298 { m K}$
c = 16.739 (4) Å	$0.20 \times 0.18 \times 0.15 \text{ mm}$
$\beta = 112.646 \ (5)^{\circ}$	

Data collection

Refinement

4931 reflections

S = 1.02

 $R[F^2 > 2\sigma(F^2)] = 0.050$ wR(F²) = 0.159

Bruker SMART APEXII areadetector diffractometer 17685 measured reflections

4931 independent reflections 3008 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.041$

238 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.18 \text{ e } \text{\AA}^ \Delta \rho_{\rm min} = -0.14 \text{ e} \text{ Å}^{-3}$

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON and publCIF (Westrip, 2010).

The authors thank Dr Babu Varghese, SAIF, IIT-Madras, India, for the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5910).

References

Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Joshi, K. C. & Chand, P. (1982). Pharmazie, 37, 1-12.

Olgen, S. & Coban, T. (2003). Biol. Pharm. Bull. 26, 736-738.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supplementary materials

Acta Cryst. (2012). E68, o1815 [doi:10.1107/S1600536812021617]

3-(1,2-Di-p-tolylvinyl)-2-methyl-1H-indole

R. Senthamizhselvi, G. Bhaskar, P. R. Seshadri, P. T. Perumal and K. Illangovan

Comment

Indole derivatives exhibit anti-oxidant (Olgen & Coban, 2003), anti-bacterial and fungicidal (Joshi & Chand, 1982) activities. Against this background, the title compound was chosen for X-ray structure analysis (Fig. 1).

The phenyl rings C11—C16 and C19—C24 form dihedral angles with the indole ring system of 79.03 (5) $^{\circ}$ and 61.82 (4) $^{\circ}$, respectively.

The sum of the bond angles around N1 [359.99 (3)°] indicates sp^2 hybridization.

No classical hydrogen bonds are found in the crystal structure.

Experimental

A mixture of di- *p*-tolylacetylene (3.0 mmol), 2-methyl indole (2.0 mmol), and indium bromide (0.2 mmol) in toluene (4 ml) was stirred at 110 oC for the 120 min t s time. After completion of the reaction as indicated by TLC, the reaction mixture was diluted with water and extracted with ethyl acetate. The combined organic layers were dried over anhydrous Na2SO4, concentrated *in vacuo*, and purified by column chromatography on silica gel (Merck, 100–200 mesh) to afford a mixture of E and *Z* (>99%) isomers. These major isomers were separated by crystallization using ethyl acetate/petroleum ether.

Refinement

Hydrogen atoms were positioned geometrically and allowed to ride on their parent atoms, with N—H = 0.86 Å or C—H = 0.93 - 0.97 Å and $U_{iso}(H) = 1.5U_{eq}(C_{methyl})$ or 1.2 $U_{eq}(C,N)$.

Computing details

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT* (Bruker, 2008); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008), *PLATON* (Spek, 2009) and *publCIF* (Westrip, 2010).

Figure 1

The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

3-(1,2-Di-p-tolylvinyl)-2-methyl-1H-indole

F(000) = 1440
$D_{\rm x} = 1.140 {\rm ~Mg} {\rm ~m}^{-3}$
Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Cell parameters from 4931 reflections
$\theta = 1.7 - 28.5^{\circ}$
$\mu=0.07~\mathrm{mm}^{-1}$
T = 298 K
Block, colourless
$0.20 \times 0.18 \times 0.15 \text{ mm}$
3008 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.041$
$\theta_{\text{max}} = 28.5^{\circ}, \theta_{\text{min}} = 1.7^{\circ}$
$h = -30 \rightarrow 34$
$k = -13 \rightarrow 7$
$l = -22 \rightarrow 21$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.050$	Hydrogen site location: inferred from
$wR(F^2) = 0.159$	neighbouring sites
S = 1.02	H-atom parameters constrained
4931 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0719P)^2 + 0.9275P]$
238 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.004$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.18 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.14 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.23355 (7)	0.99325 (17)	0.37403 (11)	0.0635 (4)
C2	0.25810 (8)	1.1152 (2)	0.40950 (14)	0.0822 (6)
H2	0.2939	1.1187	0.4532	0.099*
C3	0.22776 (9)	1.2299 (2)	0.37794 (15)	0.0880 (6)
Н3	0.2432	1.3131	0.4007	0.106*
C4	0.17463 (9)	1.22525 (19)	0.31288 (14)	0.0805 (5)
H4	0.1550	1.3052	0.2927	0.097*
C5	0.15015 (7)	1.10443 (17)	0.27736 (11)	0.0634 (4)
Н5	0.1145	1.1027	0.2331	0.076*
C6	0.17940 (6)	0.98494 (15)	0.30850 (10)	0.0515 (4)
C7	0.16701 (6)	0.84417 (15)	0.29109 (10)	0.0515 (4)
C8	0.21325 (6)	0.77376 (17)	0.34289 (11)	0.0633 (4)
C9	0.22490 (9)	0.6260 (2)	0.35031 (16)	0.0933 (7)
H9A	0.1921	0.5782	0.3126	0.140*
H9B	0.2339	0.5977	0.4090	0.140*
H9C	0.2562	0.6069	0.3341	0.140*
C10	0.11288 (6)	0.78539 (15)	0.23107 (9)	0.0505 (3)
C11	0.09375 (6)	0.81897 (15)	0.13777 (9)	0.0504 (3)
C12	0.03693 (6)	0.81403 (17)	0.08275 (10)	0.0597 (4)
H12	0.0100	0.7934	0.1054	0.072*
C13	0.02008 (7)	0.83903 (18)	-0.00419 (10)	0.0634 (4)
H13	-0.0181	0.8348	-0.0391	0.076*
C14	0.05803 (7)	0.87039 (16)	-0.04178 (10)	0.0596 (4)
C15	0.11407 (7)	0.87811 (17)	0.01237 (11)	0.0625 (4)
H15	0.1407	0.8999	-0.0106	0.075*
C16	0.13152 (6)	0.85409 (16)	0.10024 (10)	0.0595 (4)

H16	0.1696	0.8617	0.1352	0.071*
C17	0.03825 (9)	0.8940 (2)	-0.13756 (12)	0.0831 (6)
H17A	0.0121	0.8244	-0.1679	0.125*
H17B	0.0700	0.8925	-0.1543	0.125*
H17C	0.0199	0.9802	-0.1517	0.125*
C18	0.08264 (6)	0.70194 (16)	0.25982 (10)	0.0565 (4)
H18	0.0523	0.6599	0.2169	0.068*
C19	0.09043 (6)	0.66727 (15)	0.34913 (10)	0.0528 (4)
C20	0.11046 (6)	0.75841 (15)	0.41800 (10)	0.0543 (4)
H20	0.1225	0.8435	0.4090	0.065*
C21	0.11272 (6)	0.72415 (17)	0.49952 (10)	0.0590 (4)
H21	0.1254	0.7874	0.5439	0.071*
C22	0.09638 (7)	0.59720 (19)	0.51636 (11)	0.0676 (5)
C23	0.07698 (9)	0.50732 (18)	0.44865 (13)	0.0774 (5)
H23	0.0658	0.4216	0.4582	0.093*
C24	0.07365 (7)	0.54136 (17)	0.36668 (12)	0.0682 (5)
H24	0.0598	0.4784	0.3223	0.082*
C25	0.09838 (12)	0.5605 (3)	0.60507 (14)	0.1054 (8)
H25A	0.0689	0.4971	0.5994	0.158*
H25B	0.0932	0.6403	0.6337	0.158*
H25C	0.1343	0.5208	0.6385	0.158*
N1	0.25296 (6)	0.86401 (15)	0.39323 (10)	0.0757 (4)
H1	0.2854	0.8423	0.4314	0.091*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0462 (8)	0.0636 (11)	0.0714 (11)	-0.0050 (7)	0.0125 (8)	-0.0026 (8)
C2	0.0596 (10)	0.0781 (13)	0.0916 (14)	-0.0180 (10)	0.0099 (10)	-0.0150 (11)
C3	0.0817 (13)	0.0645 (12)	0.1094 (16)	-0.0190 (10)	0.0276 (12)	-0.0165 (11)
C4	0.0811 (13)	0.0534 (10)	0.1020 (15)	-0.0002 (9)	0.0296 (11)	0.0019 (10)
C5	0.0550 (9)	0.0580 (10)	0.0717 (11)	0.0009 (7)	0.0182 (8)	0.0045 (8)
C6	0.0427 (7)	0.0534 (9)	0.0565 (8)	-0.0040 (6)	0.0171 (6)	0.0002 (7)
C7	0.0410 (7)	0.0523 (8)	0.0582 (9)	-0.0013 (6)	0.0160 (6)	-0.0001 (7)
C8	0.0474 (8)	0.0578 (10)	0.0757 (11)	0.0028 (7)	0.0137 (8)	0.0006 (8)
C9	0.0737 (12)	0.0647 (12)	0.1225 (18)	0.0173 (10)	0.0170 (12)	0.0056 (11)
C10	0.0429 (7)	0.0502 (8)	0.0553 (8)	0.0000 (6)	0.0156 (6)	-0.0034 (7)
C11	0.0458 (7)	0.0480 (8)	0.0558 (9)	0.0010 (6)	0.0177 (7)	-0.0023 (7)
C12	0.0464 (8)	0.0695 (10)	0.0618 (10)	-0.0015 (7)	0.0193 (7)	0.0032 (8)
C13	0.0464 (8)	0.0732 (11)	0.0616 (10)	-0.0019 (8)	0.0110 (7)	0.0007 (8)
C14	0.0624 (9)	0.0567 (9)	0.0572 (9)	-0.0003 (7)	0.0203 (8)	-0.0041 (7)
C15	0.0579 (9)	0.0693 (11)	0.0655 (10)	-0.0033 (8)	0.0295 (8)	-0.0004 (8)
C16	0.0451 (8)	0.0663 (10)	0.0631 (10)	-0.0035 (7)	0.0162 (7)	-0.0028 (8)
C17	0.0852 (13)	0.1020 (15)	0.0579 (11)	-0.0040 (11)	0.0230 (10)	0.0002 (10)
C18	0.0494 (8)	0.0578 (9)	0.0570 (9)	-0.0073 (7)	0.0147 (7)	-0.0072 (7)
C19	0.0450 (8)	0.0514 (8)	0.0585 (9)	-0.0012 (6)	0.0160 (7)	0.0020 (7)
C20	0.0488 (8)	0.0496 (8)	0.0610 (9)	-0.0002 (6)	0.0173 (7)	0.0024 (7)
C21	0.0514 (8)	0.0613 (10)	0.0563 (9)	0.0053 (7)	0.0121 (7)	0.0024 (7)
C22	0.0667 (10)	0.0669 (11)	0.0645 (11)	0.0082 (8)	0.0202 (8)	0.0165 (9)
C23	0.0913 (13)	0.0547 (10)	0.0850 (13)	-0.0062 (9)	0.0326 (11)	0.0148 (9)

supplementary materials

C24	0.0755 (11)	0.0527 (10)	0.0722 (11)	-0.0104 (8)	0.0239 (9)	-0.0031 (8)
C25	0.136 (2)	0.1029 (17)	0.0779 (14)	0.0039 (15)	0.0424 (14)	0.0278 (12)
N1	0.0441 (7)	0.0726 (10)	0.0869 (11)	0.0043 (7)	-0.0010 (7)	0.0016 (8)

Geometric parameters (A, 7)	Geometric	parameters	(Å,	°)
-----------------------------	-----------	------------	-----	----

C1—N1	1.367 (2)	C13—H13	0.9300
C1—C2	1.387 (2)	C14—C15	1.376 (2)
C1—C6	1.403 (2)	C14—C17	1.502 (2)
C2—C3	1.364 (3)	C15—C16	1.383 (2)
C2—H2	0.9300	C15—H15	0.9300
C3—C4	1.380 (3)	C16—H16	0.9300
С3—Н3	0.9300	C17—H17A	0.9600
C4—C5	1.377 (2)	C17—H17B	0.9600
C4—H4	0.9300	C17—H17C	0.9600
C5—C6	1.392 (2)	C18—C19	1.470 (2)
С5—Н5	0.9300	C18—H18	0.9300
C6—C7	1.436 (2)	C19—C24	1.388 (2)
С7—С8	1.362 (2)	C19—C20	1.398 (2)
C7—C10	1.485 (2)	C20—C21	1.386 (2)
C8—N1	1.374 (2)	С20—Н20	0.9300
C8—C9	1.491 (3)	C21—C22	1.389 (2)
С9—Н9А	0.9600	C21—H21	0.9300
С9—Н9В	0.9600	C22—C23	1.375 (3)
С9—Н9С	0.9600	C22—C25	1.510 (3)
C10—C18	1.344 (2)	C23—C24	1.383 (2)
C10—C11	1.483 (2)	С23—Н23	0.9300
C11—C16	1.388 (2)	C24—H24	0.9300
C11—C12	1.395 (2)	C25—H25A	0.9600
C12—C13	1.372 (2)	C25—H25B	0.9600
C12—H12	0.9300	C25—H25C	0.9600
C13—C14	1.384 (2)	N1—H1	0.8600
N1—C1—C2	130.67 (16)	C13—C14—C17	120.83 (15)
N1—C1—C6	106.90 (14)	C14—C15—C16	121.29 (15)
C2—C1—C6	122.41 (16)	C14—C15—H15	119.4
C3—C2—C1	117.58 (17)	C16—C15—H15	119.4
C3—C2—H2	121.2	C15—C16—C11	121.84 (14)
С1—С2—Н2	121.2	C15—C16—H16	119.1
C2—C3—C4	121.40 (18)	C11—C16—H16	119.1
С2—С3—Н3	119.3	C14—C17—H17A	109.5
С4—С3—Н3	119.3	C14—C17—H17B	109.5
C5—C4—C3	121.23 (18)	H17A—C17—H17B	109.5
C5—C4—H4	119.4	C14—C17—H17C	109.5
C3—C4—H4	119.4	H17A—C17—H17C	109.5
C4—C5—C6	119.17 (16)	H17B—C17—H17C	109.5
C4—C5—H5	120.4	C10—C18—C19	129.53 (14)
C6—C5—H5	120.4	C10—C18—H18	115.2
C5—C6—C1	118.19 (14)	C19—C18—H18	115.2
C5—C6—C7	134.86 (14)	C24—C19—C20	116.88 (15)

C1—C6—C7	106.93 (13)	C24—C19—C18	119.56 (14)
C8—C7—C6	107.33 (13)	C20-C19-C18	123.40 (14)
C8—C7—C10	126.10 (14)	C21—C20—C19	121.10 (15)
C6—C7—C10	126.51 (13)	C21—C20—H20	119.4
C7—C8—N1	108.43 (15)	С19—С20—Н20	119.4
C7—C8—C9	130.86 (16)	C20—C21—C22	121.36 (16)
N1—C8—C9	120.72 (15)	C20—C21—H21	119.3
С8—С9—Н9А	109.5	C22—C21—H21	119.3
С8—С9—Н9В	109.5	C23—C22—C21	117.47 (16)
Н9А—С9—Н9В	109.5	C23—C22—C25	121.24 (18)
С8—С9—Н9С	109.5	C21—C22—C25	121.27 (18)
Н9А—С9—Н9С	109.5	C22—C23—C24	121.59 (17)
H9B—C9—H9C	109.5	C22—C23—H23	119.2
C18—C10—C11	120.81 (13)	C24—C23—H23	119.2
C18—C10—C7	121.24 (14)	C_{23} C_{24} C_{19}	121.57 (16)
$C_{11} - C_{10} - C_{7}$	117 94 (12)	C_{23} C_{24} H_{24}	119.2
C16-C11-C12	116 48 (14)	C_{19} C_{24} H_{24}	119.2
C16-C11-C10	121.80(13)	C_{22} C_{25} H_{25A}	109.5
C_{12} C_{11} C_{10}	121.00(13) 121.71(13)	$C_{22} = C_{25} = H_{25}R$	109.5
$C_{12} = C_{11} = C_{11}$	121.71(13) 121.11(14)	$H_{25} = C_{25} = H_{25} = H_{25}$	109.5
C_{13} C_{12} H_{12}	110 4	C^{22}	109.5
C11_C12_H12	119.4	$H_{25} = C_{25} = H_{25} C_{25}$	109.5
$C_{11} = C_{12} = C_{13} = C_{14}$	119.4 122 23 (14)	H25B C25 H25C	109.5
$C_{12} = C_{13} = C_{14}$	122.23 (14)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5 110.30 (13)
C_{12} $-C_{13}$ $-H_{13}$ C_{14} C_{13} H_{13}	118.0	C1 = N1 = C8	110.39 (13)
$C_{14} = C_{13} = 1115$	117.00 (15)	C_1 N_1 H_1	124.8
C15 - C14 - C13	117.00(15) 122.17(15)	Co-INI-HI	124.0
013-014-017	122.17 (13)		
N1—C1—C2—C3	-178.7 (2)	C10-C11-C12-C13	-176.84 (15)
C6-C1-C2-C3	-0.5(3)	C11—C12—C13—C14	-0.1(3)
C1-C2-C3-C4	-0.2(3)	C12-C13-C14-C15	-1.2(3)
$C_2 - C_3 - C_4 - C_5$	0.1(3)	C_{12} C_{13} C_{14} C_{17}	178.54 (17)
C_{3} C_{4} C_{5} C_{6}	0.7(3)	C_{13} $-C_{14}$ $-C_{15}$ $-C_{16}$	0.7 (2)
C4-C5-C6-C1	-14(2)	C_{17} $-C_{14}$ $-C_{15}$ $-C_{16}$	-179.04(16)
C4-C5-C6-C7	176.60(17)	C_{14} C_{15} C_{16} C_{11}	11(3)
N1-C1-C6-C5	179.83 (14)	C_{12} C_{11} C_{16} C_{15}	-23(2)
$C_{2}-C_{1}-C_{6}-C_{5}$	13(3)	C_{10} C_{11} C_{16} C_{15}	17634(15)
$N_1 - C_1 - C_6 - C_7$	1.3(3)	C_{11} C_{10} C_{18} C_{19}	-172.65(14)
C_{2} C_{1} C_{6} C_{7}	-177 21 (16)	C7 - C10 - C18 - C19	88(2)
$C_{2} = C_{1} = C_{0} = C_{1}$	179 97 (17)	C_{10} C_{18} C_{19} C_{24}	-150.56(17)
$C_{1} = C_{0} = C_{1} = C_{0}$	-1.80(18)	$C_{10} = C_{18} = C_{19} = C_{24}$	342(2)
$C_{1} = C_{0} = C_{1} = C_{0}$	-28(3)	$C_{10} = C_{10} = C_{10} = C_{20}$	-0.7(2)
$C_{1} = C_{0} = C_{1} = C_{10}$	2.0(3) 175 31 (14)	$C_{24} = C_{19} = C_{20} = C_{21}$	174.60(14)
$C_{1} = C_{0} = C_{1} = C_{10}$	1/3.31(14) 1.72(10)	$C_{10} = C_{20} = C_{21} = C_{21}$	1/4.09(14)
$C_{10} = C_{7} = C_{8} = N_{1}$	1.72(19) -175 50(14)	$C_{17} = C_{20} = C_{21} = C_{22}$	1.4(2)
$C_1 - C_1 - C_0 - N_1$	-1/3.30(14)	C_{20} C_{21} C_{22} C_{23} C_{20} C_{21} C_{22} C_{25}	-1.0(2)
$C_{10} = C_{1} = C_{2} = C_{2}$	-1/1.0(2)	C_{20} C_{21} C_{22} C_{23} C_{24}	-1/9.43(1/)
$C_{10} - C_{10} - C_{10} - C_{10}$	5.0(3)	$C_{21} = C_{22} = C_{23} = C_{24}$	17820(10)
$C_{0} = C_{1} = C_{10} = C_{10} = C_{10}$	30.0(2)	$C_{23} = C_{22} = C_{23} = C_{24} = C_{10}$	1/0.30 (19)
U - U - U - U - U - U - U - U - U - U -	-110./1(10)	UZZ-UZJ-UZ4-UI9	0.9 (3)

C8—C7—C10—C11	-120.58 (17)	C20—C19—C24—C23	-0.5 (2)
C6—C7—C10—C11	62.7 (2)	C18—C19—C24—C23	-176.00 (16)
C18—C10—C11—C16	-152.49 (15)	C2-C1-N1-C8	178.08 (19)
C7—C10—C11—C16	26.1 (2)	C6-C1-N1-C8	-0.3 (2)
C18—C10—C11—C12	26.1 (2)	C7—C8—N1—C1	-0.9 (2)
C7—C10—C11—C12	-155.35 (14)	C9—C8—N1—C1	178.67 (18)
C16-C11-C12-C13	1.8 (2)		