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Rendu–Osler–Weber syndrome, also known as hereditary hemorrhagic telangiectasia
(HHT), is an autosomal dominant vascular disorder. Three genes are causally related to
HHT: the ENG gene encoding endoglin, a co-receptor of the TGFβ family (HHT1), the
ACVRL1 gene encoding ALK1 (activin receptor-like kinase 1), a type I receptor of the
TGFβ family (HHT2), and the SMAD4 gene, encoding a transcription factor critical for
this signaling pathway. Bone morphogenetic proteins (BMPs) are growth factors of the
TGFβ family. Among them, BMP9 and BMP10 have been shown to bind directly with high
affinity to ALK1 and endoglin, and BMP9 mutations have recently been linked to a vascular
anomaly syndrome that has phenotypic overlap with HHT. BMP9 and BMP10 are both
circulating cytokines in blood, and the current working model is that BMP9 and BMP10
maintain a quiescent endothelial state that is dependent on the level of ALK1/endoglin
activation in endothelial cells. In accordance with this model, to explain the etiology of
HHT we hypothesize that a deficient BMP9/BMP10/ALK1/endoglin pathway may lead to
re-activation of angiogenesis or a greater sensitivity to an angiogenic stimulus. Resulting
endothelial hyperproliferation and hypermigration may lead to vasodilatation and generation
of an arteriovenous malformation (AVM). HHT would thus result from a defect in the
angiogenic balance. This review will focus on the emerging role played by BMP9 and
BMP10 in the development of this disease and the therapeutic approaches that this opens.
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HHT IS LINKED TO THE TGFβ SUPERFAMILY SIGNALING
PATHWAYS
Three genes are causally related to hereditary hemorrhagic telang-
iectasia (HHT): the ENG gene encoding the co-receptor endoglin
(HHT1; McAllister et al., 1994), the ACVRL1 gene encoding
ALK1 (Johnson et al., 1996), and the SMAD4 gene, a critical
factor in this signaling pathway (Gallione et al., 2004). HHT
disease is thus clearly linked to the TGFβ superfamily signaling
pathways.

In TGFβ superfamily signaling, ligands bind a heterote-
trameric complex composed of two type II receptors and two
type I receptors, both of which are serine/threonine kinases. Upon
ligand binding, the type II receptors phosphorylate and activate
the type I receptor. The activated type I receptor then propagates
the signal by phosphorylating a family of transcription factors,
the Receptor regulated-Smads (R-Smads). The phosphorylated
R-Smad complex, with the common partner Smad4, enters the
nucleus and, together with other transcription factors, regulates
transcription of target genes (Massague, 2008; Xu et al., 2012;
Figure 1). The Smad signaling pathway is the canonical signaling
pathway for the TGFβ superfamily; however, non-Smad signaling
pathways are also important (Guzman et al., 2012; Poorgholi
Belverdi et al., 2012).

There are seven type I (also known as activin receptor-like
kinase, i.e., ALK1–7), and five type II receptors. These recep-
tors can also associate with type III receptors, also termed co-
receptors, such as endoglin, which increase ligand signaling but
have no intrinsic enzymatic activity (Meurer et al., 2014). All these
receptor complexes bind to a large family of ligands (33 members
in mammals) defining two different pathways: the TGFβ/activin
subfamily activates R-Smad2 and 3 while the bone morphogenetic
protein (BMP) subfamily activates R-Smad1, 5, and 8 (Figure 1).
Many members of this pathway are involved in vascular devel-
opment and vascular diseases (ten Dijke and Arthur, 2007; Dyer
et al., 2014), but this review will focus on receptors and signaling
related to HHT pathology.

ALK1 and endoglin belong to a receptor complex that is
specifically expressed in endothelial cells and mutations in these
receptors are therefore related to vascular defects. This has been
confirmed by murine models. In mice, inactivation of either Alk1
or Eng is lethal at mid-gestation, with severe vascular disorders
including arteriovenous shunts, vascular dilation, and irregular
vascular smooth muscle cell recruitment (Bourdeau et al., 1999,
2000; Li et al., 1999; Arthur et al., 2000; Oh et al., 2000; Urness
et al., 2000). Mice heterozygous for Alk1 or Eng, or conditionally
deleted for either of these genes in endothelial cells, represent
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FIGURE 1 | BMP9/10 are ligands of the ALK1-Endoglin receptor
complex and activate the Smad pathway in endothelial cells. BMP9/10
bind to a heterotetrameric complex composed of two type I receptors
(ALK1) and two type II receptors (BMPR2, ActR2A, or ActR2B). Endoglin is
a co-receptor of this complex and enhances signaling. Following ligand
binding, receptors are phosphorylated and propagate signal through
R-Smad 1, 5, 8 phosphorylation. The R-Smads then associate with Smad4
to regulate target gene transcription in the nucleus.

animal models for HHT (Srinivasan et al., 2003; Torsney et al.,
2003; Park et al., 2009; Mahmoud et al., 2010).

ALK1 has long been an orphan receptor while the coreceptor
endoglin was shown to bind many members of the TGFβ super-
family (Barbara et al., 1999). In 2002, TGFβ1 and TGFβ3 isoforms
were first proposed as ligands for ALK1 and endoglin together in a
complex with ALK5, the canonical receptor for TGFβ1 and TGFβ3
(Goumans et al., 2002). However, in 2007, BMP9 and BMP10
were found to bind ALK1 and endoglin with a much higher
affinity (Brown et al., 2005; David et al., 2007; Scharpfenecker
et al., 2007) and recent data further support the notion that BMP9
and BMP10 are the two major ligands of ALK1 (Ricard et al.,
2010; Nolan-Stevaux et al., 2012; Park et al., 2012; van Meeteren
et al., 2012). In the present manuscript, we will discuss why we
think that BMP9 and BMP10 are the most probable ligands for
ALK1 and endoglin, what roles they play in the development of
HHT, and what this implies for future treatment of HHT patients.
However, readers of this paper should keep in mind that the
ligands for ALK1 and endoglin, and the pathways defective in
HHT remain under debate.

RECEPTORS AND SIGNALING PATHWAY INVOLVED IN HHT
The majority of HHT patients (80–85%) have been found to have
mutations in ACVLR1 or ENG.

ALK1 is a single transmembrane protein that comprises a
cysteine-rich N-terminus extracellular ligand-binding domain
[amino acids (aa) 22–118 encoded by exons 2, 3, and part of
exon 4], a short transmembrane domain (119–141 aa encoded
by exons 4, and part of exon 5), and a large intracellular domain
(142–503 aa encoded by part of exon 5 up to exon10). The latter
one includes the GS domain (a region rich in glycine and serine
that is phosphorylated by a type II receptor), a serine/threonine
kinase domain and a short cytoplasmic tail. Mutations in ACVRL1
(375 entries to date) linked with HHT2 affect the integrity of each
of these domains (http://www.arup.utah.edu/database/hht/) and
46% are missense variants.

Endoglin is an integral membrane glycoprotein composed of a
180-kDa disulfide-linked homodimer with a large and highly gly-
cosylated extracellular domain presenting a multimodular struc-
ture (Gougos and Letarte, 1990; Bellon et al., 1993; Llorca et al.,
2007; Gregory et al., 2014). Its extracellular domain is composed
of an orphan domain (aa 26–359 encoded by exons 2–8), which
does not share any homology with other proteins and has been
described as the ligand-binding domain (Castonguay et al., 2011;
Alt et al., 2012), and two zona pellucida domains (ZP-N aa 360–
457 encoded by exons 9–11 and ZP-C aa 458–586 encoded by
exons 12–14). The intracellular domain, 46 aa, is very short (aa
612–658 encoded by exon 15). Mutations in ENG (470 entries
to date) linked with HHT1 also affect the integrity of each of
these domains but only 21% are missense variants. The majority
corresponds to deletion and splice defects leading to the expres-
sion of a truncated protein that is either not expressed at all or
retained intracellularly, supporting a model of haploinsufficiency
for HHT1 (Pece et al., 1997; Pece-Barbara et al., 1999; Cymerman
et al., 2000; Paquet et al., 2001). However, it was also shown that
some missense mutations that could not properly reach the cell
surface could heterodimerize with wild-type (WT) endoglin and
reduce the amount of endogenous WT endoglin at the plasma
membrane. They could thus behave as dominant negatives, which
could lead to more severe disease (Lux et al., 2000; Forg et al.,
2014; Mallet et al., 2014).

The third gene involved in HHT encodes Smad4, the key
downstream effector of TGFβ/BMP family signaling pathway. The
SMAD4 gene accounts for 2–3% of HHT cases and is associated
with juvenile polyposis in most cases (Gallione et al., 2004, 2006,
2010).

Taken together these data support that HHT pathogenesis
involves the ALK1/endoglin/Smad signaling pathway. Therefore, a
better understanding of the physiological ligands of this receptor
complex is required for more comprehensive knowledge of HHT
pathogenesis.

BMP9 AND BMP10 IN HHT
EXPRESSION AND REGULATION OF BMP9 AND BMP10 ACTIVITIES
BMP9 and BMP10 are two close members of the BMP family
with 65% sequence identity at the protein level. They are both
synthesized as a large precursor (Figure 2A) consisting of a
prodomain for proper folding (aa 23–319 for BMP9, aa 22–316 for
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BMP10) and a C-terminal mature peptide (aa 320–429 for BMP9,
aa 317–424 for BMP10) linked by a disulfide bridge within the
mature domain. This protein is cleaved by subtilisin-related pro-
protein convertases (e.g., furin; Susan-Resiga et al., 2011; Bidart
et al., 2012) and following cleavage, the prodomain remains non-
covalently associated with the mature dimer. At least for BMP9,
this complex has been described as being able to bind to its
receptor ALK1 and to activate its signaling pathway (Brown et al.,
2005; Bidart et al., 2012; Figure 2A). In contrast, the BMP10
prodomain has been shown to confer latency to BMP10 on C2C12
cell activation (Sengle et al., 2011). Therefore, a major difference
between these two BMPs is that only circulating BMP9 is biolog-
ically active; indeed, human plasma ALK1 activity using a BMP
responsive reporter assay can be mostly inhibited by a neutralizing
anti-BMP9 antibody, and murine plasma from Bmp9-knockout
mice is not able to activate a BMP response (David et al., 2007;
Ricard et al., 2012). However, we cannot exclude that there could
be some active circulating BMP10, as shown by Chen et al. (2013).

BMP9 is mainly produced by the liver (Miller et al., 2000),
more specifically by hepatocytes, and at a lower level by the lungs
and the brain (Miller et al., 2000; Bidart et al., 2012). On the other
hand, BMP10 is mainly produced by the heart, but also at a lower
level by the liver and the lungs (Neuhaus et al., 1999). These two
BMPs are present in both human and mouse plasma (David et al.,

FIGURE 2 | (A) Schematic diagram of BMP biosynthesis and processing.
BMPs are synthesized as pre-pro-proteins that are disulfide-bonded to form
pro-BMPs. Pro-BMPs represent a precursor inactive form that needs to be
further processed. After cleavage by pro–protein convertases, the
prodomains remain non-covalently associated with the mature BMPs.
BMP9 complexed form has been shown to be able to activate ALK1
signaling (modified from Bidart et al., 2012). (B) BMP9 mutations found in
HHT-like vascular syndrome. Three mutations have been described,
indicated by a blue star. Two of these mutations are associated in vitro with
a defect in BMP9 processing (modified from Wooderchak-Donahue et al.,
2013).

2008; Bidart et al., 2012; Ricard et al., 2012; Chen et al., 2013).
Circulating levels of BMP9 and BMP10 have been shown to be
around 0.5–15 ng/ml, higher than the EC50 described for binding
to ALK1 (50 pg/ml; David et al., 2007). Therefore their circulating
levels are sufficient to stimulate ALK1 and endoglin expressed on
the endothelium. Although circulating BMP10 is inactive, recent
data support a role for BMP10 on vascular development (Ricard
et al., 2012; Chen et al., 2013). Thus further work is needed to
elucidate BMP10 circulating forms and activation.

BMP9 AND BMP10 BIND TO ALK1 AND ENDOGLIN
Both BMP9 and BMP10 have been shown to bind to ALK1
with a very high affinity (David et al., 2007; Scharpfenecker
et al., 2007). For example, the Kd values for ALK1 extracellular
domain (ALK1ECD) and BMP9 and for ALK3ECD and BMP2 were
respectively 29 and 330 nM (Mahlawat et al., 2012). The crystal
structure of the ternary complex of recombinant mature BMP9
with the extracellular domains of ALK1 and ActR2B has revealed
a novel orientation of ALK1 with respect to BMP9, which could
explain the high affinity of BMP9 for ALK1 (Mahlawat et al.,
2012; Townson et al., 2012). The majority of HHT2 mutations
affect residues that are integral to the core structure and only
three described HHT mutations (H66P, G79R, H87D) have been
predicted to have a direct effect on BMP9 binding (Townson et al.,
2012).

Interestingly, BMP9 and BMP10 are potentially the only
TGFβ/BMP ligands that can bind to both type I and type
II receptors with high affinity. This suggests a unique non-
discriminative binding mechanism to generate the ternary com-
plex ligand/receptor I/receptor II (Townson et al., 2012). In
addition, although results differ from one study to another, the
affinities of BMP9 and BMP10 for their type II receptors might
be slightly different (Brown et al., 2005; Townson et al., 2012).
Thus despite apparent sequence homology and possibly similar
functions, BMP9 and BMP10 could act through different type II
receptors.

Endoglin is a co-receptor, and so far it has not been shown
to transduce a signal by itself. It has been demonstrated that it
increases BMP9/BMP10/ALK1 signaling; however, the molecular
mechanism of this effect is not understood yet (David et al., 2007;
Scharpfenecker et al., 2007; Nolan-Stevaux et al., 2012). Endoglin
has also been identified as a co-receptor for other members of
the TGFβ family (Barbara et al., 1999). However, only BMP9
and BMP10 were shown to bind directly to endoglin (Castonguay
et al., 2011; Alt et al., 2012; Gregory et al., 2014).

Binding studies have shown that endoglin and ALK1 do not
compete for BMP9 binding, while endoglin and ActR2B compet-
itively bind BMP9 (Castonguay et al., 2011). This is reflected in a
model where endoglin and ALK1 act together to bind and capture
BMP9 on the cell surface. The type II receptors then function
to displace the bound endoglin to form a type I/type II receptor
signaling complex.

BMP9 AND BMP10 ROLES IN VASCULAR REMODELING
Evidence from in vitro studies
Many studies have attempted to elucidate the downstream cel-
lular effects mediated by BMP9/BMP10/ALK1 signaling in vitro
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in endothelial cells, but no clear consensus has been reached.
It has been proposed that pro- or anti-angiogenic roles for
BMP9/BMP10 depend on the experimental system considered
and the cell type used (David et al., 2007; Scharpfenecker et al.,
2007; Upton and Morrell, 2009; Suzuki et al., 2010; Park et al.,
2012). Taken together, the data do not allow us to propose a
clear cellular mechanism for the BMP9/BMP10/ALK1 signaling
pathway and further work will be necessary to integrate this
pathway with other important signaling pathways in vascular
development such as the VEGF (vascular endothelial growth
factor) pathway. Our working model is that BMP9 and BMP10,
present at significant levels in blood, may act via ALK1 as suppres-
sors of endothelial cell migration and proliferation, maintaining a
quiescent endothelial state (David et al., 2009; Atri et al., 2013).

Evidence from animal models: mice and zebrafish
Bmp9 inactivation leads to viable mice with no obvious observ-
able defect in blood vessels. However, it was found that these
mice presented defects in lymphatic vessel maturation and valve
formation, and lymph drainage deficiency, consistent with ALK1
expression in lymphatic endothelial cells (Levet et al., 2013;
Yoshimatsu et al., 2013). In accordance with this result, Alk1
deletion in mice has been described to lead to enlarged lymphatic
vessels (Yoshimatsu et al., 2013). However, to our knowledge no
lymphatic defects have been described so far in HHT patients.

On the other hand, Bmp9 inactivation on its own did not lead
to any defect in the retinal vascularization model (Ricard et al.,
2012). However, injection of a neutralizing anti-BMP10 antibody
in Bmp9-deficient mice strongly inhibited vascular expansion of
the retina and induced an increase in vessel density, demon-
strating a redundancy between BMP9 and BMP10 in vascular
development (Ricard et al., 2012; Chen et al., 2013).

In contrast to Bmp9-deficient mice, Bmp10-deficient mice die
very early, between E9.5 and E10.5, with profound defects in
cardiac development (Chen et al., 2004), consistent with a high
expression of BMP10 in the developing heart (Neuhaus et al.,
1999) and BMP10 receptor ALK3 expression in cardiomyocytes
(Briggs et al., 2013). However, very recently, the vascular status
of these mice was reevaluated and it was found that Bmp10-
deficient mice also presented very early vascular defects in the yolk
sac and embryos (Chen et al., 2013). Moreover, these embryos
developed arteriovenous malformations (AVMs) with a pheno-
type reminiscent of the vascular phenotype resulting from the
loss of Alk1 (Urness et al., 2000), indicating that BMP10 is a
key ALK1 ligand during embryonic development. Taken together,
these data suggest that BMP10 via ALK3 is a key player in cardiac
development and that BMP10 via ALK1 plays a critical role in
vascular development.

Similar observations could be made using another animal
model, i.e., zebrafish. It was shown that embryos harboring a
mutation in Alk1 (mutant violet beauregarde, vbg) exhibit abnor-
mal circulation albeit normal vessel patterning, with enlarged
vessels resulting in robust cranial AVMs (Roman et al., 2002;
Corti et al., 2011). Blocking Bmp9 expression by injecting Bmp9
morpholinos led to mild impaired venous remodeling, suggest-
ing that other ligands such as BMP10 might compensate for
BMP9 (Wooderchak-Donahue et al., 2013). In this respect, bmp10

morphants presented a phenotype that was indistinguishable
from Alk1 morphants (Laux et al., 2013): arteries were enlarged,
contained supernumerary endothelial cells and AVMs. These
data suggested that BMP10 is the important ligand for ALK1 in
zebrafish in very early embryonic stages of vascular development.

Therefore, the current working model is that BMP10, which is
expressed first, plays a key role during early embryonic develop-
ment and could control endothelial cell numbers in nascent arter-
ies (Chen et al., 2013; Laux et al., 2013). Then, as soon as BMP9
is produced, they are both involved in vascular development in an
interchangeable manner and ensure vascular quiescence.

Evidence from HHT
The identification of BMP9 as a high affinity ligand for the
receptor ALK1 and the co-receptor endoglin has resulted in the
development of functional assays to study how a mutation affects
the function of the mutated protein (Ricard et al., 2010; Mallet
et al., 2014). These functional tests are important because they
can discriminate a pathogenic mutation from a non-pathogenic
mutation in the case of missense mutations. This is particularly
relevant for patients with conflicting mutations (carrying, for
example, two different mutations in ENG or ACVRL1) or a novel
mutation.

In the case of ENG, two new missense mutations within
the orphan domain (S278P, F282V) were recently described as
inhibiting BMP9 binding to endoglin (Mallet et al., 2014) in
accordance with the previous mapping of the BMP9-binding
region of endoglin to its orphan domain (Castonguay et al., 2011;
Alt et al., 2012) further supporting the involvement of BMP9 in
HHT pathogenesis.

Recently, GDF2 (encoding BMP9) mutations have been
described in a vascular anomaly syndrome with phenotypic
overlap with HHT (Wooderchak-Donahue et al., 2013). Muta-
tions were identified in three unrelated probands (pArg68Leu,
pPro85Leu, and pArg333Trp), the first two being within the
prodomain and the last one in the mature peptide (Figure 2B).
The last two BMP9 mutations were shown to affect BMP9 pro-
cessing, but further work is needed to show how these mutations
affect the circulating levels of BMP9 or its signaling to ALK1 or
endoglin.

According to what has been observed, in vitro in endothelial
cells and in vivo in mice and zebrafish, HHT could result from a
defect in the angiogenic balance. In accordance with this hypothe-
sis, several case reports and clinical trials using antibodies against
VEGF (bevacizumab from Roche/Genentech) have been pub-
lished in which HHT patients were successfully treated (Flieger
et al., 2006; Mitchell et al., 2008; Dupuis-Girod et al., 2012; Lupu
et al., 2013; Vlachou et al., 2013).

CONCLUSION AND PERSPECTIVES
Taken together, recent data clearly indicate that the BMP9/
BMP10/ALK1/endoglin pathway is an emerging new signaling
pathway that is critical for vascular development and defective in
the vascular pathogenesis of HHT. Although not discussed here,
this pathway is also involved in pulmonary arterial hypertension
(PAH), another rare vascular disease associated with mutations
in BMPR2, ACVRL1, and ENDOGLIN (Trembath et al., 2001;
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Girerd et al., 2010). Our current working model is that BMP9
and BMP10 are present in blood, bind to ALK1 and endoglin on
endothelial cells, and induce vascular quiescence. When ALK1 or
endoglin is mutated, signaling through this pathway is decreased
and may lead to an increase in the angiogenic response. This
model is supported by the beneficial treatment of HHT patients
with anti-angiogenic drugs (bevacizumab; Dupuis-Girod et al.,
2012). Other therapeutic approaches for HHT would be to stim-
ulate this deficient pathway, either via drugs that activate the
pathway as has been recently described for PAH (Spiekerkoet-
ter et al., 2013) or by adding more BMP9 or BMP10 ligands
or using mimicking peptides. Indeed, although high levels of
BMP9 and BMP10 are present in blood they might not be under
circulating bioavailable forms. The identification of the ligands
involved in this signaling pathway represents real progress in the
understanding of the pathogenesis of HHT and should lead to
new therapeutic developments in the future.
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