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Abstract
Objectives: Coxsackievirus A group 16 strain (CVA16) is one of the predominant
causative agents of hand, foot, and mouth disease (HFMD).
Methods: Using a specimen from a male patient with HFMD, we isolated and
performed sequencing of the Korean CVA16 strain and compared it with a G10
reference strain. Also, wewere investigated the effects of medicinal plant extract
on the cytopathic effects (CPE) by CPE reduction assay against Korean CVA16.
Results: Phylogenetic analysis showed that the Korean CVA16 isolate belonged to
cluster B-1 and was closely related to the strain PM-15765-00 isolated in Malaysia in
2000. The Korean CVA16 isolate showed 73.2% nucleotide identity to the G10 pro-
totype strain and 98.7% nucleotide identity to PM-15765-00. Next, we assessed
whether the Korean CVA16 isolate could be used for in vitro screening of antiviral
agents to treat HFMD infection. Vero cells infected with the Korean CVA16 isolate
showedacytopathiceffect2days after the infection, and the treatmentofcellswith
Cornus officinalis, Acer triflorum, Pulsatilla koreana, and Clematis heracleifolia
var. davidiana Hemsl extracts exhibited strong antiviral activity against CVA16.
Conclusion: Collectively, our work provides potential candidates for the devel-
opment of vaccine and novel drugs to treat the CVA16 strain isolated from a
Korean patient.
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1. Introduction

CoxsackievirusA16 (CVA16) is a serotype of the genus

Enterovirus belonging to the family Picornaviridae, and

one of the causative agents of hand, foot, and mouth dis-

ease (HFMD) in humans. In rare instances, it may cause

neurological diseases, including aseptic meningitis, exan-

thems, and herpangina. HFMD is a self-limiting exan-

thematous eruption characterized by vesicles in the oral

cavity and peripherally distributed cutaneous lesions on

the hands and feet [1,2]. Recently, large outbreaks of

HFMD by CVA16 and enterovirus 71 (EV71) were re-

ported, especially in the AsiaePacific area [3,4]. Out-

breaks of HFMD by CVA16 occurred in Taiwan

(1996e2006) and in Singapore (2001e2007), as well as in

England (1994) [1,5]. In Korea, outbreaks of HFMD

caused by human enterovirus (HEV) infections have been

consistently reported since 2009 [6e8]. HFMD has

become a serious public health problem in South-East

Asia, with periodic large epidemics occurring in recent

decades.Most of therapeutic and vaccine strategies against

HFMD have focused on EV71 [9,10]. In China, Phase III

trials of antiviral vaccines against EV71 were recently

successfully completed [11]. In addition, no HEV-specific

antiviral drugs are yet available for clinical use. Many

synthetic anti-HEV compounds have been described

in vitro, but only a few of themare effective in vivo [12,13].

However, no vaccines are currently available to prevent

CVA16 infections. Thus, research and development of

vaccines and antiviral drugs to prevent CVA16 infections

and treat HFMD must be spurred on.

A suitable alternative to antiviral drugs may be

traditional medicinal plants. They have multiple targets,

minimal side effects, low potential to cause resistance,

and are less expensive. Screening of medicinal plants

has led to the discovery of potent in vitro inhibitors of

viral replication [14,15].

In this study, the molecular biological characteristics

and genetic diversity of a Korean isolate of CVA16 were

analyzed through complete nucleotide sequencing and

phylogenetic analysis, respectively. Finally, Korean

medicinal plants were screened for their potential anti-

CVA16 effects.
2. Materials and methods

2.1. Virus isolation and identification
The Korean CVA16 strain was isolated from the stool

sample of a male patient with HFMD admitted to the

Department of Pediatrics at the Soonchunhyang Uni-

versity Cheonan Hospital, Cheonan, Korea, in June

2008. This study was conducted in accordance with the

ethical principles adopted by the World Medical Asso-

ciation Declaration of Helsinki and approved by the

Institutional Review Board (IRB No. 2012-48) of the

ethical committee of Soonchunhyang University
Cheonan Hospital. The pretreated sample was inocu-

lated into Vero cells and incubated at 37�C in an at-

mosphere of 5% CO2 until the appearance of cytopathic

effects (CPE). Basic Local Alignment Search Tool

(BLAST) search of VP1 sequences verified the identity

of the Korean isolate. The VP1 sequences of the Korean

isolate had the maximum nucleotide similarity with

CVA16 serotype strains [16].

2.2. Nucleotide sequencing and sequence

analysis
The complete nucleotide sequence of the Korean

CVA16 strain was determined using a primer walking

strategy; the sequences of the genome termini were

determined by random amplification of cDNA ends

system (Invitrogen, Carlsbad, CA, USA). Polymerase

chain reaction (PCR) products were purified using a

QIAquick PCR Purification Kit (Qiagen, Hamburg,

Germany). The purified DNA was added to a reaction

mixture containing 2 mL of BigDye terminator reaction

mix (ABI Prism BigDye Terminator Cycle Sequencing

Kit; Applied Biosystems, Foster, CA, USA) and 2 pmol

of each primer. Sequencing reactions were subjected to

an initial denaturation at 96�C for 1 minute and 25 cy-

cles consisting of 96�C for 10 seconds, 50�C for 5

seconds, and 60�C for 4 minutes in a Gene Amp PCR

system 2700 (Applied Biosystems). The products were

purified by precipitation with 100% cold ethanol and 3M

sodium acetate (pH 5.8), and then loaded on an auto-

mated 3100 Genetic Analyzer (Applied Biosystems).

Nucleotide sequences of CVA 16 strains were con-

structed to contig and compared with the reference G10

strain (accession no. U05876). G10 strain, obtained from

Genbank databases, was isolated in South Africa in 1954

and subsequently sequenced in 1994 [17,18]. The

complete sequences of the Korean CVA16 isolate are

deposited in the GenBank sequence database under the

accession number JX839965. Complete nucleotide se-

quences of CVA16 isolate were compared with the

reference strains by using CLUSTAL W (version 1.81)

[19]. The phylogenetic relationships of each virus

isolate were inferred using free MEGA software

version 5.05 (Available from www.megasoft.net). The

maximum composite likelihood method was used as the

substitution method, while the neighbor-joining method

was used to reconstruct the phylogenetic tree [20]. The

reliability of the phylogenetic tree was determined by

bootstrap resampling of 1000 replicates.

2.3. High-throughput screening of medicinal

plant extracts for antiviral activity against

CVA16
A medicinal plant extract library was supplied by the

Ginseng Research Division, National Institute of

Horticultural and Herbal Science, Eumseong-gun,

Chungcheongbuk-do, Korea. To screen 492 medicinal

http://www.megasoft.net
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plant extracts, Vero cells were seeded in 96-well plates.

After CVA16 infection, the plates were incubated with

individual plant extract at 10 mg/mL for 48 hours. The

antiviral activity was measured using a sulforhodamine

B (SRB) assay.

2.4. Antiviral activity and cytotoxicity assays
Antiviral activity and cytotoxicity were evaluated by

the SRB method using CPE reduction recently reported

[21]. The effect of Cornus officinalis, Acer triflorum,

Pulsatilla koreana, and Clematis heracleifolia var.

davidiana extracts on CVA16-induced CPE was

observed. Briefly, Vero cells were seeded onto a 96-well

culture plate at a concentration of 2 � 104 cells/well.

Next day, the medium was removed and washed with

phosphate-buffered saline. Then, 0.09 mL of diluted

virus suspension and 0.01 mL of the medium supple-

mented with FBS containing 0.4 mg/mL, 2 mg/mL,

10 mg/mL, and 50 mg/mL C. officinalis, A. triflorum, P.

koreana, or C. heracleifolia var. davidiana Hemsl were

added. After incubation at 37�C in 5% CO2 for 2 days,

cell morphology was microscopically observed at

4 � 10 magnification (Axiovert10, Zeiss, Germany), and

images were recorded. Cytotoxicity was measured by

the antiviral activity assay as described above. To

calculate the concentration required to reduce cell

growth by 50% (CC50) values, the data were expressed

as percentages relative to controls, and CC50 values

were obtained from the resulting dose-response curves.

2.5. Real-time reverse transcription-PCR
Total RNA was isolated from Vero cells. Reverse

transcription was performed using SuperScript II Reverse

Transcriptase (Invitrogen, Grand Island, NY, USA) ac-

cording to the manufacturer’s instructions. For real-time

PCR analysis, the cDNA was serially diluted 10-fold and

amplified using the 7500 Real Time PCR System

(Applied Biosystems, Grand Island, NY, USA) with

Power SYBR Green PCR Master Mix (Applied Bio-

systems). After the first denaturation step (95�C for 10

minutes), amplification was performed for 40 cycles at

95�C for 15 seconds, 55�C for 15 seconds, and 72�C for

40 seconds. The final cycle was followed by the disso-

ciation stage. The following primers were used: 50 NCR
gene, 50-CCG GCC CCT GAA TGC GG-30 and 50-ATT
CTT TAA TTG TCA CCA TAA GCA GCC A-30 and b-
actin gene, 50-CAA TCA TGA AGT GTG ACG TGG-30

and 50-GTC CGC CTA GAA GCA TTT GCG-30.

2.6. Statistical analyses
Differences across more than three groups are

analyzed using one-way Analysis of Variance

(ANOVA) (Graphpad P, version 5.01). All results were

expressed as means � standard deviation. Significant

differences in direct comparisons were determined using

Tukey’s post hoc test. Differences with p < 0.05 were

considered statistically significant.
3. Results

3.1. Analysis of nucleotide sequence of Korean

CVA 16
The complete sequences of the Korean CVA16

isolate are deposited in the GenBank sequence database

under the accession number JX839965. The genome is

7,411 nt in length, excluding the poly(A) tail. The

50NCR contains 745 nt, followed by an ORF that en-

codes a viral polyprotein consisting of 2,194 codons,

between a start codon (AUG) at position 746 and a stop

codon (UGA) at position 7,327. The 30NCR is 84 nt in

length. These nucleotide sequences were used to

construct a phylogenetic tree with 39 reference strains of

the same serotype extracted from GenBank database.

The CVA16 strains including Korean CVA16 isolate

were segregated into four distinct genetic groups, which

were supported by high bootstrap values (Figure 1). In

phylogenetic relationships, the Korean CVA16 isolate

belonged to cluster B-1 and was closely related to strain

PM-15765-00 isolated in Malaysia in 2000. The Korean

CVA16 isolate showed 73.2% nucleotide identity to the

G10 prototype strain and 98.7% nucleotide identity to

the PM-15765-00 strain.

3.2. Identification of antiviral activity of four

medicinal plant extract against CVA16
We sought to identify the antiviral activity of me-

dicinal plant extracts against CVA16. Four extracts were

identified from 492 medicinal plant extracts screened

that showed significant cell viability of > 50%, indi-

cating antiviral activity against CVA16 (data not

shown). The four extracts are C. officinalis, A. triflorum,

P. koreana, and C. heracleifolia var. davidiana Hemsl.

3.3. Antiviral activity of four medicinal plant

extracts against CVA16
To determine drug potency, CVA16-infected Vero

cells were treated with various doses of the four me-

dicinal plant extracts. The antiviral assays demonstrated

that P. koreana and C. heracleifolia var. davidiana

Hemsl possessed strong antiviral activity of > 60%

against CVA16 at concentrations of 2 mg/mL, 10 mg/mL,

and 50 mg/mL. C. officinalis and A. triflorum showed

80% and 70% antiviral activity, respectively, against

CVA16 at the concentration of 50 mg/mL (Figure 2A).

The values of concentration required to inhibit virus-

induced cytopathic effects by 50% were 32.9 mg/mL,

32.3 mg/mL, 1.51 mg/mL, and 2.55 mg/mL for C. offi-

cinalis, A. triflorum, P. koreana, and C. heracleifolia

var. davidiana Hemsl extract, respectively. The CC50

values of C. officinalis, A. triflorum, P. koreana, and C.

heracleifolia var. davidiana Hemsl extracts were supe-

rior to 50 mg/mL (Table 1). In addition, we confirmed

the antiviral activity of the four medicinal plant extracts

against CVA16 by real-time PCR analysis. The highest



Figure 1. Phylogenetic analysis based on full-length genomic sequences of a CVA16 isolate from a patient with hand, foot, and

mouth disease. Nucleotide sequences were analyzed by the neighbor-joining method. The numbers at the branches indicate the

bootstrap values for 1000.
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inhibition of CVA16 replication was observed at 50 mg/
mL for the C. officinalis and A. triflorum extracts, while

the P. koreana and C. heracleifolia var. davidiana

Hemsl extracts inhibited CVA16 replication only

marginally at all concentrations (Figure 2B).

3.4. The effect of four medicinal plant extracts

on CVA16 virus-induced CPE
After Day 2 post infection with CVA16, there was no

difference between mock or Vero cells treated with

50 mg/mL of C. officinalis, A. triflorum, P. koreana, or

C. heracleifolia var. davidiana Hemsl, in terms of

typical spread-out shapes and normal morphology.

Infection of Vero cells with CVA16 resulted in a severe
CPE, whereas CVA16-infected Vero cells treated with

the medicinal plant extracts exhibited noticeably

reduced CPE compared with untreated CVA16-infected

cells (Figure 3). These results indicate that the CPE of

CVA16 infection is prevented by C. officinalis, A. tri-

florum, P. koreana, or C. heracleifolia var. davidiana

Hemsl.
4. Discussion

CVA16 and EV71 infections are both responsible for

widespread HFMD and present serious public health

problems in the AsiaePacific region [22,23]. However,



Figure 2. Antiviral activity of medicinal plant extracts

against CVA16 in Vero cells. (A) Vero cells were infected

with CVA16 and treated with the indicated concentrations

(0.4e50 mg/mL) of medicinal plant extracts for 48 hours.

Antiviral activity was assessed using a cytopathic effects

reduction assay. Results are presented as the mean percentage

values obtained from three independent experiments carried

out in triplicate � standard deviation. (B) Vero cells were

infected with CVA16 and treated with various concentrations

of Cornus officinalis, Acer triflorum, Pulsatilla koreana, and

Clematis heracleifolia var. davidiana Hemsl for 48 hours.

CVA16 50NCR genes were quantitatively measured using real-

time reverse transcription polymerase chain reaction.
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there are no available therapeutics to treat CVA16 or

EV71 infections effectively. Most of antiviral and vac-

cine studies have been focusing on EV71, since it was

reported to be associated with severe complications

involving neuropathological complications and signifi-

cant mortality [24,25]. However, evidence has shown

that CVA16 infection also causes severe neurological

complications and death [26,27], and HFMD caused by
Table 1. Antiviral activity of four medicinal plant ex-

tracts against CVA16.

Medicinal plant extract

Coxsackievirus A16

CC50 IC50 TI

Cornus officinalis > 50 32.9 � 1.30 1.52

Acer triflorum > 50 32.3 � 1.67 1.55

Pulsatilla koreana > 50 1.51 � 0.05 33.11

Clematis heracleifolia

var. davidiana Hemsl

> 50 2.55 � 1.06 19.61

Results are presented as the mean IC50 values � standard deviation

obtained from three independent experiments carried out in triplicate.

CC50 Z concentration required to reduce cell growth by 50% (mg/mL);

IC50 Z concentration required to inhibit virus-induced cytopathic ef-

fects by 50% (mg/mL); TI Z therapeutic index Z CC50/IC50.
CVA16 is now considered as a serious public health

threat in young children, especially in the AsiaePacific

region. In the current study, the first complete nucleotide

sequence of a CVA16 isolate from a HFMD patient in

Korea was described and its genetic diversity explored

by phylogenetic analysis against 39 reference strains. In

addition, a Korean medicinal plant library of 492 ex-

tracts was screened to find candidates with antiviral

properties against the Korean CVA16 isolate.

CVA16 usually has a high mutation rate during viral

replication due to the deficiency of proofreading activity

[28], and there was > 20% genetic difference between

G10 prototype strain and the current widespread strain.

Therefore, it would be difficult to develop a therapeutic

antiviral drug against the current epidemic strain [29]. In

the current study, we isolated a CVA16 from Korean

HFMD patients, and confirmed that the CVA16 isolate

could be used for development and screening of antiviral

drugs in vitro.

Many plant-derived natural products have been used

in traditional medicine for the treatment of various

diseases, including viral infection. In the current study,

we found that CVA16 infection in Vero cells could be

prevented by extract of C. officinalis, A. triflorum, P.

koreana, or C. heracleifolia var. davidiana Hemsl.

Among them, C. officinalis is a species of dogwood and

a known edible plant. Particularly, the fruit of C. offi-

cinalis is well known for its chemotherapeutic benefits.

Recently, cornuside, isolated from the fruit of C. offi-

cinalis, was reported to have anti-inflammatory activity

by inhibiting tumor necrosis factor-a production [30].

Cornuside has also been reported to inhibit

lipopolysaccharide-induced inflammation by inhibiting

nuclear factor-kB pathway [31]. Next, P. koreana is a

perennial plant found in South Korea, and its roots have

been used as traditional medicine for the treatment of

dysentery, malaria, chills, and fever [32]. In addition,

previous studies suggested that it has antifungal and

antibiotic properties and antitumor effects and that it can

lower blood pressure [33,34]. Unlike C. officinalis and

P. koreana, there are few reports regarding the biolog-

ical activities or medical uses of A. triflorum and C.

heracleifolia var. davidiana Hemsl. More interestingly,

there are no reports suggesting an antiviral activity of

the C. officinalis, A. triflorum, P. koreana, or C. her-

acleifolia var. davidiana Hemsl extracts, and thus,

further studies to elucidate the antiviral constituents of

those plants are needed.

In this study, the CC50 values of all extracts were >
50 mg/mL, suggesting that the extracts of those plants

are nontoxic to Vero cells even in high concentrations.

In addition, when their antiviral activities were assessed

after CVA16 infection, all of the extracts showed sig-

nificant antiviral activity against the Korean CVA16

isolate. In particular, C. officinalis and A. triflorum

revealed high suppression potency against viral gene

replication as assessed by real-time PCR, which



Figure 3. Morphological assessment of CVA16-infected Vero cells following treatment with four medicinal plant extracts.

CVA16-infected and uninfected Vero cells were treated with 50 mg/mL medicinal plant extracts. After staining of viable cells with

sulforhodamine B, cell morphology was assessed by microscopy. (A) Untreated, (B) uninfected cells treated with Cornus offici-

nalis, (C) Acer triflorum, (D) Pulsatilla koreana, (E) Clematis heracleifolia var. davidiana Hemsl, (F) untreated CVA16-infected

cells, (G) CVA16-infected cells treated with Cornus officinalis, (H) CVa16-infected cells treated with Acer triflorum, (I) CVA16-

infected cells treated with Pulsatilla koreana, and (J) CVA16-infected cells treated with Clematis heracleifolia var. davidiana

Hemsl.
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correlates with their antiviral activity tested by SRB

assay. Although the extracts of P. koreana and C. her-

acleifolia var. davidiana Hemsl also showed high anti-

viral activity, their suppressive ability on viral

replication was moderate.

In conclusion, this study is the first report of the

complete nucleotide sequence of the Korean CVA16,

and shows the possibility of using the virus for the

screening of antiviral drug candidates against HFDM

infection in Korea. Antiviral activity screening of 492

medicinal plant extracts showed that C. officinalis, A.

triflorum, P. koreana, and C. heracleifolia var. davidi-

ana Hemsl possessed strong antiviral activity against

this Korean CVA16 isolate. The data would be useful in

preventing future outbreaks of CVA16 and in treating

patients infected with the strain. Prospectively, identi-

fication of antiviral constituents included in the medic-

inal plant extracts and study of the mechanisms

underlying their antiviral activity is necessary for the

development of antiviral therapeutics to treat Korean

HFDM patients infected with CVA16.
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