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Embryogenesis is an intricate process involving multiple genes and pathways. Some of the key transcription factors controlling
specific cell types are the Sox trio, namely, Sox5, Sox6, and Sox9, which play crucial roles in organogenesis working in a concerted
manner.Much however still needs to be learned about their combinatorial roles during this process. A developmental genomics and
systems biology approach offers to complement the reductionistmethodology of current developmental biology and provide amore
comprehensive and integrated view of the interrelationships of complex regulatory networks that occur during organogenesis. By
combining cell type-specific transcriptome analysis and in vivo ChIP-Seq of the Sox trio usingmouse embryos, we provide evidence
for the direct control of Sox5 and Sox6 by the transcriptional trio in the murine model and byMorpholino knockdown in zebrafish
and demonstrate the novel role of Tgfb2, Fbxl18, and Tle3 in formation of Sox5, Sox6, and Sox9 dependent tissues. Concurrently,
a complete embryonic gene regulatory network has been generated, identifying a wide repertoire of genes involved and controlled
by the Sox trio in the intricate process of normal embryogenesis.

1. Introduction

The Sox family of proteins that are encoded by at least 20
genes in mammals plays a myriad of roles during embryonic
cell type specification and organogenesis [1–8]. Three of
the Sox genes, Sox5, Sox6, and Sox9, while having unique
roles in specific cell types, together play a concerted role
during embryonic skeletogenesis, being absolutely neces-
sary for proper chondrogenesis [9–17]. The skeleton is a

complex system, fulfilling critical functions such as move-
ment, hematopoiesis, and the protection of vital organs. The
incidence of skeletal diseases is estimated to be 1 in 4000
births with half of them being early lethal but the real fre-
quency is probably higher as some disorders develop later in
life [18]. Genes controlling skeletogenesis are often involved
in other developmental processes, resulting in complex syn-
dromes with skeletal disorders being one of the outcomes.
To develop greatly needed therapies for human diseases, it
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is necessary to understand the molecular basis behind them.
Deciphering the fundamentals of skeletogenesis will aid in
the identification of the molecular mechanisms behind the
prevalent skeletal diseases.

Chondrocytes are the first skeleton-specific cell type to
appear during development and defects in chondrogenesis;
an essential event during endochondral ossification (respon-
sible for the formation of most of the skeleton) and post-
natal cartilage maintenance lead to chondrodysplasias and
osteoarthritis [19, 20].The commitment of progenitor cells to
the chondrogenic fate is largely determined by the expression
of the transcription factor, Sox9 [21]. Heterozygousmutations
in and around Sox9were shown to cause campomelic dyspla-
sia, a severe form of human chondrodysplasia often accom-
panied by male sex reversal and defects in other nonskeletal
organs, highlighting its critical role in chondrogenesis and
other tissues [22, 23]. Early chondrocyte differentiation and
subsequent maturation are controlled by Sox9 and its family
members, Sox5 and Sox6 [24, 25]. The expression of the
trio in nonchondrogenic cells has been shown to induce
cartilage formation [26]. Sox5 and Sox6 which are highly
related to each other are expressed downstream of Sox9
[27]. They exhibit functional redundancy for each other
during chondrogenesis with the double-gene knockout mice
displaying severe chondrodysplasia as compared to the single
knockouts, which showed mild skeletal defects [28]. Recent
molecular studies done in vitro have shown that the trio
synergistically activates the expression of cartilage-specific
genes such as Col2a1, Acan, andMatn1 [29, 30].

The genetic and molecular events underlying a biological
process such as chondrogenesis are often complex and the
complete understanding of the gene regulatory network
(GRN) involved requires a comprehensive developmental
genomics and systems biology approach [31]. Sox9, Sox5,
and Sox6 were previously found to be the major transcrip-
tion factors regulating chondrogenesis [27]. The targets of
the Sox trio in chondrogenesis uncovered by conventional
experimental approaches previously mentioned are probably
only a portion of the network involved and only partially
recapitulate what is happening in vivo. In order to have a
comprehensive view of what is occurring during skeleton
development, classical mouse genetics in combination with
expression profiling and chromatin immunoprecipitation-
sequencing (ChIP-Seq) were carried out for Sox9, Sox5, and
Sox6 using E13.5 mouse embryos, a stage representing the
second stage of chondrocyte differentiation preceding the
transition of chondrocytes into hypertrophic chondrocytes
[27, 32]. Though the roles of these three proteins have been
studied at E13.5 previously with their individual targets [27,
28, 33, 34], there is presently no comprehensive systems
biology in vivo gene list established for the Sox trio at this
stage.Here we report the identification of direct and indirect
targets of the transcriptional Sox trio in vivo, generating an
extensive GRN at E13.5, separating cohorts of genes regulated
by Sox9 alone or together with Sox5 and/or Sox6. We have
also verified Tgfb2, Tle3, and Fbxl18 as novel chondrogenic
targets regulated by the Sox trio. The modes of action of the
Sox trio and the discovery of their additional target genes in
this valuable dataset have increased the understanding of the

molecular mechanisms behind postmesenchymal condensa-
tion processes in chondrogenesis.

2. Materials and Methods

2.1. Generation of Transgenic Mice. BAC clones, RP24-
248D4, RP23-82L9, and RP23-403L18 containing regions of
the genome for Sox9, Sox5, and Sox6, respectively, were
ordered fromBACPAC, Resources Centre, CHORI, Oakland,
USA (http://bacpac.chori.org) [35, 36]. BAC modification
to create the transgenes was done using the Quick and
Easy BAC Modification Kit (Gene Bridges) according to
the manufacturer’s protocol. The modified BACS were then
subcloned to the pBSSK+ (Stratagene) or minimal vector
(Gene Bridges) as targeting vectors for homologous recom-
bination in ESC. All vectors used were verified by restriction
enzymemapping and sequencing [37, 38]. Correctlymodified
ESC lines were microinjected into 2- to 8-cell stage mouse
embryos to generate chimeric embryos and chimeric mice
that were subsequently used to generate mouse colonies
[39]. The Neo cassettes in the transgene were removed by
crossing with mice expressing Flpe recombinase driven by
the ROSA26 promoter (Stock number 3946, The Jackson
Lab) or Cre recombinase driving by the Zp3 promoter as
previously described [40, 41]. All animal procedures were
conducted according to IACUC guidelines. Further details
can be found in Supplementary Material available online at
https://doi.org/10.1155/2017/8932583.

2.2. Ethical Statement. All animal procedures were per-
formed according to the Singapore A∗STAR Biopolis Bio-
logical Resource Center (BRC) Institutional Animal Care
and Use Committee (IACUC) guidelines which are set by
the National Advisory Committee for Laboratory Animal
Research (NACLAR) for the ethical treatment of animals.The
IACUC protocols employed were reviewed and approved by
the aforementioned committee before any animal procedures
were undertaken for this study described here (IACUC
Protocol numbers 110689 and 110648). The mouse strains
used in this study were provided, housed, and maintained in
IVC cages by the A∗STAR Biopolis Biological Resource Cen-
ter following the aforementioned guidelines for the ethical
treatment of animals.

2.3. Gene Targeting in ESC. V6.4 and R1 mouse ESC were
used for gene targeting. Briefly, they were cultured at 37∘C
with 5% CO2 on gelatin-coated feeder plates with culture
mediummade fromDMEM (Gibco) supplemented with 15%
heat-inactivated ES-grade fetal bovine serum (FBS) (Gibco),
500U/ml LIF (Chemicon), 0.1mM 𝛽-mercaptoethanol
(Invitrogen), 4mM L-glutamine (Invitrogen), 1mM sodium
pyruvate (Invitrogen), and 40 𝜇g/ml gentamicin (Sigma)
[42, 43]. 10–15 𝜇g of the linearized vector was used for
each electroporation at 125 𝜇F, 0.4 kV into approximately 10
million ESC. Individual G418-resistant ESC colonies were
picked after 10 days of selection with 200–400𝜇g/ml G418
and screened by Southern blot analysis.

2.4. Genotyping. Mouse ESC, tail biopsies, and embryonic
tissues were digested with Proteinase K (Sigma). Genomic
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DNA was extracted using phenol-chloroform followed by
ethanol precipitation and used for genotyping [44]. All mod-
ified ESC and founder mice from the transgenic lines were
confirmedwith Southern blot analysis. Southern blot analysis
was carried out as previously described [40] using 10–20 𝜇g
of genomic DNA digested with the indicated restriction
enzyme. Routine genotyping was done by PCR [45].

2.5. FACS. E13.5 mouse embryos were harvested in ice-
cold Leibovitz’s L-15 (Gibco). EGFP-expressing embryoswere
identified using a fluorescent dissection microscope (Leica)
and dissected such that all internal organs were removed,
leaving the axial and appendicular skeleton intact. Tissue
dissociation into single cells was carried out by mechanical
pipetting using an enzymatic solution comprising 100U/ml
Collagenase I and Collagenase II (Invitrogen), 50U/ml
DNase I (Invitrogen), and 0.05% Trypsin (Invitrogen) in
Leibovitz’s L15. The enzymes were stopped by the addition of
20% FBS (Gibco) in Leibovitz’s L15.The dissociated cells were
filtered through a 100 𝜇M followed by a 40 𝜇M cell strainer.
Cells were pelleted down and resuspended in 5% FBS, 4 mM
EDTA in Leibovitz’s L15 for sorting using a 4-laser FACSAria
Cell Sorter (BD Biosciences).

2.6. Microarrays. Total RNA was isolated from the sorted
cells using the RNeasy Micro Kit (Qiagen). The RNA
extracted from all the samples was quantified using Ribo-
green (Invitrogen) and their RNA integrity was assessed to
ensure the high quality using the Bioanalyzer (Agilent Tech-
nologies). For the Sox9 microarray, 50 ng of total RNA per
samplewas labeled using the Illumina TotalPrep RNAAmpli-
fication Kit (Ambion) and hybridized on the MouseWG-
6 v1.1 Expression BeadChip (Illumina). For the Sox5/Sox6
microarray, 25 ng of total RNA per sample was labeled using
the TargetAmp-Nano Labeling Kit for Illumina Expression
BeadChips (Epicentre) and hybridized on the MouseWG-6
v2.0 Expression BeadChip (Illumina). Microarray hybridiza-
tion was carried out according to Illumina’s guidelines. The
microarray data can be found in GEO under the accession
number GSE33173.

2.7. Microarray Data Analysis. Raw data was extracted with
background subtraction employed using Genome Studio
(Illumina). Further analysis was done with Genespring 11
(Agilent). log2 transformation and percentile shift normal-
ization at 75th percentile were performed.Default detection𝑝
value range as suggested by the software for present,marginal,
and absent flags was used. Entities with present and marginal
flags were further filtered by the percentile of their expression
using the default settings before statistical analysis. Unpaired
𝑡-test with the Benjamini-Hochberg multiple test correction
was performed for the Sox9 microarray and the Sox5/6
microarray, respectively. A corrected 𝑝 value cutoff of 0.05
with a minimum fold change of 1.5 was used to find the
differentially expressed probes.

2.8. Histology. Mouse embryos were fixed overnight at 4∘C in
4% paraformaldehyde and processed as previously described

[46, 47]. RNA SISH was carried out with 10 𝜇m paraffin-
embedded sections as previously described [40, 48]. The
following cDNAs were used as templates for synthesiz-
ing the antisense probes: 0.5 kb Col2a1 [46]; 0.7 kb Matn4
(IMAGE Clone ID: 1366191); 4.7 kb Hapln1 (IMAGE Clone
ID: 30430221); 0.5 kb 3110079O15Rik (IMAGE Clone ID:
40104070); 0.6 kb Sox5 (IMAGE Clone ID: 40047865); and
0.5 kb Sox9 (Sox9 exon 1 sequence from BAC clone RP24-
248D4). Alcian Blue staining was performed as described
[46, 47, 49]. Crossing of theCol2a1-Cre transgenic line (Stock
number 3554, The Jackson Lab) with the conditional Sox9
knockout line was performed as described [50]. All sections
were photographed using Zeiss Axio Imager Z1.

2.9. ChIP-Seq and Peak Calling. Tissue from limbs and tails
of E13.5 CD1 wildtype embryos were used for Sox6 and Sox9
ChIP. The same tissues were dissected from E13.5 𝑆𝑜𝑥5𝐻𝐴/𝐻𝐴
embryos for the Sox5 ChIP. Crosslinking, chromatin isola-
tion, sonication, and immunoprecipitation were carried out
as previously described [51]. Preclearing was done with rabbit
or goat IgG (sc-2027 and sc-2028, Santa Cruz). Immunopre-
cipitation was done using an anti-Sox9 antibody (AF3075,
R&D Systems), anti-Sox6 antibody (ab30455, Abcam), and
anti-HA antibody (AP09230PU-N, Acris). All antibodies
employed have been shown to be specific for their specific
target protein and not to cross-react with any other protein
(e.g., Figure S1). 10–15 ng of purified ChIP DNA from each
sample was used to synthesize the sequencing library as
instructed by the ChIP-Seq DNA sample Prep Kit (Illumina).
The libraries were then subjected to the Solexa sequencing
according to Illumina’s instruction. Sequence reads produced
by the IlluminaGenomeAnalyzer II/IIx that passed the signal
purity filtering were mapped to the mouse genome mm9,
using the Illumina Genome Analyzer Pipeline. All uniquely
mapped reads that are with two or fewer mismatches were
retained. Genomic binding sites in the ChIP-Seq datasets
were identified using the peak calling algorithm MACS
(version 1.4.0 beta) with default settings (band width = 300,
model fold = 10, 30, 𝑝 value cutoff = 1.00𝑒 − 05, and range
for calculating regional lambda = 1000 and 10000 bps) [52].
The corresponding control libraries were used for all the
peak callings. The datasets can be found at GEO under the
accession number GSE33419.

2.10. Motif Analysis. Briefly, binding sites within 1 kb up-
stream and downstream of the transcription start site (TSS)
of the gene were considered in the TSS region. Binding sites
1–5 kb upstream of the TSS were considered to be in the
promoter region. Intragenic binding sites were defined as
being within the gene but out of the TSS and promoter
region. Proximal binding sites were binding sites out of the
gene but within 5–10 kb upstream of the TSS and 1–10 kb
downstream of the TSS. Distal binding sites were defined as
10–100 kb upstream and downstream of the TSS and out of
the gene. Other binding sites found more than 100 kb away
from the TSS and out of the gene were classified as others.
Peaks called by MACS were ranked according to the total
tags count as defined in the MACS output file. The top 200
peaks were used for motif analysis and the repeat masked
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genome sequences +/−50 bp from the summit of these 200
peaks were downloaded from the UCSC genome browser
(http://genome.ucsc.edu/). After masking repeats to 𝑁, we
performed de novomotif finding usingMEME ver. 4.3.0 with
the sequences. MAST was used to scan for the occurrences of
the primary de novo motif obtained using all the sequences
+/−50 bp of the ChIP-Seq peak summit. The cutoff for motif
match in MAST used was the default 𝑝 = 1.0𝑒 − 4.

2.11. Zebrafish Assays. Fish were maintained in the GIS
zebrafish facility according to the standard of IACUC guide-
lines. The stages of embryos were indicated as hpf (hours
after fertilization) or dpf (days after fertilization) [53]. Mor-
pholinos were injected into about 200 1-cell stage embryos
at a concentration of 1.2 picomolar. To reduce cell death due
to off-target effects 1.8 picomolar of p53 Morpholino was
coinjected as previously described [54]. Embryos were main-
tained in a 28∘C incubator overnight and dead embryos were
removed the next morning before scoring for morphants.
Alcian Blue staining was performed on 24 hpf wildtype
and morphant embryos and embryos were sectioned in a
transverse orientation as previously described [38, 54]. All
sections were imaged with the Zeiss Axio Imager.

2.12. Luciferase Assay. Using an oligo cloning strategy, the
binding site sequences were cloned between the BamHI
and XhoI sites of the pGL4.23 luciferase vector (Promega
Corporation, USA). NIH/3T3 or HEK293 cells (5-6 × 104
cells/well) were cultured in DMEM supplemented with 10%
FBS and 40 𝜇g/ml of gentamycin sulphate. For the assays
conducted for the Sox9 binding sites alone, cells were
transfected with 500 ng of luciferase vector containing the
binding site, 300 ng of Sox9 expression vector, and 5 ng of
Renilla luciferase vector (transfection control) using 6 𝜇l of
FuGENE HD transfection reagent (Roche Diagnostic, USA),
in 100 𝜇l of OPTI-MEM I medium (Invitrogen, USA). For
the assays validating the Sox trio binding sites, 300 ng of
luciferase vector containing the binding sites, 200 ng of each
of Sox9, Sox5, and Sox6 expression vectors, and 2 ng of Renilla
luciferase vector (transfection control) using 6 𝜇l of FuGENE
HD transfection reagent (Roche Diagnostic, USA), in 100 𝜇l
ofOPTI-MEMImedium (Invitrogen,USA),were transfected
into cells. The ratios between the different vectors were the
same for all transfections except where indicated. The cells
were grown for 48 hours and the luminescence wasmeasured
using Dual Luciferase Reporter Assay System on a Glomax
Multidetection System Luminometer as per manufacturer’s
instructions (Promega Corporation).

2.13. GO Analysis and GRN Construction. GO analysis was
carried out using DAVID [55]. The differential genes were
ranked based on expression fold change and if the number
of genes analyzed exceeded 3000, the 3000 genes with the
highest fold change were used for GO analysis. The GO-
terms for biological process were filtered using the corrected
𝑝 value < 0.05 adjusted by the Benjamini-Hochberg multiple
test correction and ranked according to fold enrichment as
determined by DAVID. The Sox trio-mediated GRN was
generated using Cytoscape [56].

3. Results

3.1. In Vivo Identification of the Genes Involved in the Sox Trio-
Associated Functions. To isolate the Sox9-expressing cells
directly from developing mouse embryos for in vivo com-
parative expression profiling, the endogenous Sox9 locus was
targeted with the enhanced green fluorescent protein (EGFP)
reporter gene via homologous recombination, generating
Sox9-wildtype (𝑆𝑜𝑥9+/+(EGFP)) and Sox9-null (𝑆𝑜𝑥9−/−(EGFP))
gene targeted lines (Figures 1(a)–1(c)) for fluorescence-
activated cell sorting (FACS). 𝑆𝑜𝑥9+/+(EGFP) was made with
the reporter linked via the foot-and-mouth disease virus 2A
peptide (F2A) at the 3󸀠 end of the Sox9 locus (Figure 1(b)),
forming a bicistronic system with a single open reading
frame [45, 57]. The 𝑆𝑜𝑥9+/+(EGFP) mice generated were viable
and fertile, indicating that the gene targeted mice are nor-
mal given the lethality of the Sox9 heterozygous mutation.
Western blot analysis using E13.5 𝑆𝑜𝑥9+/+(EGFP) and E13.5
wildtype embryos verified that the Sox9 and EGFP proteins
were expressed individually and Sox9 protein levels in our
𝑆𝑜𝑥9+/+(EGFP) were similar to that of the wildtype (Figures
S1). Sox9 heterozygotes mice die at birth and thus cannot
be intermated to generate Sox9 loss-of-function animals.
To overcome this problem, 𝑆𝑜𝑥9−/−(EGFP) embryonic stem
cells (ESC) were generated by sequential inactivation of
each Sox9 allele in ESC via gene targeting and used to
generate high-percentage chimeras for FACS (Figure 1(c)).
Both 𝑆𝑜𝑥9+/+(EGFP) and 𝑆𝑜𝑥9−/−(EGFP) embryos showed EGFP
expression in the Sox9-expressing domains, indicating that
the reporter is replicating the Sox9 expression endogenously.

Likewise, the Sox5 and Sox6 loci were tagged with the
EGFP reporter inmice for FACS.TheEGFP reporter genewas
inserted into the endogenous Sox5 loci after the translation
start site (Figure 1(d)), disrupting the longer protein isoform
of Sox5 which is the predominant form in chondrocytes [58].
Similarly, the EGFP reporter gene was used to inactivate the
Sox6 allele (Figure 1(e)). Viable and fertile lines of heterozy-
gous mice were generated from the targeted 𝑆𝑜𝑥5+/− and
𝑆𝑜𝑥6+/− ESC, respectively, and their phenotypes were similar
to what was previously described [28]. As Sox5 and Sox6 are
considered functionally redundant during chondrogenesis
[33], the two mouse lines were crossed to generate double
homozygous embryos with both Sox5 and Sox6 inactivated
(𝑆𝑜𝑥5−/−𝑆𝑜𝑥6−/−) for the transcriptome analysis.

Sox9 is expressed specifically during embryogenesis in
a variety of organs such as the male gonad, heart, nervous
system, and kidney [9]. Sox5 and Sox6 are expressed in
the neurons, oligodendrocytes, and further cell types other
than chondrocytes [59, 60]. For enriching skeletal cells
expressing the Sox trio, the E13.5 embryos had their internal
organs removed, leaving the axial and appendicular skeleton
intact before dissociation into single cells for FACS. The
remaining tissues present expressing the Sox trio would be
from the skeletal and central nervous system. It was not
possible to dissect out the central nervous system without
compromising cell viability; hence the results here represent
both chondrogenic and neurogenic cells types. Cells from a
wildtype E13.5 embryo were used to set the gating for FACS
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Figure 1: Sox9, Sox5, and Sox6 gene targeting and their E13.5 transgenic embryos generated for FACS and expression Profiling. (a) Wildtype
Sox9 allele (Sox9+) is indicated with exons depicted as black boxes. Translation start site (ATG) as indicated. (b) Sox9 with the F2A-EGFP-
FRTNeo inserted in exon 3 (𝑆𝑜𝑥9+(EGFPNeo)) and after FLPe recombination (𝑆𝑜𝑥9+(EGFP)). 𝑆𝑜𝑥9+/+(EGFP) E13.5 embryo shown on the right.
(c) Sox9-null allele with the EGFP-loxPNeo inserted after the ATG (𝑆𝑜𝑥9−(EGFPNeo)) and after CRE recombination (𝑆𝑜𝑥9−(EGFP)). Sox9-null
allele with FRTNeo inserted in exon 1 (𝑆𝑜𝑥9−(Neo)) and after FLPe recombination (𝑆𝑜𝑥9−). 𝑆𝑜𝑥9−/−(EGFP) E13.5 chimeric embryo shown on the
right. (d) Exon containing the ATG of wildtype Sox5 (Sox5+) shown. EGFP-loxPNeo inserted after the ATG (𝑆𝑜𝑥5−(EGFPNeo)) and after CRE
recombination (𝑆𝑜𝑥5−(EGFP)). 𝑆𝑜𝑥5+/−(EGFP) E13.5 embryo shown on the right. (e) Exon containing the ATG of wildtype Sox6 (Sox6+) shown.
EGFP-loxPNeo inserted after the ATG (𝑆𝑜𝑥6−(EGFPNeo)) and after CRE recombination (𝑆𝑜𝑥6−(EGFP)). 𝑆𝑜𝑥6+/−(EGFP) E13.5 embryo shown with a
wildtype embryo (WT) under same lighting condition. EGFP, green boxes; F2A, blue ovals; FRT sites, red triangles; loxP sites, yellow triangles
(see also Figure S1 and Table S1).
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(Figure S1). Postsort analysis of the collected EGFP-positive
fraction from all genotypes routinely showed that the EGFP-
expressing cells in the sorted population make up more than
95% as compared to the presorted population with 0.5–3%
EGFP-expressing cells, indicating that the Sox-expressing
cells have been successfully isolated from the nonexpressing
cells (Figure S1). Total RNA from the sorted cells was then
used for microarray analysis.

5742 genes were found to be differentially expressed
between 𝑆𝑜𝑥9+/+(EGFP) and 𝑆𝑜𝑥9−/−(EGFP) (Table S1). The loss
of Sox9 resulted in the upregulation of 3105 genes and
downregulation of 2637 genes. Genes that were upregulated
represented the putative genes that are normally repressed
by Sox9 and those that are downregulated represented the
putative targets activated by Sox9. RNA section in situ
hybridization (SISH) was carried out on 25 differentially
expressed genes identified, including that of a novel gene,
3110079O15Rik, and it was ascertained that their expres-
sion domains overlapped with that of Sox9 (Table S2). To
further validate our Sox9 microarray results, RNA SISH
on some of the targets was performed using 𝑆𝑜𝑥9+/+(EGFP)
embryos and conditional Sox9 knockout embryos previously
described [50]. A reduction in the expression of Col2a1, a
known Sox9 target, was observed as expected when Sox9
was inactivated (Figure S2). Downregulated genes such as
Matn4, Hapln1, and the novel gene, 3110079O15Rik, were
observed to have reduced expression whereas upregulated
genes like Pax1 showed an increase in expression, con-
firming the expression profiling results, giving rise to a
list of genes associated with the function of Sox9 at the
postmesenchymal condensation stage (Figure S2) and con-
currently, indicating that the experimental approach was
robust.

Comparative profiling at E13.5 was carried out for the
sorted cells from 𝑆𝑜𝑥5−/−𝑆𝑜𝑥6−/− embryos, against sorted
cells from 𝑆𝑜𝑥6+/− embryos, which have previously been
reported to be of a wildtype phenotype [28]. In the absence
of Sox5 and Sox6, a total of 4780 genes were found to
be differentially expressed with 1446 genes downregulated
and 3334 genes upregulated (Table S1). The fact that Sox9
was not found to be differentially expressed validates pre-
vious findings describing Sox9 as an upstream regulator of
Sox5 and Sox6, unlikely to be regulated by Sox5 and Sox6
[27].

To assess the major biological functions associated with
the differentially expressed genes from the microarray anal-
ysis, gene ontology (GO) analysis was carried out for the
upregulated and downregulated genes using the Database
for Annotation, Visualization and Integrated Discovery
(DAVID) [61]. The top GO-terms for biological processes
that were overrepresented in the downregulated gene sets for
both the Sox9 and the Sox5/6 microarray were enriched for
terms associated with skeletogenesis such as skeleton system
morphogenesis and cartilage development (Figures 2(a) and
2(b)). The top GO-terms for the upregulated genes did not
show skeletal-related terms (Figure S2), supporting previous
observations that the Sox trio acts as chondrogenic activators
[1].

3.2. Tissue ChIP-Seq Shows Sox9 Acting as a Homodimer and
Chondrogenic Activator. The pool of differentially expressed
genes from the microarray results consisted of target genes
that were regulated directly by Sox9 and other indirect target
genes whose expression was altered due to the loss of Sox9
affecting their upstream regulators. To find genes involved in
chondrogenesis directly controlled by Sox9, ChIP-Seq with
an anti-Sox9 antibody using dissected tissues from limbs and
tails of wildtype E13.5 embryos, naturally enriched for the
chondrogenic lineage, was performed (Figure 3(a)), with IgG
ChIP as background control. Using the model-based analysis
for ChIP-Seq (MACS) [52] algorithm, 3260 peaks were
identified. ChIP-quantitative PCR validation on randomly
selected peaks identified from the analyzed ChIP-Seq results
showed good correlation between the two datasets, indicating
that the peaks called were specific (Figure S3; Table S3).
To investigate the function of the binding sites, the peaks
were annotated based on their positional information relative
to the nearest gene (Figure 3(b)). The breakdown of the
distribution of binding sites showed 77% within 100 kb of the
transcription start site of a gene or within the gene itself with
the majority present in distal and intragenic regions.

The Sox9 tissue ChIP-Seq identified peaks at previously
characterized chondrocyte-specific enhancers in vitro such
as Col2a1 and Col9a1 [62, 63]. Luciferase assays were carried
out on some of the identified Sox9 binding sites in or
nearest to the putative target genes likeMatn4,Mia1,Hapln1,
Acan, Papss2, Sox5, and Sox6, validating the transactivation
function of the binding sites (Figure S4; Table S3).

To study the in vivo Sox9 binding sequence, de novo
motif finding was performed using Multiple EM for Motif
Elicitation (MEME) [64] with the top 200 Sox9 peaks with
the highest tags count as defined by MACS. The primary
motif identified confirmed in vivo that Sox9 functions as
a homodimer with the consensus Sox motifs in opposing
orientation (Figure 3(c)) as reported in in vitro studies previ-
ously [65]. Motif Alignment and Search Tool (MAST), part of
the MEME suite, was then used to scan for the primary motif
identified in all the Sox9 binding sites. About 37% (1197 out of
3260) of the Sox9 binding sites were found to have the Sox9
primary homodimer motif with the most common spacer
number of four base pairs found between them (Figure S3).
The spacing requirement for Sox9 binding has been reported
in in vitro experiments previously [65] and it has also
been shown that certain patients with campomelic dysplasia
possess a mutant Sox9 incapable of homodimerization [66].
Our study supports recent findings on genomewide surveys
of the homodimer motifs and spacing in vivo [7, 8, 67, 68]
reviewed in [69, 70]. Interestingly, in the study by Ohba et al.
[7] they suggest that the Sox9 protein can have two different
mechanisms of action, one where it interacts directly with the
TSS and a second one where it binds as a homodimer to its
DNA recognition motifs [7] reviewed in [69, 70].

3.3. Regulation of Sox5 and Sox6 Expression by the Sox
Trio. Sox5 and Sox6 are known to act downstream of Sox9
during chondrogenesis. Together, these three transcription
factors are thought of as the chondrogenic master regulators
[24, 33, 71] and Sox9 binding sites were previously found
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Figure 2: Differentially expressed genes from the Sox9 microarray and Sox5/Sox6 double-null microarray. (a) Top 10 GO-terms for genes
that are downregulated when Sox9 is inactivated. (b) Top 10 GO-terms for genes that are downregulated when Sox5 and Sox6 are inactivated
(see also Figure S2 and Table S2).

at the Sox5 locus in a ChIP-on-chip experiment using rat
chondrosarcoma cells [72]. None have been reported for Sox6
so far. In this study, multiple Sox9 binding sites in vivo were
found in both Sox5 and Sox6 loci (Figure S3). Sox5 and
Sox6 were both downregulated in the microarray by 5.6-fold
and 2.5-fold average, respectively, when Sox9was inactivated.
Taken together, this confirms that Sox9 activates Sox5 and
Sox6 expression, confirming them as direct Sox9 targets at
E13.5.

A previous in vitro study showed that the DNA binding
of Sox5 and Sox6 was not restricted to their consensus
Sox motifs but instead they can bind to variable motifs
on cartilage-specific enhancers on genes such as Acan [29],
suggesting that in silico approaches are not the ideal way
to find the binding sites. Thus, to determine the in vivo
binding profile, tissue ChIP-Seq was done for Sox5 and Sox6
using E13.5 mouse embryos. Sox5 ChIP-Seq was carried out
using limbs and tails from E13.5 embryos of 𝑆𝑜𝑥5𝐻𝐴/𝐻𝐴

mice previously described [40]. In these 𝑆𝑜𝑥5𝐻𝐴/𝐻𝐴 mice,
only the longer isoform of Sox5, relevant in chondrogene-
sis, was tagged with haemagglutinin (HA). To demonstrate

that the HA-tag was not interfering with the Sox5 protein
function, the 𝑆𝑜𝑥5𝐻𝐴/𝐻𝐴 mice were crossed to the 𝑆𝑜𝑥5+/−
gene targeted line to generate 𝑆𝑜𝑥5𝐻𝐴/− mice, which were
indistinguishable from wildtype mice. E13.5 wildtype limbs
and tails immunoprecipitated with HA antibody were used
as a negative control. To determine the Sox6 binding sites,
anti-Sox6 antibodywas used to immunoprecipitate limbs and
tails of E13.5 wildtype embryos with the IgG ChIP serving as
a negative control.

A total of 632 and 299 peaks were identified for Sox5
and Sox6, respectively, by the MACS analysis. Motif analysis
for the Sox5 and Sox6 ChIP-Seq dataset showed that the
consensus Sox motif 5󸀠-(A/T)(A/T)CAA(A/T)G-3󸀠 [73] was
enriched (Figures 3(d) and 3(e)), highlighting the robustness
of the in vivo ChIP-Seq. The peaks were then annotated with
respect to the nearest genes and classified as described for the
Sox9 ChIP library (Figures 3(f) and 3(g)). The distribution
of the binding sites found in the TSS and the promoter
region of the gene for the Sox5 and Sox6 ChIP library was
similar to those of the Sox9 ChIP library. It was observed
that most of the Sox5 and Sox6 binding sites were not
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Figure 3: ChIP-seq results for Sox9, Sox5, and Sox6. (a) Dissected tissues of the E13.5 embryo used for ChIP are indicated by the dotted
blue lines. (b) Distribution of the Sox9 binding sites with respect to their nearest genes. (c) Primary Sox9 motif found shows Sox9 acts as a
homodimer with the binding sites in opposite orientation. (d) Primary motif found from the Sox5 binding profile. (e) Primary motif found
from the Sox6 binding profile. (f) Distribution of the Sox5 binding sites with respect to their nearest genes. (g) Distribution of the Sox6
binding sites with respect to their nearest genes (see also Figure S3 and Table S3).

found in the proximity of the genes unlike what was seen
for the Sox9 binding sites. In particular, multiple Sox5 and
Sox6 binding sites were found in their loci (Figure S3),
suggesting that there is a self-regulatory feedbackmechanism
in addition to the Sox9 regulation. Complementary although

not identical results to those described here have previously
been described [67] and reviewed in [69, 70].

3.4. Genes That Are Directly Regulated by the Sox Trio.
To find genes that are regulated by Sox9, Sox5, and Sox6,
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Figure 4: (a) Top 10 GO-terms for genes that are activated by Sox9. (b) Top 10 GO-terms for genes that are activated by Sox5. (c) Top 10
GO-terms for genes that are activated by Sox6 (see also Figure S4 and Table S4).

the differentially expressed genes from the Sox9 microarray
were overlapped with the Sox9 ChIP-Seq library and the
differentially expressed genes from the Sox5/6 microarray
were overlapped with the Sox5 and Sox6 ChIP-Seq data. 490
genes, 113 genes, and 52 genes were found to be controlled by
Sox9, Sox5, and Sox6, respectively (Table S4).

More than two-thirds of the 490 genes with Sox9 binding
sites were downregulated when Sox9 was inactivated, reiter-
ating that Sox9 is more of an activator for gene expression

rather than a repressor during this stage [27, 74]. To assess
the direct targets of Sox9 in relation to their biological
relevance, GO analysis was used.Theupregulated geneswhen
Sox9 was inactivated did not have any GO-terms with a 𝑝
value < 0.05.The downregulated genes, however, were clearly
enriched for skeletal-related genes with the GO-term skeletal
system development and cartilage development topping the
list (Figure 4(a)), indicating that Sox9 activates skeletal genes
in vivo and that the dataset generated was robust and specific.
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More genes were found to be upregulated rather than
downregulated by Sox5 and Sox6 during the overlap, oppos-
ing the trend observed for Sox9. The downregulated genes
during Sox5 inactivation with Sox5 binding sites were over-
represented by GO-terms for transcription and cartilage
development (Figure 4(b)), showing that Sox5 activates car-
tilage genes. Similarly, genes shown to be activated by Sox6
were enriched for cartilage development and skeletal system
development (Figure 4(c)). Despite the larger number of
upregulated genes for both Sox5 and Sox6, which overlap,
none of the GO-terms has a significant adjusted 𝑝 value <
0.05.

3.5. Fbxl18, Tgfb2, and Tle3 Are Targets of the Sox Trio. As
observed earlier, a large portion of the Sox5 and Sox6 binding
sites was present more than 100 kb away from the TSS or
outside the gene. To understand the biological relevance of
these binding sites, another approach was taken in which
differentially expressed genes on both sides of the Sox5,
Sox6, and Sox9 binding sites were considered (Table S5).
Previously, only the nearest gene next to the binding site was
used for analysis. 21 genes were found to be differentially
expressed in both sets of microarray with binding sites for
all three of the Sox proteins. These included targets like
Sox5 and Sox6 themselves, Tgfb2, Tle3, and Fbxl18 (Figure
S3, Figure 5). To confirm the transcriptional activity of the
binding sites found for the Sox trio near some of these
targets, luciferase assaywas carried out for the Sox trio-bound
enhancers of Fbxl18, Rad51c, Sox11, Sox5, Sox6, Tgfb2, and
Tle3. Luciferase reporters were constructed with the element
bearing the binding sites for the three Sox proteins of each
of the target genes upstream of a minimal promoter (Table
S3). The results showed that the DNA elements bound by all
three Sox proteins were activated in the presence of the Sox
trio, validating the functionality of the identified binding sites
(Figure S5).

The different Sox proteins were then further tested for
their individual contribution in the transcriptional activation
of the Sox trio-bound regulatory regions found near the
genes Fbxl18, Rad51c, Tgfb2, and Tle3 (Figures 5(a) and
5(b)). These four genes were shortlisted as little has been
reported about their role in chondrogenesis. It was observed
from the luciferase assay that the absence of Sox9 alone
caused the biggest drop in the reporter activity of all the
Sox-bound enhancers whereas the loss of Sox5 and/or Sox6
resulted in a smaller loss of activity.The results indicated and
supported the hypothesis that Sox9 is the main activator for
the regulatory regions of chondrogenic genes with Sox5 and
Sox6 supporting it.

To investigate the biological function of these Sox trio-
regulated genes in particular with respect to skeletal forma-
tion, Morpholino-mediated knockdowns of Fbxl18, Rad51c,
Tgfb2, and Tle3 were performed in zebrafish by injecting
the translation blocking Morpholino into the 1-cell stage of
zebrafish embryos. Tle3 has two homologues in zebrafish,
groucho1 (gro1) and groucho2 (gro2). Since gro1 is expressed
primarily in the central nervous and hematopoietic system
[75, 76], we chose to focus on gro2. Reduced expression of
Fbxl18, Tgfb2, and Tle3 (gro2) resulted in a marked midline

phenotype compared to the control that was injected with
the scramble Morpholino at 24 hpf (Figure 5(c); Table S6).
Transverse sections of the Morpholino-injected embryos
showed extensive defects in the emerging sclerotome as
demonstrated by the reduced Alcian Blue staining and
loss of structural integrity, indicating that the three genes
played a key role in developing chondrocytes (Figure 5(c)).
Knockdown of Rad51c in the zebrafish was inconclusive, as
the mutants do not survive after Morpholino injection. In
summary, the in vivo results from the microarray and ChIP-
Seq done in mice, together with the zebrafish knockdowns
and in vitro luciferase assays performed, indicate that Fbxl18,
Tgfb2, and Tle3 are involved in sclerotome formation and are
transcriptionally regulated by the Sox trio. This also provides
validation to the in vivo datasets generated in this study,
allowing the construction of themost comprehensive Sox trio
GRN done to date (Figure 6).

4. Discussion

It is becoming increasingly clear that the complete under-
standing of any biological process in vertebrates will require
a comprehensive approach looking at multiple transcription
factors simultaneously and incorporating systems biology
approaches [77–79]. Coupling of genomewide binding site
data with expression profiling will give a detailed snapshot
of the network of genes involved in a particular process [80,
81]. Previously only Sox2 was subjected to a comprehensive
genomewide systems approach [82] but this was limited to
in vitro cell culture lines which often fail to recapitulate
the actual in vivo function. Our study looked at three
major transcription factors involved in organogenesis in the
developing embryo to understand the molecular and genetic
events underlying the process of chondrogenesis. Previously
there had been numerous attempts to look at the role of
the Sox trio in gene regulation. These studies often involved
analyzing single gene loci in in vitro systems [29, 30, 83].
Our three-factor ChIP-Seq coupledwith extensive expression
profiling performed using developing mouse chondrocytes
in an in vivo context has made it possible to perform a
global analysis, deciphering the genomewide interactive roles
of Sox9, Sox5, and Sox6 in regulating the genes involved in
chondrogenesis thus providing an extensive Sox trio-driven
gene regulatory network in vivo for the first time.

The approach of enriching for specific chondrogenic
tissues in both ChIP-Seq and transcriptome profiling exper-
iments has allowed us to specifically look at genes and
pathways involved primarily in chondrogenesis. By analyzing
the gene expression profiles together with the identified
binding sites for the Sox trio, we identified awide repertoire of
genes that are regulated directly by Sox9 alone such as Prelp,
Hapln1, and the novel target 3110079O15Rik as well as those
that are regulated by Sox5 and/or Sox6 alone or together with
Sox9 during embryogenesis (Figure 6).

To provide biological insight, hypothesis generating
screens such as ChIP-Seq experiments need to be combined
with meaningful assays for downstream functional valida-
tion. For this study, we took advantage of the zebrafish
model as it allows high-throughput knockdown analysis
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Figure 5: Genes regulated by the Sox trio. (a) Binding profile of Sox9, Sox5, and Sox6 for Fbxl18, Tgfb2, and Tle3. (b) Transactivation assay
for the Sox binding sites found for Fbxl18, Tgfb2, and Tle3. Different Sox proteins were transfected as indicated with the enhancers containing
the Sox trio binding sites and the luciferase activity was then measured. (c) Top panel shows the whole mount picture of the 24 hpf zebrafish
embryos injected with the Morpholinos for Fbxl18, Tgfb2, and Tle3 along with the wildtype (WT) injected with the scramble Morpholino
as a negative control. Bottom panel shows the respective transverse sections of the Morpholino-injected embryos stained with Alcian Blue.
The WT embryo shows normal neural tube (NT) and a well-defined emerging sclerotome (black arrow). The morphants at the same stage
show extensive midline phenotype with defects in both neural tube and the sclerotome as seen by reduced Alcian Blue staining and loss of
structural integrity (see also Figure S5 and Table S6).

in vivo in the context of the entire developing organism.
By employing the multifactor ChIP-Seq and microarray,
togetherwith the zebrafish validation, three newgenesFbxl18,
Tgfb2, and Tle3 were discovered to be coregulated by the
Sox trio, highlighting the biological relevance of the network
generated. Other genes previously identified to be part of
skeletogenesis but not known to be controlled by the Sox
trio were also uncovered in our network. These include
Notch4, part of the Notch-Delta signaling pathway, and Sox11
whose homozygous mutants display craniofacial and skeletal
abnormalities [84]. In addition, multiple Sox binding sites
in and around Sox5 and Sox6 were found and validated,

providing evidence of the autoregulatory role of the Sox trio
in vivo.The network also includes genes that were previously
not thought to play any role in chondrogenesis like Fbxl18,
Tle3, Rad51c, and Bach2 and we have validated two of these
novel targets in this study.

The knockdowns of Fbxl18, Tgfb2, and Tle3 showed clear
sclerotome defects thus providing evidence for their role
in skeletal under the control of the Sox trio enhancers.
A recent report linked the receptor of Tgfb2 (Tgfbr2) to
intervertebral disk formation [85]. Our data clearly shows
that the ligand Tgfb2 is directly controlled by the Sox trio.
The transcriptional activation assay with Sox trio-bound
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Figure 6: Sox trio-regulated network of genes. Blue dots represent genes activated (green lines) or repressed (red lines) by the transcription
factors Sox9, Sox5, and Sox6 (see also Table S5).

regulatory regions proves and supports the hypothesis that
in the process of chondrogenesis Sox9 plays a primary and
compensatory role with Sox5 and Sox6 complimenting it.
Thismay explain why Sox5 and Sox6 single null mutants have
a mild phenotype up to a very late stage in development as
Sox9 can compensate to a large extent for their loss.

Sox9 was previously shown to bind to pairs of inverted
Sox motifs from studies done on campomelic dysplasia
patients and in cell culture [29, 66]. Our Sox9 ChIP-Seq data

on mouse embryonic tissue confirm this observation in vivo
and further detects the presence of Sox5 and Sox6 binding
sites along with Sox9 near many genes, helping to uncover
new genes controlled by the Sox trio with a potential role in
chondrogenesis.

One of the defining features of these Sox-bound
enhancers that we found is that they are at a fairly large
distance from the TSS. There have been increasing numbers
of publications from genomewide studies indicating that
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most of the transcription factor binding sites identified are
found in the intragenic region rather than at the TSS [79, 86].
Similar binding profiles are observed for other transcription
factors in mid gestation mouse embryos (unpublished
data) leading us to believe that the primary role for these
transcription factors at these stages is not just to initiate
transcription of downstream genes but mainly to direct the
tissue specificity by controlling a subset of their regulatory
elements simultaneously in a fine-tuned manner in a way we
are beginning to understand.

This study has provided an extensive network of genes
that are directly and indirectly controlled by Sox9, Sox5,
and Sox6 in the context of cell type specification in mouse
embryos. Evidence supporting the role that the Sox trio plays
in this biological process has been previously reported. This
however is the first systems biology genomewide in vivo
analysis done and reported, validating some of the known
players such as Sox5 and Sox6 while at the same time dis-
covering and verifying novel ones like Tle3. The information
generated from this extensive study will allow for future work
to be conducted on some of the downstream genes identified,
paving the way for a comprehensive understanding of the
vertebrate chondrogenic gene regulatory network that will be
insightful in the treatment of human skeletal diseases.
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