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Breast cancer is one of the most prevalent cancers in the world and is also the leading cause of cancer death in women. The use of
bioactive compounds of functional foods contributes to reduce the risk of chronic diseases, such as cancer and vascular disorders. In
this study, we evaluated the antioxidant potential and the influence of pitaya extract (PE) on cell viability, colony formation, cell
cycle, apoptosis, and expression of BRCA1, BRCA2, PRAB, and Erα in breast cancer cell lines (MCF-7 and MDA-MB-435). PE
showed high antioxidant activity and high values of anthocyanins (74.65± 2.18). We observed a selective decrease in cell
proliferation caused by PE in MCF-7 (ER+) cell line. Cell cycle analysis revealed that PE induced an increase in G0/G1 phase
followed by a decrease in G2/M phase. Also, PE induced apoptosis in MCF-7 (ER+) cell line and suppressed BRCA1, BRCA2,
PRAB, and Erα gene expression. Finally, we also demonstrate that no effect was observed with MDA-MB-435 cells (ER−) after
PE treatment. Taken together, the present study suggests that pitaya may have a protective effect against breast cancer.

1. Introduction

Breast cancer is the most frequently diagnosed type of cancer
around the world [1], and it is a complex disease caused by
progressive genetic mutations, associated with other factors
[2]. Various complications, including deaths from the disease
associated with breast cancer, are due to metastasis. The rates
of metastasis and mortality in breast cancer patients have
decreased because of early diagnosis by mammographic
screening and the implementation of adjuvant therapy.
Currently, breast cancer control primarily involves surgical
procedures and radiotherapy and is often supported by adju-
vant chemotherapy or hormone therapies. This disease is

highly resistant to chemotherapy, and there is still no effective
cure for patients with advanced stages of the disease, especially
in cases of hormone-independent cancer [3].

Several evidences, supported by epidemiological studies,
indicate that prolonged exposure to sex hormones is one of
the well-defined risk factors for breast cancer [4, 5]. Despite
the fact that the majority of breast cancers are ER+, and hor-
monal intervention is used to prevent disease recurrence
and/or progression, the mechanisms through which estrogen
contributes to malignant transformation of mammary epi-
thelium are poorly understood. ER− tumors are associated
with a worse short-term prognosis [6] and have weaker asso-
ciations with reproductive risk factors [7] than ER+ tumors.
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Mutations in BRCA1 are associated with predisposition to
ER− breast tumors, whereas most known common suscepti-
bility loci for breast cancer show stronger associations with
ER+ than with ER− tumors [8].

Carcinogenesis process results in the dysfunction of sev-
eral regulatory features that keep the cells in check [9]. The
balanced diet, with the diversified consumption of fruits
and vegetables, exposes the body to several phenolic com-
pounds. Over the last decade, these compounds have been
widely studied and associated with benefits to human health.
However, as there is a wide range of vegetables, species vari-
eties, and differences in the compositions of these foods as
well as the different localities of cultivation around the world,
much research has yet to be done to elucidate the compounds
present in these natural foods and their effective effects on the
good health [10, 11].

Some reports support that the belief that components of
food can affect the development of cancer in both beneficial
and detrimental ways [12, 13]. Healthy lifestyle changes,
including a better diet and regular exercise, can prevent up
to 40% of breast cancers [14]. The role of fresh fruits and
vegetables is to help prevent or lessen the action of free
radicals [15].

The pitaya is also known as the “dragon fruit,” since it has
a bright red peel with overlapping green fins that cover the
fruit, a fact that has gained popularity in different countries
of the world [16]. Hylocereus polyrhizus, which has red-
skinned fruits with red meat, Hylocereus undatus (red
pitaya), which has red-skinned fruits with white flesh, and
Hylocereus megalanthus (yellow pitaya), which has yellow
skin, are the most commercialized and consumed [17].
Red dragon fruit (Hylocereus polyrhizus) or sometimes called
red pitaya has been comprehensively researched for its
bioactive compounds.

Many compounds present in pitaya are responsible for
many pharmacological activities such as antitumor, antioxi-
dant, and anti-inflammatory actions. Bioactive compounds
have been reported to modify specific carcinogenic processes,
including cancer metabolism, hormonal balance, transcrip-
tion factors, cell cycle control, apoptosis, inflammation,
angiogenesis, and metastasis [18]. Potential mechanisms for
cancer prevention of bioactive compounds in fruits include
prevention of DNA adduct formation, enhanced carcinogen
elimination, decrease inflammatory processes, and a direct
cytotoxic effect on tumor cells [19, 20].

Recent reports have indicated that pitaya extract may
have a role in the prevention and treatment of breast cancer
[3, 21]. However, further studies on their role in the chemo-
prevention of breast cancer are warranted. In this context, the
aim of the study was to evaluate the antiproliferative and
proapoptotic effects of pitaya extract in MCF7 (ER+) and
MDA-MB-435 (ER−) cell lines.

2. Methods

2.1. Sample and Extraction. The red pitaya (Hylocereus poly-
rhizus) were obtained from Petropólis (Rio de Janeiro State,
Brazil). Hydroalcoholic extract was obtained from the pulp
of the fruits. Fruits were washed in tap water, and the pulp

was separated from the skins and seeds. Approximately 50 g
of pulp of pitaya was extracted with 50mL of ethanol and
50mL of distilled water and then shaken for 2 h. After the
pulp maceration period, the hydrohalic extract of pitaya
was filtered onWhatman number 1 filter paper and the resid-
ual ethanol was evaporated under low pressure at 55°C. The
extracts were then lyophilized and frozen at −20°C for use
in the other experiments. Usually, 50 g of pulp yields 3 g of
lyophilized extract.

2.2. Anthocyanin. Anthocyanins were extracted according to
the method described by Abdel-Aal et al. [22] with slight
modifications. Initially, 1 g of pitaya was extracted twice by
mixing with 30mL of methanol acidified with 1.0N HCl
(85 : 15,v/v) and shakingona shaker at 4°Cfor24 hr.The crude
extracts were filtered withWhatman number 1 paper. The fil-
trate absorbance readings were taken at 535nm, in Turner
Model 340 spectrophotometer. To determine the anthocyanin
values, we considered the dilution coefficients and the extinc-
tion coefficient of cyaniding 3-galactoside (98.2).

2.3. Antioxidant Activity Analyses

2.3.1. Oxygen-Radical Absorbance Capacity Assay (ORAC).
The ORAC procedure used an automated plate reader
(SpectraMax i3x, Molecular Devices, USA) with 96-well
plates [23, 24]. Experiments were conducted in phosphate
buffer pH 7.4 at 37°C. Peroxyl radical was generated using
2,2′-azobis (2-amidino-propane) dihydrochloride which was
prepared fresh for each run. Fluorescein was used as the
substrate. Fluorescence conditions were as follows: excitation
at 485 nm and emission at 520nm. The standard curve was
linear between 0 and 50mM Trolox. Results are expressed
as μmol TE/g.

2.3.2. Ferric Reducing Ability (FRAP). The extracts were
measured for antioxidant activity by FRAP according to
Rufino et al. [25]. Aliquots of 2.7mL of TPTZ reagent (ferric
2,4,6-tripyridyl-s-triazine) were mixed with 0.5mL of sample
extract. After 30min at 37°C temperature, the absorbance
was read at 595 nm. The antioxidant capacity (FRAP) was
expressed as Fe3+ equivalents (μmol Fe3+/g dry basis).

2.3.3. DPPH Assay. Aliquots of 0.5mL of the extracts were
mixed with 2.5mL DPPH methanolic solution (0.06mM)
and allowed to react for 1 hour, in the dark. Measurements
were performed at 515nm applying a Turner 340 spectro-
photometer. Analysis was performed in triplicates, and the
decline in the DPPH radical absorbance concentration
caused by the extracts was compared to a Trolox standard.
The results were expressed as μmol Trolox equivalents/g
dry basis [19].

2.4. Cell Culture and Treatment Protocol. Cell lines were
obtained from the Rio de Janeiro Cell Bank that certified their
identity and quality (INMETRO—Rio de Janeiro, RJ, Brazil).
Human breast adenocarcinoma cell lines (MCF-7 andMDA-
MB-435) were plated in 25 cm2 tissue culture flasks (5.0× 106
cells/flask) and maintained routinely in the Dulbecco’s mod-
ified Eagle’s medium—high glucose (DMEM) supplemented
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with 10% fetal bovine serum (FBS) and 1% penicillin (PS),
pH 7.4, under 5% CO2 atmosphere. Stock flasks were grown
to 70% confluence and subcultured routinely. Medium
renewal was done 3 times weekly. For each experiment, cells
were seeded at 3.5× 105 cells/cm2 density in 6 and 2× 104
cells/cm2 densities in 96-well plates for cell cycle and cell
proliferation analyses, respectively. After 24 h, medium was
removed and cells were treated with increasing concentra-
tions of PE (500 and 1000μg/mL) dissolved in DMEM. The
controls, DMEM and DMEM+2% DMSO, were included
on each plate. The cells were then incubated for 24 and
48 hours.

2.5. Cell Viability Assay

2.5.1. MTT Assay. The status of cancer cell line viability was
determined by the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-
diphenyltetrazolium bromide; thiazolyl blue) assay (Sigma,
New York, USA) wherein the substance is a pale yellow sub-
strate that is reduced by living cells to yield a dark blue for-
mazan product. This requires active mitochondria, and
even recently, dead cells do not reduce significant amounts
of MTT. Exponentially growing cells were adjusted to
2.0× 104/cm2 with DMEM, plated in 96-well plates (Corning,
Tewksbury, MA) at 200μL/well, and incubated for 24 h
according to the routine procedure. The cells were then incu-
bated with PE (500 and 1000μg/mL) for 24 and 48 h. Each
well was also incubated with MTT (10μL/well; 5 g/mL) for
4 h. At 85μL/well, the liquid was removed, and at 50μL/well,
sodium dodecyl sulfate was added to dissolve the solid resi-
due. Finally, the absorbance was measured using a microplate
reader (POLARIS—CELER®) at 570 nm. The cell prolifera-
tion inhibition rate (CPIR) was calculated using the following
formula: CPIR = (1 − average value of experimental group/
average value of control group) × 100%.

2.5.2. Test of Colony Formation (CFU). Breast cancer cell
lines were adjusted at a density of 103 cells/per well in a 6-
well plate in DMEM culture medium containing 10% FBS
for 48 h. After this step, the cells were treated with PE at
500 and 1000μg/mL with medium replace every 5 days.
After 18 days, colonies were fixed with 4% paraformalde-
hyde (Sigma, St. Louis, USA) in PBS containing 4% sucrose
(Vetec, Rio de Janeiro, Brazil) for 20min and then stained
with 0.005% crystal violet (Vetec, Rio de Janeiro, Brazil)
overnight at room temperature. For colonic analyses, they
were washed five times with PBS for 5min and 50 cells were
counted using an Axiovert inverted microscope (Carl Zeiss,
Oberkochen, Germany).

2.5.3. Trypan Blue Exclusion Test of Cell Viability. Cells were
grown to about 80% confluence in 6-well plates and treated for
24 h and 48h with red PE at 500μg/mL and 1000μg/mL.
Adherent and nonadherent cells were collected, and viability
was assessed by mixing aliquots of cell suspensions with
equal volumes of 0.4% trypan blue (GibcoBRL). Cells that
accumulated the dye were considered dead.

2.6. Cell Cycle. Cells were rinsed briefly with calcium and
magnesium-free phosphate-buffered saline and detached

with trypsin at room temperature. After centrifugation, the
cells were washed twice with phosphate-buffered saline and
were resuspended in 500μL of ice-cold Vindelov solution
[20] containing 0.1% Triton X-100, 0.1% citrate buffer and
0.1mg/mL RNase, and 50mg/mL propidium iodide (Sigma
Chemical Co., St. Louis, MO). After 15min of incubation, cell
suspension was analyzed for DNA content by flow cytometry
using a FACS Calibur flow cytometer (Becton Dickinson,
Mountain View, CA). The relative proportions of cells
with DNA content haploid subG1 (<2n), diploid G0/G1
(2n), S phase (>2n but <4n), and G2/M phase (4n) were
acquired and analyzed using CellQuest and WinMDI 2.9,
respectively. The percentage of cell population at a partic-
ular phase was estimated with FlowJo software following
the acquisition of 30,000 events. Cell dissociation proce-
dure does not affect fluorescence under the experimental
conditions that were used in this study or in any others
of which we are aware. Nuclei of viable cells were gated
according FL-2W×FL2-A relation.

2.7. Apoptosis Assay. Cells were resuspended in 400μL of
binding buffer containing 5μL of annexin V FITC and 5μL
propidium iodide (Apoptosis Detection Kit II, BDBios-
ciences) for 15min at room temperature. Annexin V binding
was evaluated by flow cytometry (FACScalibur, BD Biosci-
ences), and after acquisition of 30,000 events, the data were
analyzed in CellQuest and FlowJo software.

2.8. Gene Expression Analysis. Total RNA was extracted from
the studied cells using Trizol® Reagent (Invitrogen) accord-
ing to the manufacturer’s instructions. RNA yield and quality
were determined by a spectrophotometer Nano-Drop ND-
1000 V3.2 (Nanodrop Technologies, Wilmington, DE).
Equal amounts (500 ng) of RNA from cells were reverse tran-
scribed with cDNA synthesis kit “Superscript II First-Strand
Synthesis System for RT-PCR” (Invitrogen) and Oligo (dT)
primer (Invitrogen). The cDNA was used as a template for
subsequent real-time polymerase chain reaction (RT-PCR).
Quantitative RT-PCR was done in a StepOnePlus™ Real-
Time PCR System (Life Technologies) using SYBR Green
(Applied Biosystems, Grand Island, NY) following the man-
ufacturer’s instructions and using primers as shown in
Table 1. The expression levels of ERBB2, GSTM1, BRCA1,
BRCA2, PRAB (progesterone receptor isoform A and B),
ERα (estrogen receptor α), and GPR30 (a G protein-
coupled receptor for estrogen) mRNA were all normalized
with β-actin and GADPH (glyceraldehyde-3-phosphate
dehydrogenase) expression level. For the evaluation of the
quality of RT-PCR products, analyses of the melt curve were
performed after each assay. The expression is relative to the
measure using the ΔΔCT technique with β-actin and
GADPH genes as the reference genes.

2.9. Statistical Analysis. The results presented are the mean
and the corresponding standard deviation of three indepen-
dent experiments performed in triplicate (n = 9). Data were
analyzed using GraphPad Prism statistical software (version
5.04, GraphPad software, San Diego, CA). The univariate
analysis of variance (ANOVA) with the Tukey posttest at a
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95% confidence level was used to test cell viability, cell cycle,
and apoptosis rate.

3. Results

3.1. Bioactive Properties of Red Pitaya. Natural and synthetic
antioxidants are widely used in modern medicine. In the
comparison of the antioxidant assays, an important bioactive
potential in pitaya (10mg/mL) was identified in ORAC
values (1079.70± 75.20μM Trolox/g), FRAP assay (2519.36
± 53.99μmol sulfate ferrous/g), and DPPH reduction
(83.99± 0.30%) (Table 2). There is a need for screening
studies in order to identify the mode of action of different
antioxidant compounds (enzymatic and nonenzymatic in
addition, comparing between synthetic and natural antioxi-
dant compounds) by different assays [26].

Pitaya contained significant levels of total anthocyanins
(Table 2). The pulp showed a significantly higher anthocya-
nin content (19.14± 0.52mg/g) in comparison with peel
(8.36± 2.70mg/g).

3.2. Effect of Pitaya Extract (PE) on Cell Viability

3.2.1. MTT Assay. The treatment with PE for 24 h
decreased MCF-7 cell viability from the concentration of
250–1000μg/mL, showing a mean reduction around
25.15% (p < 0 05) (Figure 1(a)). After 48 h, PE induced a
higher inhibition of cell viability from the concentration of
2.5μg/mL (by 29.33% compared with the control group,
p < 0 05), and the maximum inhibition was obtained with
1000μg/mL (40.22%, p < 0 05) (Figure 1(b)). Our data
showed an important cell growth inhibition on MCF-7 cell
after PE treatment (500μg/mLand1000μg/mL) (Figure 1(c)).

As shown in Figures 1(d) and 1(e), a slight decrease in
MDA-MB-435 cell viability was observed only in high
concentrations of PE (500 and 1000μg/mL) with maxi-
mum inhibition of 20% compared with control group after
48 h (p < 0 05).

3.2.2. Test of Colony Formation (CFU). The next step was to
analyze the effect of PE on the clonogenic property of
MCF-7 and MDA-MB-435 cells. According to the literature,
cell groups with fewer than 50 cells were not considered as
colonies [27]. Our data showed that the clonogenic ability
of MCF-7 cells was inhibited in the presence of PE (500
and 1000μg/mL) (Figure 2). Maximum reduction of clono-
genic ability was obtained when 1000μg/mL of PE (about
70%, ∗∗p < 0 001) was used (Figure 2). No effect in colony
formation was observed in MDA-MB-435 cell line after
PE incubation.

3.2.3. Trypan Blue Exclusion. Another assay for cell prolifer-
ation was used to confirm the effect of PE in breast cancer cell
lines. PE induced an inhibition of proliferation in MCF-7 cell
line after 24 and 48 h from the concentration of 500μg/mL
(by 50% compared with the control group, p < 0 05), and
the maximum inhibition was obtained with 1000μg/mL
(80%, p < 0 05). Corroborating with other methods used,
when MDA-MB-435 cells were treated with PE for 24h and
48 h, no changes in cell proliferation were detected when
compared to untreated cells (Figure 3).

3.3. Effect of Pitaya Extract on Cell Cycle Progression.We next
questioned whether PE would have any effect on cell cycle
arrest in breast cancer cell lines. After 24h and 48 h of treat-
ment, PE caused an increase in the percentage of cells in the
G0/G1 phase, with a corresponding decrease in the G2/M

Table 2: Bioactive potential of pitaya evaluated by different methods.

Pitaya 2.0mg/mL 5.0mg/mL 10.0mg/mL R2

ORAC assay (μM Trolox/g) 140.50± 1.90 560.00± 48.90 1079.70± 75.20 0.9943

FRAP assay (μmol Fe2SO4/g) 909.20± 68.46 1698.64± 33.17 2519.36± 53.99 0.9621

DPPH assay (% reduction) 33.05± 0.32 73.01± 0.38 83.99± 0.30 0.8892

Pulp Peel Total anthocyanins (fruit) Total anthocyanins (pitaya extract)

Total anthocyanins (mg/g) 19.14± 0.52 8.36± 2.70 27.50± 1.61 74.65± 2.18
Results expressed in mean ± standard error.

Table 1: Primer sequences for the reverse transcription-quantitative polymerase chain reaction.

Gene Forward primer Reverse Primer

ERBB2 CCGTGCCACCCTGAGTGT AGCCTCCGGTCCAAAACAG

GSTM1 TCCCTCTTCACTCCCCCTAAA GGGTAGCTGAGGCTTCAAAGG

BRCA1 CTGCTCAGGGCTATCCTCTCA TGCTGGAGCTTTATCAGGTTATGT

BRCA2 CCACAGCCAGGCAGTCTGTAT AGAACACGCAGAGGGAACTTG

PRB CCTGAAGTTTCGGCCATACC CAGGGCCGAGGGAAGAGT

PRAB GGCTACGAAGTCAAACCCAGTT CAATTGCCTTGATGAGCTCTCTAA

ERα CTGTTTGCTCCTAACTTGCTCTTG TCCACCATGCCCTCTACACA

GAPDH ATGGAAATCCCATCACCATCTT CGCCCCACTTGATTTTGG
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phase, indicating a growth arrest of MCF-7 cells after that
time (Figure 4 and Table 3). Corroborating with the data
from cell proliferation, after 24 h and 48 h of treatment with
PE, no changes in cell cycle profile of MDA-MB-435 cells
were detected when compared to untreated cells (Figure 4
and Table 3).

3.4. Effect of Pitaya Extract on Apoptosis Assay. Flow cytom-
etry analysis showed that treatment for 24 h and 48 h with
PE at concentrations of 500 and 1000μg/mL did not induce
apoptosis in MDA-MB-435 cells. However, when MCF-7
cells were treated under the same conditions for 24 and

48 h, an increase in the number of apoptotic cells was
detected (Figure 5).

3.5. Gene Expression Profile. The role of BRCA1, BRCA2,
PRAB, and Erα genes as an oncogene responsible for the
downregulation of the incidence of cancer progression is well
established in a wide variety of tumors, including breast
tumors. To study molecular mechanisms by which PE inter-
feres in breast cancer progression, we investigated expression
profile of several related genes (Figure 6). In MCF-7 cell line,
PE treatment promoted a downregulation of BRCA1, BRCA2,
PRAB, and Erα genes. Conversely, in MDA-MB-435 cells, no
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Figure 1: Effect of PE (2.5–1000μg/mL) on viability of MCF-7 (a, b) and MDA-MB-435 (d, e) cells at different time intervals after exposure
using MTT assays. The experiment is expressed as mean± standard error, and differences significant between treated cells with PE were
compared using the Tukey test (∗p < 0 05; ∗∗p < 0 01). Phase contrast microscopy of MCF-7 cells (treated for 48 h with 500 and 1000μg/mL
of PE) was observed on 96-well culture plates (c).
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changes in gene expression profile cells were detected when
compared to untreated cells (Figure 6).

4. Discussion

The present study provided several sets of information on the
antioxidant activity of PE and their effects on the cell viabil-
ity, cell cycle, and apoptosis of MCF-7 and MDA-MB-435
cells. Breast cancer is the most common cause of cancer in
women and the large international variation in breast cancer
rates, coupled with the rapidly increasing rates observed in
secular trend studies. Although dietary factors have long
been suspected to be implicated in breast cancer etiology,
few convincing dietary risk factors have been identified [6].
Fruits and vegetables contain numerous constituents that
may reduce breast cancer risk, including antioxidants and
several vitamins which can prevent cancer [28].

The red pitaya features functional potential related to its
high antioxidant activity [21]. Hylocereus species were
responsible for the major antioxidant capacity [29], and some
studies showed that the peels also contain more or less anti-
oxidant properties due to their color. Thus, both the peels
and the pulps could be beneficial especially in food and
pharmaceutical industry [30]. The main mechanism of anti-
oxidant action in foods is radical scavenging activity. There-
fore, many methods had been developed in which the
antioxidant activity was evaluated by the scavenging of syn-
thetic radicals in polar organic solvents such as ethanol [17].

In previous studies evaluating extracts of other fruits by
ORAC assay, it reported lower ORAC values than those
found in this study. The antioxidant capacity of the hydroal-
coholic concentrated extract of red grape pomace showed
22.94μM of Trolox/g for the ORAC assay. Already concen-
trate pitaya extract (PE) showed high antioxidant capacity
with a reduction of up to 1000μmol Trolox/g−1 [31]. The
US Department of Agriculture [32] published, as part of
the National Programme for Food and Nutrient Analysis, a
study containing data on the antioxidant capacity of concen-
trated fruit extracts, using the ORAC method. Among the
tested fruits were the blackberry (88.57μM of Trolox/g),
raspberries (37.98μM of Trolox/g), and a strawberry
(32.26μM of Trolox/g).

FRAP is the only assay that directly measures antioxi-
dants in a sample. The other assays are indirect because they
measure the inhibition of reactive species (free radicals) gen-
erated in the reaction mixture, and these results depend
strongly on the type of reactive species used. Mancini-Filho
et al. [33] showed that those with average FRAP values higher
than those found in the literature for other fruit extracts are
also considered high potential antioxidants. The reducing
potential of PE in this study was higher than the antioxidant
capacity of some concentrated extracts of nontraditional
Brazilian fruits such as camu-camu and uvaia jambolan.
The fruits of camu-camu showed the highest antioxidant
capacity, with a value of 2501.5 ± 74.5 μmol sulfate ferrous/g.
Acerola and the netting-black are also significant because
the camu-camu showed the highest values, 1995.8 ± 47 and
28.4 ± 908.95 μmol sulfate ferrous/g, respectively. The fruits
of jambolan (172.8 ± 10.8 μmol sulfate ferrous/g) and uvaia
(407.5 ± 34.9 μmol sulfate ferrous/g) showed lower values
than those of pitaya.

Breast cancer cell lines MCF-7 and MDA-MB-435 are
well known and widely used in studies on growth properties,
regulatory mechanisms, and therapy of breast cancers. Our
results showed for the first time that PE shows antitumori-
genic effects on hormonal receptor-positive breast cancer
MCF-7 cells. The epithelial cell line MCF-7 shows estrogen
and progesterone receptors and low metastatic potential.
Holliday and Speirs classified MCF-7 as cell line luminal with
ER+, PR+/−, HER2−, and Ki67 low endocrine responsive and
often chemotherapy responsive [34].

Recently, Wang et al. [35] demonstrated that differences
between MCF-7 and MDA-MB-435 in 229 genes were
mainly implicated in the biological functions related to cell
adhesion and motion, antigen processing and presentation
(via MHC class II), hormone response, extracellular structure
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after 18 days of culture in DMEM supplemented with 10% FCS
containing PE at concentrations of 500 and 1000μg/mL. Data are
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Figure 3: Effect of PE on cell proliferation of MCF-7 and MDA-
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Figure 4: Effect of PE on cell cycle progression in MCF-7 and MDA-MB-435 cells after 24 and 48 h exposure. Data are presented as
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500 (II) and 1000 (III) μg/mL compared by the Tukey test.
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organization, tissue remodeling, and cell proliferation regula-
tion. A microarray analysis has indicated that the gene
expression pattern of the human MDA-MB-435 [4] resem-
bles that of human melanoma cell lines [5, 36]. This cell line
has fusiform morphology and is considered luminal with low
degree of invasion in Matrigel. The epithelial cell line MDA-

MB-435 does not express hormone receptors and has a high
metastatic potential and high tumorigenicity [37].

According to Ge et al. [38], MDA-MB-435 cell line is
resistant to drugs in vitro breast cancer, due to the presence
of high levels of GSTP1 mRNA expression when compared
to the levels expressed in MCF-7. Patients with breast cancer

Table 3: Effect of PE on cell cycle progression in MCF-7 and MDA-MB-435 cells after 24 h and 48 h exposure.

Cell line Incubation time Cell cycle phases Control (CT) 500 μg/mL 1000μg/mL

MCF-7

24 h

G0/G1 59.59± 0.16 63.47± 2.07∗ 65.02± 0.23∗
S 16.91± 1.20 14.03± 0.61 14.80± 2.36

G2/M 19.28± 1.87 19.77± 1.42 17.48± 3.22

48 h

G0/G1 58.49± 0.45 65.40± 1.10∗ 69.61± 3.90∗
S 16.45± 0.55 10.63± 0.25 13.64± 1.71

G2/M 22.28± 0.93 20.19± 0.04∗ 15.66± 3.72∗∗

MDA-435

24 h

G0/G1 62.30± 1.12 61.99± 1.99 61.60± 0.64
S 14.84± 0.43 14.93± 0.24 14.87± 0.51

G2/M 19.90± 1.29 19.83± 2.04 18.88± 0.68

48 h

G0/G1 69.64± 1.18 70.64± 0.80 70.01± 1.85
S 11.88± 0.89 11.30± 0.62 11.50± 0.53

G2/M 15.17± 1.03 15.52± 0.52 15.76± 0.83
The cell cycle phases and quantitative results are illustrated in accordance with the exposure time and PE concentration. The experiment is expressed as
mean ± error standard. ∗ indicates significant differences from the control group (∗p < 0 05; ∗∗p < 0 01).
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with the allele GSTP1 105Val are more likely to have a tumor
with advanced histological grade, lymph node metastases,
and negative estrogen receptor. The toxic damage to the
genomic DNA in somatic cells not only induces carcinogen-
esis but also means that there is the development of tumors
with more aggressive features, with poor differentiation,
independent growth hormones, and metastatic potential.
Probably, this is due to difference in the characteristic of
aggressiveness between MCF-7 and MDA-MB-435 cell lines,
since the MCF-7 cell line has hormone receptors and is more
sensitive to the action of therapeutic drugs.

Pitaya has recently drawn much attention, not only
because of their striking color and economic value as food
products but also for their health properties [39]. For exam-
ple, red pitaya was reported to offer many health benefits
including chemoprevention of cancer, anti-inflammatory
and antidiabetic effects, and a reduction in the mortality risk
of cardiovascular disease [40], as well as antioxidative prop-
erties conferred by its betacyanin content [41]. Asmah et al.
[42] reported that a red and white pitaya pulp are rich in
polyphenols and a methanol extract showed promising
antioxidant and antiproliferative capacity when used to treat
cervix cancer cells (HeLa) and cytotoxic effect on human oral
cancer cell metastases induced by B16-F10 melanoma.

Cell cycle deregulation is a fundamental aspect in cancer
development. Deregulation of cell cycle has been linked with
cancer initiation and progression [43]. Thus, cell cycle has
emerged as one of the attractive therapeutic targets in the
treatment of cancer [44].

Neoplastic cells contained in cell proliferation with a
large proportion of cells in S phase and G2/M [45]. The effi-
ciency of a bioactive compound in food cancer control can
be judged by its ability to block the cell cycle phases G0/G1
and G2/M, reducing the proportion of cells in S phase [46].
PE promoted an increase in the percentage of cells in the
G0/G1 phase, followed by reduction of cells in the G2/M
phase, indicating an arrest in the growth and proliferation

of MCF-7 cells after this period. One of the important and
limiting aspects of the cell cycle is cell progression in the first
phase (G1) of the S phase, which has its control affected in
cancer [47].

There is an urgent need to develop innovative ways to
treat breast cancer that has become resistant to apoptosis
therapies. Apoptosis in clinical practice is a potential target
for therapeutic use of programmed cell death or to under-
stand the mechanisms of resistance to radiotherapy and che-
motherapy. When cells become old or damaged, they die by
apoptosis, necrosis, or a combination of the two and are
replaced with new cells. On the other hand, cancer cells are
immortal since they are resistant to apoptosis. Chemother-
apy kills cancer cells through apoptosis and/or necrosis [48].

According Sreekanth et al. [49], pitaya extract com-
pounds (betacyanin and anthocyanin) and pigments act
on K562 cells that lead to human chronic myeloid leuke-
mia altering the integrity of the mitochondrial membrane,
leading to leakage of cytochrome c, caspase activation, and
nuclear disintegration. These biochemical changes are
reflected in structural changes typical of cells undergoing
apoptosis (programmed cell death).

In this regard, the findings presented here coupled to the
dragon fruit extract inhibited the viability and proliferation
of human breast adenocarcinoma MCF-7, and it was found
that these bioactive compounds present in the dragon fruit
also interfere in the distribution phases of the cell cycle.
However, we did not find studies of pitaya extract effects on
tumoral breast cells in the literature.

Other components have already been well character-
ized in pitaya and, along with anthocyanins, have been
described with substances potentially beneficial to human
health. Esquivel et al. [29] found out that betalains con-
taining both phenolic and nonphenolic structures were
responsible for the major antioxidant capacity of purple
Hylocereus juices evaluated, while nonbetalainic phenolic
compounds contributed only to a minor extent. It was
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Figure 6: Profile of gene expression in MCF-7 and MDA-MB-435 cells. Quantitative analysis of real-time PCR in different genes associated
with cancer progression, after 48 h incubation with PE. Data are presented as mean± standard deviation of 3 independent experiments, each
performed at least in triplicate. Differences significant between treated cells with PE (500 and 1000 μg/mL) were compared using the Tukey
test (∗p < 0 05).
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once thought that betalains were related to anthocyanins
(i.e., a flavonoid derivative), the reddish pigments found
in most plants [50].

Estrogen stimulates proliferation of various breast cancer
cells via estrogen receptors (ER). Studies show that different
compounds present in food matrix could bind to estrogen
receptors and mediate estrogen responses [51, 52]. The
majority of authors show that there is a positive association
between the presence of hormone receptors and a more
favorable prognosis. The presence of hormone receptors
indicates a functional state closest of normal breast cell. In
other words, these tumors are similar in morphology to the
cells of origin and thus are less aggressive to the body. The
estrogen receptor expression by tumor cells suggests that at
least part of cell proliferation depends on stimulation by
estrogen. Therefore, it is possible to stop cell growth by
blocking hormone [53]. The activity of PE was evaluated in
this study to identify potential signaling pathways by real-
time PCR analysis; the observations indicate that the PE
showed antitumor activity in MCF-7 cell line by probably
suppressing ERα.

BRCA1 and BRCA2 are human genes that produce tumor
suppressor proteins. These proteins help repair damaged
DNA and, therefore, play a role in ensuring the stability of
the cell’s genetic material. Genetic susceptibility to breast
cancer comprises inherited mutations of the BRCA1 and
BRCA2 genes related to hereditary breast cancers. In addi-
tion, some studies reported that vegetable and fruit intakes
were modifiers in developing breast cancer in BRCA muta-
tion carriers [54].

It is known that BRCA-related tumorigenesis is mainly
caused by increased genome instability and DNA damage,
but it is unclear why patients who have a mutation in BRCA1
BRCA2 are at higher risk of developing estrogen-responsive
cancer. Literature suggests that BRCA1 and estrogen and
estrogen receptor signaling regulate cell proliferation and
differentiation of breast cells, synergistically [55].

BRCA1 and BRCA2 were downregulated upon pitaya
treatment, indicating that DNA damage and repair pathways
were affected. Proteins (PRAB, BRCA1, and BRCA2) playing
role in DNA damage response pathway were deregulated
upon pitaya treatment [56]. Downregulation of PRAB,
BRCA1, and BRCA2 imply that uncontrolled proliferation
was to some extent normalized and DNA damage was accu-
mulated leading to apoptosis. Our results on pitaya extract
can be reconciled with more general findings in cancer biol-
ogy that tumors activate DNA damage response pathways
such as BRCA1/2 upon exposure to DNA-damaging agents
[57]. It is worth speculating that pitaya may be even more
cytotoxic, if combined with other DNA-damaging drugs
such as doxorubicin and cisplatin.

Thomson and Thompson [58] support the emphasis of
public messages for greater vegetable and selective fruit
intake by extending a potential benefit for ER-negative breast
cancer. On the other hand, tumors with positive hormone
receptors have a more favorable prognosis and respond bet-
ter to hormonal therapy. This is because the strategies of
treating a malignant tumor sensitive to hormones involve,
on the one hand, the reduction of estrogen produced nor-
mally by the body and, on the other, the inhibition of the
links between receptors and hormones. The first group has
use drugs which inhibit the synthesis of the hormone, such
as those that reduce the activity of the aromatase enzyme
responsible for the synthesis of estrogens in various tissues,
such as adipose tissue. Another option, more drastic and in
selected cases, would be the surgical removal of the ovaries,
which produce estrogens in premenopausal women. In the
second group are drugs that aim to disrupt and/or compete
with estrogens in its binding to the receptor.

Studies have shown that polymorphisms in the ERα gene
(ER-alpha) are associated with diseases such as breast and
prostate cancer, osteoporosis, Alzheimer’s disease, and car-
diovascular diseases [59]. The probable mechanisms of
pitaya’s proliferative action appear to be dependent on

Pitaya extract

MCF-7 cells

Estrogen
receptor

Hormone-
receptor
interaction

Estrogen cannot bind to the receptor

Cell viability

Cell Receptor

Figure 7: The proposed mechanism of action of PE in MCF-7 cells associated with decreased estrogen receptor expression.
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decreased ERα expression that can directly trigger mecha-
nisms of inhibition of cell viability or perhaps decreasing
hormone binding to the receptor and thereby inhibiting cell
growth (Figure 7). More studies are needed to conclude that
the effects of pitaya extract are truly ER-dependent.

5. Conclusion

We conclude that pitaya may act on selective ER-responsive
breast cancer cells by targetingmultiple tumorigenic pathways
leading tocell cycle arrest andapoptosis andprobably suppress
the expression of estrogen and progesterone receptors. Our
data indicate that pitaya possesses therapeutic potential
against breast cancer. Further preclinical and clinical studies
are warranted to clarify the therapeutic potential of pitaya in
the prevention and adjuvant treatment of breast cancer.
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