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RNA viruses exist as a genetically diverse quasispecies with extraor-
dinary ability to adapt to abrupt changes in the host environment.
However, the molecular mechanisms that contribute to their rapid
adaptation and persistence in vivo are not well studied. Here, we
probe hepatitis C virus (HCV) persistence by analyzing clinical
samples taken from subjects who were treated with a second-
generation HCV protease inhibitor. Frequent longitudinal viral load
determinations and large-scale single-genome sequence analyses
revealed rapid antiviral resistance development, and surprisingly,
dynamic turnover of dominant drug-resistant mutant populations
long after treatment cessation. We fitted mathematical models to
both the viral load and the viral sequencing data, and the results
provided strong support for the critical roles that superinfection and
cure of infected cells play in facilitating the rapid turnover and
persistence of viral populations. More broadly, our results highlight
the importance of considering viral dynamics and competition at the
intracellular level in understanding rapid viral adaptation. Thus, we
propose a theoretical framework integrating viral and molecular
mechanisms to explain rapid viral evolution, resistance, and persis-
tence despite antiviral treatment and host immune responses.

virus evolution | virus persistence | hepatitis C virus | phylodynamic
modeling | mathematical modeling

Many RNA viruses, including global pathogens of major
medical importance such as hepatitis C virus (HCV), HIV, and

ebolavirus, exist within infected hosts as large populations of genet-
ically related viral variants commonly referred to as a quasispecies
(1). The diverse nature of the viral quasispecies allows viral pop-
ulations to evolve rapidly to adapt to abrupt changes in the host en-
vironment (2); examples include escape from adaptive immune
pressures (3, 4) and development of resistance to antivirals (5, 6).
Despite the importance of viral adaptation, our understanding of how
the viral quasispecies responds to selection pressure and the under-
lying molecular mechanisms supporting viral adaptation in vivo is
limited by a lack of frequent longitudinal viral sequence data gen-
erated by methods that retain linkage across genes and genomes (7).
Previously, much attention has been devoted to estimating the

effectiveness of antivirals against viral variants in the quasispe-
cies (8–10); however, the mechanisms that drive an adaptive/
fitter variant (e.g., a drug-resistant mutant) at an initially low
frequency to a high frequency are less well studied. Theoretical
work suggests that fitter variants at a low frequency cannot ex-
pand unless there are sufficient numbers of target cells, that is,
“replication space” (5, 11–14). This is analogous to the concept
of competitive release in ecological “niche” theory, that is, a
species is not able to expand unless there is a niche vacated by
other species (15). Previous models have in general assumed
that, once a variant infects a cell, the cell is occupied by the
variant for its remaining lifetime, and thus the replication space

is provided by generation of new target cells (5, 8, 13, 16–18).
Under this framework, viral variants compete for infecting newly
generated target cells, and thus, the expansion of a low-frequency
fitter mutant is determined by how quickly infected cells die and
are replaced by new target cells. This framework has been suc-
cessfully applied to understand HIV drug resistance (6, 13, 16, 18).
However, the source of replication space for other rapidly evolving
viruses, and in particular HCV, is unclear.
HCV is a positive-strand RNA virus belonging to the flavi-

viridae, a family of medically important single-strand RNA
viruses. HCV infects ∼80–170 million people worldwide (19).
Chronic infection can lead to cirrhosis and hepatocellular carci-
noma. Current treatments for HCV infection involve combina-
tions of direct acting antivirals (DAAs), and they have achieved
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remarkably high cure rates (20–22). Ironically, because of this
clinical effectiveness, combination treatments cannot generally
be used to probe the molecular mechanisms that contribute to virus
persistence. However, this information may be critical for designing
effective vaccination strategies for HCV and therapeutic regimens
and vaccines for other members of the flaviviridae family. Here, we
analyzed clinical samples collected from a phase I/IIa monotherapy
trial (23) of a second-generation HCV protease inhibitor, MK-5172
(also called grazoprevir) (22, 24–26), that is extremely potent but
susceptible to drug resistance development through multiple viral
genetic pathways of escape. Measuring viral loads and analyzing
viral populations longitudinally by single-genome sequencing (7)
allowed us to follow the population dynamics and evolutionary
responses of HCV to drug pressure and its removal in vivo at high
resolution. We analyzed this unique dataset by combining mathe-
matical modeling and phylogenetic analysis [termed “phylody-
namic” analysis (27)]. We provide strong evidence that cure and
superinfection of infected cells contribute essentially to the repli-
cation space, allowing resistance mutant expansion and evolution.

Results
Study Subjects and Single-Genome Sequence Analysis.We studied eight
participants from a dose-ranging monotherapy trial of MK-5172
(23). Five were treated with MK-5172 (50 or 800 mg) once daily for
7 d (subjects 1–5, genotypes 1a, n = 4; 1b, n = 1) and three were
treated with placebo (subjects 6–8, genotypes 1a, n = 2; 1b, n = 1) (SI
Appendix, Table S1). All of the participants were followed for 7–8 wk
after treatment cessation. We measured viral loads longitudinally
and analyzed viral populations using single-genome sequencing (7).
Samples taken immediately before treatment initiation, desig-

nated as day 0, were analyzed in all eight subjects for genotypic
complexity and baseline drug resistance mutations (DRMs). At
each sampling timepoint, ∼100 viral genomes were sequenced in
each subject (Fig. 1 and SI Appendix, Figs. S1–S7). Day 0 se-
quences of each subject showed patterns of virus diversity typical
of chronic infection with broad genotypic heterogeneity (SI Ap-
pendix, Table S1). Maximum pairwise diversity and mean pairwise
diversity ranged from 1.17 to 5.64% and 0.53 to 3.45%, re-
spectively. No drug resistance-associated mutations were identi-
fied in the pretreatment sequences, although a Q80K substitution
was found in all sequences in subjects 2 and 3. Q80K is a common
polymorphism that confers no resistance to MK-5172.
In the five subjects treated with MK-5172, viral load decreased

over 5 logs and went below (or close to) the limit of quantification
(=25 IU/mL) during the 7-d treatment period (Fig. 1A and SI
Appendix, Figs. S1–S4). At the end of this period, viral load was too
low to permit sequencing analyses. By day 27, 20 d after treatment
was stopped, the viral load rebounded to levels (106 to 107 IU/mL)
similar to the baseline level before treatment in all treated subjects
and could be quantified as early as day 14 (7 d after stopping
treatment) in subjects 1 and 4. Follow-up single-genome se-
quencing analyses were conducted on samples from days 14 to 62.
After therapy was stopped, the viral populations that emerged

carried drug resistance mutations. Surprisingly, the dynamics of
mutant virus populations exhibited stringent population bottle-
necks and rapid turnover of the dominant resistant mutants during
the follow-up period, even in the presence of relatively stable viral
load (e.g., subject 1 between days 27 and 56; Fig. 1). Extremely
rapid and continuous turnover of the resistant mutants, after
therapy cessation, was observed in subjects 1 and 4 (Fig. 1 and SI
Appendix, Fig. S3). In contrast to these dramatic changes in
plasma viral RNA (vRNA) load in subjects treated with MK-5172,
the three subjects who received placebo had no changes in plasma
vRNA levels and no sequences containing DRMs. Viral sequences
from these individuals were obtained on days 0 and 27 or 34 (SI
Appendix, Figs. S5–S7). Below, we describe the evolutionary pat-
terns in subject 1 in detail. The patterns in other treated subjects
are described in SI Appendix, SI Methods and Results.

In subject 1, none of 103 single genome sequences on day
0 contained drug resistance-associated mutations (Fig. 1C). Con-
versely, on day 14 (i.e., 7 d after therapy was stopped), all
111 single-genome sequences analyzed contained one or more drug
resistance-associated mutations. Fifty-six of the 111 sequences
contained single A156T or V mutations listed in color on the right-
hand side of Fig. 1C and two sequences contained a single R155G
mutation. These 58 sequences containing single drug resistance
mutations were widely dispersed throughout the phylogenetic tree
of pretreatment sequences (Fig. 1B). This indicates that nearly all of
these drug-resistant sequences represented distinct viral lineages
that traced back 14 d earlier to infected hepatocytes that carried
A156T or A156V mutations in widely divergent genetic back-
grounds. In marked contrast, 51 of 111 sequences (46%) contained
a R155W-plus-A156G double mutation, in a nearly homogeneous
genetic background where sequence diversity ranged from 0 to
1 nucleotide substitution over a span of 2,210 bp (<0.1% diversity).
This result suggests that ∼46% of hepatocytes, releasing HCV vi-
rions into the circulation at 14 d after the initiation of MK-
5172 treatment (and 7 d after its discontinuation), were infected
by HCV genomes that had evolved from a single R155W-plus-
A156G drug-resistant viral sequence lineage. In turn, this lineage
most likely emanated from a single or a few productively infected
hepatocytes that existed before treatment initiation (Fig. 1C). This
inference is drawn based of the identity or near identity (1 mutation
in 2,210 nt) of the genetic background in which the R155W-plus-
A156G drug resistance mutation expanded. These findings are
consistent with model predictions of the expected frequency of a
single mutation or any set of two mutations in an HCV vRNA
quasispecies in the absence of selection (5, 28). In addition, one
sequence with Y56H-plus-D168V and one with Y56H-plus-D168N
double mutations were also detected. At day 27 when the plasma
viral load had returned to baseline (>106 vRNA/mL), there was a
striking contraction in both the R155W-plus-A156G and A156T or
V populations and a remarkable expansion of the discrete homo-
geneous Y56H-plus-D168V and Y56H-plus-D168N double-mutant
populations (already detected at day 14). A single dominant Y56H-
plus-D168N double-mutant population and three dominant Y56H-
plus-D168V double-mutant populations together represented 70%
of the sequences. This finding is all of the more remarkable given
that, by this time, steady-state plasma vRNA load had returned to
its pretreatment setpoint of >106 vRNA copies per mL and drug
therapy had been stopped 20 d previously. Two additional mono-
phyletic lineages, each containing the double-mutant D168E-plus-
F169I, were present on day 27. By day 56, the D168E-plus-F169I
mutant lineages (first detected at day 27) expanded to comprise
79% of the sequences, whereas the previously dominant Y56H-plus-
D168N and Y56H-plus-D168V lineages contracted and now
comprised only 12% of the sequences. Four wild-type sequences,
that is, sequences with no known resistance mutations, were
detected for the first time posttreatment at day 56.

Fitting a Baseline Viral Dynamic Model to the Viral Load and
Sequence Data. The rapid viral load decline during treatment
and continuous turnover of resistant mutants after treatment
cessation observed in the treated subjects raise intriguing ques-
tions, such as how do resistance clones expand so rapidly and how
can resistant mutants dominate the viral population for such a
long period after treatment cessation without being replaced by
the nonresistant virus? To address these questions, we first con-
structed a “baseline”multistrain HCVmodel, similar to a previous
standard viral dynamic model that incorporates competition for
target cells (5) (Methods). The strains in the model are grouped
according to the shared drug resistance mutations in the clinical
samples as described in the section above and as color-coded in
Fig. 1 and SI Appendix, Figs. S1–S7 (see SI Appendix, Table S2, for
the mutants modeled). In this model, we assume that infected cells
are lost at a per-capita rate δ and that target cells proliferate
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following a logistic growth term to replace them. Cure and su-
perinfection of infected cells are not included in this model.
We fitted this model to the data from all five treated subjects.

This model describes both the viral load and the sequence data

well (SI Appendix, Fig. S8). However, the mean loss rate of in-
fected cells, δ, estimated across all five treated subjects was 0.68 d−1

with a SD of 0.09 d−1 (see SI Appendix, Tables S3–S7, for the
best-fit values of δ). In our model, the loss of infected cells

A

C

B

Fig. 1. Sequential plasma virus load and sequences from subject 1. (A) Time course of treatment with MK-5172 (shaded area, days 1–7), viral load deter-
minations (blue solid dots), and viral sequence analyses (open circles at days 0, 14, 27, and 56). (B) A maximum-likelihood (ML) phylogenetic tree of all viral
sequences sampled from subject 1 from all time points. Tree tips are color coded according to the known resistant mutations they bear. (C) ML phylogenetic
trees of viral sequences sampled from subject 1 at each time point.
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corresponds to death of these cells. A large death rate is needed to
explain the rapid second-phase viral load decline during treatment
and rapid turnover of dominant mutants after treatment. How-
ever, such a large death rate of infected cells (0.68 d−1) does not
seem physiological, as it implies a half-life for infected hepatocytes
of 1 d. In stark contrast, the death rate of infected cells has been
estimated as 0.14 d−1 from IFN therapy (29, 30) and previously
used by Guedj et al. (31) and Lau et al. (21) to explain viral de-
clines seen with other DAAs. To confirm the necessity of a high
loss rate in this model, we refitted the model fixing δ at 0.14 d−1

and found this alternative parameterization explains the data
poorly (SI Appendix, Fig. S9). These results strongly suggest that
other mechanisms (in addition to death of infected cells) must
play essential roles in driving the patterns seen in the data.

Potential Roles for Infected Cell Cure and Intracellular Viral
Competition Through Superinfection. We hypothesize that cure of
infected cells is the primary cause for the loss of infected cells
during the rapid second-phase decline observed in our data and
other studies (5, 8, 32). In addition, we hypothesize that the
continuous turnover of dominant mutants in the absence of
treatment is mostly driven by intracellular competition among
viral strains, as a result of superinfection (rather than competition
for newly generated target cells). Previously, cure of infected cells
has been demonstrated in in vitro studies (33–37). In vivo, the
rapid second-phase viral declines under treatment were suggested
to be attributable to cure of infected cells (32, 38). For superin-
fection, in vitro experiments showed that multiple viruses can
enter the same cell, although limiting host resources necessary for
viral replication and/or translation may restrict active production
of multiple viruses (39, 40). Interestingly, a recent study demon-
strated that a fitter HCV strain can enter already-infected cells
and outcompete the resident strain (41), suggesting that multiple
HCVs can enter a cell and compete for intracellular resources.
To test these hypotheses, we extended the baseline model by

incorporating infected cell cure and superinfection, and fixing
the rate of infected cell death at 0.14 d−1 as estimated under IFN
therapy (29, 30) (Methods). Here, we assumed that infected cells
are cured and become target cells again under MK-5172
treatment at per-capita rate kcure · ð−log10ð1− «iÞÞ, where kcure
is a rate constant and «i is the drug efficacy against the ith strain
(see Methods for detail). To model the intracellular viral com-
petition due to superinfection, we assume, for simplicity, that
once an infected cell is superinfected, the fitter strain can out-
compete the less fit strain intracellularly, and the cell becomes a
cell infected by the fitter strain at rate ksuper.
We used three variations of the extended model to test the im-

portance of cure and superinfection in explaining the kinetic patterns
in the data: (i) we allowed cure but no superinfection (denoted
as the “cure” model), or (ii) superinfection but no cure (denoted
as the “superinfection” model), or (iii) both processes (denoted as
the “full” model) (see SI Appendix, Figs. S10 and S11 and Fig. 2,
respectively, for model fits and SI Appendix, Tables S3–S7 for
the best-fit parameter values). To statistically test the impor-
tance of cure or/and superinfection in explaining the clinical
data, we performed model selection using the corrected Akaike
information criterion (AICc) (Table 1). The results suggest that
cure of infected cells is needed to explain the rapid second-
phase viral load decline during treatment seen in all five sub-
jects (SI Appendix, Fig. S12). It also helps to explain the rapid
selection of the resistant mutants seen at day 14 in subjects
1 and 4 (compare the fits between solid lines and dashed lines
to data in SI Appendix, Fig. S13). Based on the best-fit parameters
in the best model for each subject (SI Appendix, Table S8), we
estimated the mean rate of cure of cells infected by baseline
viruses under MK-5172 treatment [kcure · ð−log10ð1− «1ÞÞ], where
«1 is the drug efficacy against the baseline viruses) to be 0.56 d−1.
On average, it takes about 1.9 d to cure a cell under MK-5172

treatment (SI Appendix, Table S8) and the loss of infected cells is
primarily through cure rather than death of infected cells (as-
sumed to occur at rate of 0.14 d−1).
The AICc results suggest that intracellular competition

through superinfection is needed to explain the rapid and con-
tinuous turnover of dominant resistant strains after treatment
stops in subjects 1 and 4 (SI Appendix, Fig. S14). This is because
after treatment cessation, drug is eliminated and drug-induced
cure is no longer possible. As a result, new target cells become
available at a much slower rate than the rate during treatment.
However, superinfection allows fitter strains to enter already-
infected cells and compete intracellularly, greatly increasing
the rate at which a fitter strain rises to a high frequency. In
contrast, without superinfection and intracellular competition, a
fitter strain is predicted to increase in frequency at a much lower
rate (see the changes in the frequencies of the mutant in green
during the period of days 30–60 in SI Appendix, Fig. S14A).
We performed uncertainty analysis in the best model for each

subject using likelihood profiling (42) (SI Appendix, Tables S3–
S7). These analyses indicated that the data allow us to estimate
accurately the effectiveness of MK-5172 against the baseline vi-
rus, «1, the rate of viral clearance, c, and the cure rate kcure in all
five subjects, and the value of superinfection constant ksuper in
subjects 1 and 4. In addition, we explored whether models with
alternative assumptions can explain the data. This included a
model assuming a constant rate of target cell generation and
models assuming a DAA-independent cure of infected cells (SI
Appendix, SI Methods and Results). Fitting results show that the
full model presented in the main text is the best model, and the
conclusions about the role of superinfection and cure of infected
cells are robust against these model variations.

Compensatory Mutations, Clonal Interference of HCV-Resistant
Mutants. To understand better the evolutionary dynamics of the
viral strains considered in our model, we analyzed how the strains
at different time points are related to each other. Here, we define
strains phenotypically, that is, each “strain” consists of a group of
related viral sequences in the clinical samples sharing drug re-
sistance mutations. We calculated the genetic distances between
sequences belonging to different groups at the different sampling
time points (see Methods and SI Appendix, Figs. S15–S17). We
then combined the mutational pattern derived from the sequence
data with the results from fitting the dynamical models to generate
a diagram that summarizes the evolutionary dynamics of the drug-
resistant strains over the period of the study (Fig. 3).
The diagram reveals how the HCV population responds to

MK-5172 treatment. First, viral load rebounded rapidly in sub-
jects 1 and 4 to high levels that permitted sequencing by day 14,
presumably because of selection of the resistant mutants bearing
A156T/V or R155G/W in subject 1 and A156T/V in subject 4.
We estimated that these mutants are highly resistant, yet have
high fitness costs (Fig. 3), which is consistent with results shown
in previous in vitro studies (24–26). Because of their short genetic
distance to the wild-type viruses (SI Appendix, Figs. S15 and S17),
they are likely present at low frequencies before treatment. Dur-
ing and shortly after treatment, they rise to high frequencies
transiently before being replaced by other resistant mutants with
higher fitness while drug is cleared. Second, mutants with the
Y56H mutation are observed transiently in subjects 1, 3, and
4 between days 27 and 34. Our analysis suggests that the transient
appearance of these mutants is due to their intermediate re-
sistance and fitness values. These mutants gave way to fitter strains
with resistant mutations at position 168 (e.g., D168E, D168A, or
D168Y; see refs. 24 and 25) that dominated the viral population in
subjects 1–4 at the end of follow-up period, that is, 7–8 wk after
treatment cessation. These dynamics resemble the classical pat-
tern, termed “clonal interference,” as suggested by population
genetic models for the evolution of asexual organisms (43, 44).
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The fitnesses of the resistant mutants observed at late time
points are predicted to be close to or higher than those of the
baseline viruses, which remained at low frequencies in subjects 1–4
(Fig. 3). A likely explanation for the late appearance of these high-
fitness variants is that mutation at position 168 on the baseline
virus background resulted in low fitness (and thus these mutants
are at low frequency before treatment). However, growth of these
low-fitness resistant mutants generated compensatory mutations
that increased their fitness, and allowed their frequency to in-
crease and stabilize at a high level in the population.
Last, we observe that drug-sensitive viruses, that is, viruses

with no known drug-resistant mutations, reappeared in the se-
quences at the last time point of follow-up in subjects 1, 4, and 5.
Statistical analysis shows that these viruses are likely to be de-
scendants of drug-sensitive viruses present before treatment
rather than reversions from resistant variants (SI Appendix, SI
Methods and Results). This suggests that the drug-sensitive viru-
ses were suppressed to low frequencies under treatment and only
grow to high frequencies long after treatment cessation.

Discussion
Here, we have analyzed the evolutionary dynamics of the HCV
population in response to 7-d treatment with the protease inhibitor
grazoprevir (MK-5172) in five subjects using single-genome se-

quencing and phylodynamic modeling. HCV-resistant variants un-
derwent rapid expansion after drug treatment with surprisingly fast
sequential turnover of dominant resistant mutants in the 7- to 8-wk
follow-up period, a distinct feature of viral persistence. Using
mathematical models, we showed that superinfection and cure of
infected cells are likely to be crucial mechanisms driving the ex-
tremely rapid expansion and turnover of resistant variants observed
in the clinical data. Although superinfection and cure of infected
cells have been demonstrated in vitro (33–37, 41), our work sug-
gests that these processes occur and play important roles in driving
viral adaptation and persistence in vivo.
We estimated the rate of cure of cells infected by wild-type

viruses under grazoprevir to be 0.56 d−1 on average. Further, it
takes about 1.9 d on average to cure a cell under MK-5172
treatment. This high rate of infected cell cure under treatment is
consistent with the clinical data in this study and from previous
studies (8, 30, 32, 45), where rapid second-phase viral load de-
clines have been observed. Previous mathematical models sug-
gested that the second-phase decline reflects both the death rate
of infected cells and the rate of intracellular vRNA degradation
(31, 32, 38). Thus, this rapid cure of infected cells is likely to be a
result of the rapid loss of intracellular HCV RNAs under treat-
ment. Our model shows that, due to the rapid cure, drug-sensitive
viruses were at a much lower frequency than resistant mutants
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Fig. 2. Best fit of the “full” model (lines) to the clinical data (circles) from five subjects treated with MK-5172. (A–E) Schematic diagrams of the evolutionary
dynamics in subjects 1–5, respectively. A–E, the data and simulation results for viral loads are shown in open circles and black lines, respectively, on the Left;
the data and simulation results for mutant frequencies are shown in colored open circles and lines, respectively, on the Right. The color coding for each
mutant considered is shown in SI Appendix, Table S2.
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when treatment stopped. That coupled with the rapid expansion of
resistant mutants and generation of compensatory mutations led to the
disappearance or a delay in the reappearance of drug-sensitive virus.
Superinfection has been demonstrated in vivo indirectly by the

identification of recombinant forms of HCV in patients (46–49).
Although recombination between HCV genomes is apparently
rare (50, 51), this does not mean that superinfection of hepato-
cytes is infrequent, because the formation of distinct intracellular
HCV replication complexes and a processive RNA polymerase
may prevent recombination. In line with a recent in vitro study
showing that a fitter HCV strain can enter already-infected cells
and outcompete the resident strain (41), our results suggest that
superinfection and intracellular competition occur frequently in
vivo, especially when different strains exhibit a difference in
intracellular replication fitness.
We argue that superinfection and intracellular competition are

critical for the establishment and expansion of adaptive mutants
and thus for the persistence of HCV under selection pressures.
For viruses that largely transmit by cell-to-cell infection, such as
HCV (52–55), transmission is often limited from an infected cell
to a few neighboring cells. When most of the cells are infected by
resident viral variants, without superinfection, the probability that
an adaptive mutant finds an uninfected cell is low. Thus, adaptive
mutants would likely be lost, and for those mutants that do es-
tablish infection, the rate at which they expand would be low. In
contrast, with superinfection and intracellular competition, an
adaptive mutant can enter all neighboring cells to compete with
any resident virus, which substantially increases the probability of
establishment and the rate at which the adaptive mutant expands.
While previous theoretical work discussed the role of superin-
fection in viral evolution at the host level (56, 57), our work
highlights the important role that superinfection plays in facili-
tating viral adaptation at the cellular level.
By combining phylogenetic analysis and mathematical modeling,

we provided an integrated understanding of the HCV evolutionary
and population dynamics. First, the HCV within-host evolution of
HCV resembles the classical pattern for the evolution of asexual
organisms as suggested by population genetic models, termed clonal
interference (43, 44). This emphasizes the usefulness of population
genetic models in understanding viral evolutionary dynamics. Sec-
ond, our results suggest that compensatory mutations are likely to
be generated after treatment, allowing for stabilization and persis-
tence of resistant mutants in the viral population long after treat-
ment cessation. This highlights the need to maintain a high level of
adherence to combination therapies of DAAs. Treatment inter-
ruption would allow rapid expansion of viral mutants resistant to
one or more DAAs and possible generation of compensatory mu-
tations that stabilize the resistant mutations at a high frequency, and
thus creating opportunity for transmission of resistant mutants. In
situations where treatment is interrupted frequently, multiple mu-
tations may accumulate such that the evolved virus may become
resistant to all DAAs in the combination therapy (12).

Although beyond the scope of this work, a couple of predictions of
our study can be further tested experimentally. First, our models
suggest that superinfection and intracellular competition are impor-
tant mechanisms facilitating the rapid expansion and turnover of
resistant mutants in vivo after treatment cessation. Although testing
this prediction in vivo is not possible, intracellular viral competition
experiments as in ref. 41 can be performed to compete pairs of
laboratory viruses with the resistant mutations identified in this study.
The results would reconfirm the occurrence of superinfection and
determine the relative fitness of those mutants at the intracellular
scale. Second, our analysis suggests that compensatory mutations are
involved in stabilizing the resistant mutations at amino acid 168 seen
in subjects 1–4. This can be tested by first performing whole-genome
sequencing on the viral isolates and then identifying the shared mu-
tations of the viruses with a mutation at position 168 in each subject.
These shared mutations would be candidate compensatory mutations
for the mutation at amino acid 168. Introducing one or a combination
of these mutations into viral replicons, and then testing and com-
paring the replication fitness of the replicons (as shown in refs. 24–
26), would be a means to identify compensatory mutations.
To summarize, the results in our study elucidate important, yet

previously unrecognized, mechanisms that we suggest operate in
vivo, drive within-host viral evolution, and allow the adaptation
and persistence of HCV in the face of drug pressure and immune
response. A previous framework frequently used in viral dynamic
models (5, 8, 13, 16–18) assumed that viruses compete for the
replication space needed for adaptation to changing host envi-
ronments only through infection of newly generated target cells
(Fig. 4A). Consequently, the rate of adaptation was limited by
the rate of target cell generation. In contrast, our framework
emphasizes that both superinfection and cure of infected cells (in
addition to infection of new target cells) can be important
mechanisms contributing to the replication space needed for
mutant virus expansion (Fig. 4B). This mechanism can greatly
accelerate the rate of within-host viral adaptation beyond the
rate set by the generation of target cells. This framework may be
important in elucidating the contributions and mechanisms of
HCV containment and/or elimination mediated by the host im-
mune system that occur naturally or following vaccination (58).
More broadly, our work points toward the important role mo-
lecular mechanisms play in facilitating viral evolution and per-
sistence. Frequent cell-to-cell infection and high multiplicity of
infection, that is, mechanisms that provide the means for in-
tracellular competition, have been reported recently for HIV,
HCV, influenza, and other viruses (54, 59–61). We argue that
our framework and the consideration of viral competition at both
the intracellular and host level in particular, is critical for the
understanding of the evolutionary and adaptive dynamics of viral
population at the within-host level (62, 63). Thus, it opens the
door to the next generation of viral dynamic models and quan-
titative frameworks to understand viral evolution, interpret clin-
ical datasets, and predict treatment outcomes.

Table 1. Summary of the model characteristics and the fitting results (i.e., AICc scores) of each model for each
subject

Model

Model
characteristics Fitting results (AICc)

kcure ksuper Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Total

Baseline model
with δ = 0.14 d−1

0.0 0.0 −16.2 −22.1 −8.1 5.0 −24.9 −66.3

Cure model Fitted 0.0 −32.8 −53.2 −47.6 −42.6 −86.5 −262.7
Superinfection model 0.0 Fitted −12.0 −17.8 −9.5 −5.1 −21.2 −65.6
Full model Fitted Fitted −63.8 −51.8 −44.5 −90.6 −83.6 −334.3

Bolded AICc scores denote the best model fit among all models for the five subjects.
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Methods
Experimental Model and Subject Details. For this study, Merck Sharp and
Dohme Corporation provided preexisting, deidentified human blood
plasma specimens collected from a multiinstitutional experimental drug
treatment protocol (MK-5172-004) designed to test the antiviral activity
of the HCV protease inhibitor grazoprevir/MK-5172 (ClinicalTrials.gov
identifier NCT00998985). The specimens were collected, stored, and in-
ventoried with study subjects’ informed consent and approval for future
use in the analysis of the effects of grazoprevir/MK-5172 on HCV replica-
tion, although the specimens were not collected specifically for the re-
search project described here. Based on these stipulations, the research
described in the current report was deemed by the Institutional Review
Board of the University of Pennsylvania not to constitute human subjects
in research.

Single-Genome Sequencing. The partial NS2 and complete NS3 and NS4A
gene sequences from all eight subjects were generated using the single-
genome sequencing method previously described (50). The primers used for
the nested PCR included the following: (i) genotype 1a: first-round sense
primer 1aNS2.F2, 5′-ACCCGRCTTTGGTATTTGACATCACC-3′ (nucleotides 2983–
3008, H77); first-round antisense primer 1aNS4B.R3, 5′-TATTGTATCCCACT-
GATGAAGTTCCACAT-3′ (nucleotides 5634–5662, H77); second-round sense
primer 1aNS2.F3, 5′-AAAGTGCCCTACTTYGTGCGCGT-3′ (nucleotides 3063–3085,

H77); and second-round antisense primer 1aNS4B.R4, 5′-AGGGCCTTCTGCTT-
GAACTGCTC-3′ (nucleotides 5517–5539, H77); (ii) genotype 1b: first-round
sense primer 1bNS2.F2, 5′-GCCCGTCGTCTTYTCTGACATGGA-3′ (nucleotides
3257–3280, H77); first-round antisense primer 1bNS4B.R3, 5′-TTCCA-
CATGTGCTTCGCCCA-3′ (nucleotides 5622–5641, H77); second-round sense
primer 1bNS2.F3, 5′-TCATCACCTGGGGGGCAGACA-3′ (nucleotides 3289–3309,
H77); and second-round antisense primer 1bNS4B.R4, 5′-CGAGCGCCTTCTGCTT-
GAATTG-3′ (nucleotides 5520–5541, H77).

Viral Load and Sequence Diversity Analysis. The vRNA measurement was
done by Merck and Co., Inc., using the Roche Cobas TaqMAN 2.0 assay with
a lower limit of quantification of 25 IU/mL and a limit of detection of 10
IU/mL. A total of 2,755 NS2–NS3–NS4 genomes were generated and analyzed
from the eight subjects. The median number of sequences analyzed per
time point was 107 (mean, 106; range, 43–144) (SI Appendix, Table S1).
Sequences alignments were initially made with clustalW and then hand-
checked using Geneious for correct codon alignments. The maximum,
minimum, median, and mean diversity for each sequence set was calcu-
lated based on Hamming distance (SI Appendix, Table S1). For each sub-
ject, phylogenetic trees were generated by maximum-likelihood methods
using PhyML. The combined phylogenetic tree and the tree from each
time point were rooted with consensus sequences from day 0.

A B

D

C

E

Fig. 3. Evolutionary dynamics of HCV before and after treatment with MK-5172. (A–E) Schematic diagrams of the evolutionary dynamics in subjects 1–5,
respectively. Each mutant is denoted as a colored circle, and the color coding is shown at the left-hand side of the y axis in each panel. The numbers within the
circles denote the fitness of the mutant relative to the baseline strain in the absence of treatment according to the best-fit parameter values in the best model
for each subject. The x axis shows the time when sequence data are taken. The size of the circle is scaled according to the frequency of the mutant in a given
sample. Solid arrows show the strain (where the arrow starts; say, strain a) to which the majority of the sequences in a mutant strain of interest (where the
arrow ends; say, strain b) are most closely related, and the numbers on each arrow show the number of sequences in strain b that are mostly closely related to
strain a and the total number of sequences in strain b.
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Construction of a Baseline Multistrain HCV Model.We construct a viral dynamic
model for within-host infection by multiple strains of HCV based on previous
published models (5, 29, 64). In this model, we keep track of n different HCV
strains. The ordinary differential equations (ODEs) for the model are as follows:

dT
dt

= ρT · T ·

0
BBB@1−

T +
Pn
i=1

Ii +N

Tmax

1
CCCA−d ·T −

Xn
i=1

β · T ·Vi ,

dIi
dt

= β · T ·Vi − δ · Ii ,

dVi

dt
= ð1− «iÞ · ri ·p · Ii − c ·Vi ,

«i =
D ·expð−w ·maxðt − 7,0ÞÞ

EC50,i +D ·expð−w ·maxðt − 7,0ÞÞ.

Target cells (T), presumably a subset of hepatocytes, die at a per-capita rate, d.
Existing target cells can proliferate, and this proliferation is modeled using a lo-

gistic term, ρT ·T · ð1− ðT +
Pn

i=1Ii +NÞ=TmaxÞ, as in Rong et al. (5), where ρT is a

proliferation rate constant, Ii are cells infected with virus strain i, N is the con-
centration of hepatocytes that are not target cells, and Tmax is the liver carrying
capacity. Target cells are infected by the ith strain of HCV (Vi) at rate β ·Vi. Infected
cells die at per-capita rate, δ. Drug-sensitive viruses, represented by strain i = 1, are
produced from infected cells at rate p per cell in the absence of treatment. We
assume that the ith strain has a fitness of ri relative to the drug-sensitive viruses

(r1 = 1). This difference in fitness is reflected only in the differences in viral pro-
duction in our model. Thus, the production rate of the ith strain is ri ·p in the
absence of treatment. Under treatment, we assume that viral production of the ith
strain is reduced by a factor «i, where «i = 1 corresponds to a 100% effective drug.
The drug effectiveness «i is modeled as a function of the drug concentration and
the EC50 value for each strain (EC50,i) according to an Emax model (65). We assume
that the drug concentration, D, stays constant during the first 7 d of treatment,
since drug concentration reaches its maximal concentrationwithin 2–4 h (23). After
treatment stops on day 7, we assume the drug concentration declines exponen-
tially at rate,w, obtained previously (23). All viruses are cleared at per-capita rate c.
The values of the parameters are shown in SI Appendix, Table S9.

Construction of Models with Cure and Superinfection of Infected Cells. We
constructed a model incorporating cure and superinfection of infected cells
by extending the basic model. The ODEs for this model are as follows:

dT
dt

= ρT ·T ·

0
BBB@1−

T +
Pn
i=1

Ii +N

Tmax

1
CCCA−d ·T −

Xn
i=1

β ·T ·Vi +
Xn
i=1

kcure · ð−log10ð1− «iÞÞ · Ii ,

dIi
dt

= β ·T ·Vi − δ · Ii + ksuper ·
Xn
j=1

Mi,j − kcure · ð−log10ð1− «iÞÞ · Ii ,

dVi

dt
= ð1− «iÞ · ri ·p · Ii − c ·Vi ,

A

B

Fig. 4. Conceptual frameworks for virus evolution under antiviral pressure. Resistant mutants expand through occupying/competing for available replication
space. (A) Previous modeling mostly assumed that, once a cell is infected by a virus, the cell remains infected until death. The replication space arises through
generation of new target cells. Under this framework, resistant mutants expand through infection of newly generated target cells, and the rate of the increase of
mutant frequency is mostly set by the rate at which infected cells die and are replaced by newly generated cells. (B) Our results suggest a conceptual framework
where the replication space arises from multiple sources. In the presence of potent antivirals, the level of intracellular HCV RNAs decreases, leading to cure of
infection in some cells. Replication space thus arises from both newly generated cells and cured cells. In addition, superinfection makes replication space available
by allowing resistant viruses to enter an already-infected cell and compete for intracellular resources. Thus, cure and superinfection of cells allow resistant mutant
expansion and turnover to occur at a much faster rate than the rate set by the death and replacement of infected cells only.
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«i =
D ·expð−w ·maxðt − 7,0ÞÞ

EC50,i +D ·expð−w ·maxðt − 7,0ÞÞ,

Mi,j =
�
Δ · β · Ij ·Vi Δ≥ 0
Δ · β · Ii ·Vj Δ< 0 , where   Δ= ð1− «iÞ · ri −

�
1− «j

�
· rj .

To model cure of infected cells, we assumed that the rate of cure of
infected cells is linearly dependent on the log10 of the efficacy of the
drug, log10ð1− «iÞ, and the rate constant is kcure. This assumption is
based on a previous finding with the protease inhibitor telaprevir that
the rate of second phase of viral load decline increased linearly with
−log10ð1− «Þ (32).

The superinfection we track here includes the infection of a cell already
infected with strain i with a virus of strain j, and the subsequent conversion
of the cell into a cell that produces virus of strain j. We assume, for simplicity,
that, if a fitter virus, strain i, enters a cell infected with a less fit strain, strain j

(modeled using the term β · Ij ·Vi), it can outcompete strain j, and then the

cell is converted to a cell productively infected by strain i. We further assume
the rate of this conversion is linearly dependent on the fitness difference (Δ)
of the two strains, Δ= ð1− «iÞ · ri − ð1− «jÞ · rj, and ksuper is a constant for the

efficiency of this conversion.
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