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An increasing number of neuroimaging studies are based on either combining more than

one data modality (inter-modal) or combiningmore than onemeasurement from the same

modality (intra-modal). To date, most intra-modal studies usingmultivariate statistics have

focused on differences between datasets, for instance relying on classifiers to differentiate

between effects in the data. However, to fully characterize these effects, multivariate

methods able to measure similarities between datasets are needed. One classical

technique for estimating the relationship between two datasets is canonical correlation

analysis (CCA). However, in the context of high-dimensional data the application of CCA

is extremely challenging. A recent extension of CCA, sparse CCA (SCCA), overcomes

this limitation, by regularizing the model parameters while yielding a sparse solution. In

this work, we modify SCCA with the aim of facilitating its application to high-dimensional

neuroimaging data and findingmeaningful multivariate image-to-image correspondences

in intra-modal studies. In particular, we show how the optimal subset of variables can be

estimated independently and we look at the information encoded in more than one set

of SCCA transformations. We illustrate our framework using Arterial Spin Labeling data

to investigate multivariate similarities between the effects of two antipsychotic drugs on

cerebral blood flow.

Keywords: multivariate analysis, sparse canonical correlation analysis, pharmacological MRI, Arterial Spin

Labeling, resting cerebral blood flow, intra-modal data, repeated measures, antipsychotics

Introduction

Acquiring multiple neuroimaging datasets from the same subject is becoming common practice
(Sui et al., 2012). An increasing number of studies are now based on either combining more
than one imaging modality [inter-modal studies; e.g., Ystad et al. (2011)] or combining more
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than one measurement from the same modality (intra-
modal studies; e.g., Elsenbruch et al., 2012). Both provide
important benefits: inter-modal studies allow the complementary
information from different data modalities to be used whereas
intra-modal studies can increase power (e.g., through the use
of repeated-measures designs) with respect to single modal
studies. To date, intra-modal studies using multivariate methods
have focused almost exclusively on differences between datasets,
for instance relying on classification algorithms to differentiate
between effects in the data.

In the context of pharmacological studies using functional
Magnetic Resonance Imaging (phMRI), which commonly
employ repeated-measures (i.e., intra-modal) designs,
multivariate analyses have exclusively focused on discriminating
the distributed effects of different drug interventions. Several
studies have employed Blood Oxygen-Level Dependent
(BOLD)-fMRI for this purpose based on brain activity patterns
derived from participants performing a working memory task
(Marquand et al., 2011), on functional connectivity based on
resting fMRI (Sripada et al., 2013) or in response to drug infusion
(Doyle et al., 2013a). Other studies have used Arterial Spin
Labeling (ASL) to discriminate the effects of different drugs
on regional cerebral blood flow (rCBF) (Chen et al., 2011;
Marquand et al., 2012; Doyle et al., 2013b; Paloyelis et al., 2014).
This approach offers the advantage over BOLD that the derived
measures are quantitative and can be readily compared between
scanning sessions.

Although these studies have significantly contributed to
our knowledge of the differential effects of pharmacological
interventions across brain regions, it is important to identify
not only differences but also similarities between drug effects
(Nathan et al., 2014). This is particularly important in drug
discovery, where the effects of novel pharmacological compounds
are routinely compared to those of existing drugs (Ashburn and
Thor, 2004; Wild et al., 2012; Bruns et al., 2015). For these
reasons, and in the larger context of intra-modal studies, it
would be highly advantageous to develop methods to assess
the relationship between sets of measurements (e.g., repeated
measures), taking advantage of the multivariate and high-
dimensional nature of the data. One classical multivariate
technique for estimating the linear relationship between two sets
of variables from the same samples (e.g., subjects) is canonical
correlation analysis (CCA) (Hotelling, 1936). CCA aims to find
a set of linear transformations of the variables in each set of
measurements that are maximally correlated with each other.
In other words, CCA finds basis vectors (canonical vectors) for
each set, such that the correlation between the projections of
the data onto these basis vectors is maximized. To find more
than one set of basis vectors, CCA can be re-applied to the
residual data obtained after subtracting the effect of the first set
of canonical vectors from the original data. This way we can
look for multivariate relationships in the same data that have not
been explained away by the first set of canonical vectors. If the
data are normally distributed, CCA is equivalent to maximizing
the mutual information between the two datasets (Bach and
Jordan, 2003). From a slightly different perspective, CCA can
be considered as a method to predict one of the datasets from

the other while accounting for the correlations between features
(Breiman and Friedman, 1997; Klami et al., 2013).

In the context of high-dimensional neuroimaging studies,
the number of variables (voxels) greatly exceeds the number of
subjects, rendering the use of CCA for finding image-to-image
correspondences challenging. One way to deal with this issue
is to use a kernel-based version of CCA, kernel CCA (KCCA,
Hardoon et al., 2004). An advantage of KCCA is that it can
capture not only linear but also non-linear dependencies between
datasets (Cristianini and Shawe-Taylor, 2000; Hardoon et al.,
2004). KCCA has been successfully applied to neuroimaging data
(Hardoon et al., 2007, 2009), but similarly to classical CCA, this
technique yields non-sparse canonical vectors [i.e., the canonical
vectors have non-zero coefficients for every variable (e.g., voxel)].
This is not ideal since the main goal in neuroimaging analyses is
often to identify brain regions or networks that are most relevant
to the question being studied.

With this goal in mind we seek a sparse solution of CCA,
Sparse CCA (SCCA). This can be achieved by regularizing
CCA with a penalty that imposes sparsity on the entries of the
canonical vectors, as proposed by Witten et al. (2009). SCCA
finds a sparse linear combination of the variables in one set
of measurements that maximally correlates with a sparse linear
combination of the variables in the other set of measurements.
The corresponding patterns of non-zero coefficients can be
interpreted in terms of networks of brain regions that show
similar effects across datasets. Due to the penalization term,
SCCA can be applied to high-dimensional/small sampled
datasets. A sparse version of KCCA has also been developed but
sparsity is imposed only on one of the datasets (Hardoon and
Shawe-Taylor, 2011).

In neuroimaging there are several lines of related work. SCCA
has been used to find multivariate relationships between high-
dimensional brain data and low-dimensional genetic, clinical,
and/or cognitive measurements (Boutte and Liu, 2010; Le Floch
et al., 2012; Lin et al., 2013a, 2014; Avants et al., 2014; McMillan
et al., 2014). To our knowledge, the only work to date where
SCCA has been used to look at image-to-image multivariate
similarities between whole brain datasets is Avants et al. (2010).
The authors used SCCA to relate information encoded in
different brain imagingmodalities aiming tomap the relationship
between whole-brain changes in cortical thickness (measured
with structural MRI) and white matter integrity (measured with
diffusion tensor imaging) in dementia patients relative to healthy
controls. The authors chose to use a fixed degree of sparsity
that yielded a solution with 50% of the variables in each set of
measurements equal to zero. Multi-modal data fusion is another
important application for CCA and other related methods (see
Biessmann et al., 2011 and Sui et al., 2012 for reviews). These
methods include variants of partial least squares (PLS), such
as multi-way PLS (Martínez-Montes et al., 2004) and variants
of independent component analysis (ICA) such as linked ICA
(Groves et al., 2011).

This work makes three main contributions. First, the
applications of CCA to repeated measures designs and to ASL
are novel. Second, we extend the SCCA framework developed
by Witten and Tibshirani (2009) to estimate the optimal
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subset of variables for each imaging set independently, using
permutation. This is important because there is no guarantee
that each set of imaging measurements (each “view”) has
the same properties. For example, one view may have many
more activated voxels than the other or may have different
smoothness. This is particularly important in drug studies,
because different drugs can have very different influences on
BOLD activity or rCBF. Optimizing a separate parameter for
each view provides the model with additional flexibility to
accommodate such differences. A simple simulation is provided
to illustrate this effect in the Supplementary Material. Third,
we explicitly optimize model parameters controlling sparsity,
which is in contrast to most other applications that use a fixed
sparsity level (e.g., Avants et al., 2010; McMillan et al., 2014).
Finally, we map the information encoded in more than one set of
SCCA components, which is in contrast to other applications that
only examine the first component. We illustrate the feasibility
and utility of our framework using Arterial Spin Labeling data
from a neuropharmacological study, with the aim of investigating
multivariate similarities between the effects of two antipsychotic
drugs (haloperidol and aripiprazole) on resting rCBF in the
healthy human brain.

Materials and Methods

Canonical Correlation Analysis (CCA)
CCA was first introduced by Hotelling (1936) and is a classical
multivariate statistical technique for finding linear relationships
between two sets of variables. We begin with two datasets
represented by the matrices X1 and X2, having dimensions n×p1
and n × p2 respectively, where n is the number of samples (e.g.,
subjects) and p1and p2 are the number of variables (e.g., voxels)
in set X1 and X2, respectively. CCA seeks linear transformations
of X1 and X2 that are maximally correlated with each other:

maxu,vq = uTXT
1 X2v

subject to uTXT
1 X1u = 1 and vTXT

2 X2v = 1.

CCA assumes that the columns of X1 and X2 are standardized to
have mean of zero and standard deviation of one. The vectors u
and v, with dimensions p1×1 and p2×1, respectively, are known
as the canonical vectors (or weights); the vectors X1u and X2v,
with dimensions n× 1, are known as the canonical variables; and
q is called the canonical correlation. A schematic representation
of CCA is presented in the Supplementary Material. The solution
to the above equation can be obtained analytically (Hotelling,
1936). However, when the number of variables exceeds the
number of samples, which is often the case in the context of
neuroimaging data, CCA cannot be applied directly, because the
analytical solutions require inverting covariance matrices that
are rank deficient (singular) in this setting. To circumvent this
issue, various authors (Waaijenborg et al., 2008; Parkhomenko
et al., 2009; Witten et al., 2009) have proposed a regularized
version of CCA, called sparse canonical correlation analysis
(SCCA). In this paper, we extend the approach developed by
Witten et al. (2009).

Sparse Canonical Correlation Analysis (SCCA)
Similarly to CCA, SCCA looks for a linear combination of
the variables in X1 that is maximally correlated with a linear
combination of the variables in X2. However, in SCCA two
penalty function terms, P1 and P2, are introduced to regularize
the solution of u and v:

maxu,vq = uTXT
1 X2v

subject to ‖u‖2
2 ≤ 1, ‖v‖2

2 ≤ 1 and P1 (u) ≤ c1, P2 (v) ≤ c2.

P1 and P2 are in general chosen to yield sparse u and v
vectors in that some elements (here, voxel weights) are zero.
The constants c1 and c2, are regularization parameters, and can
be optimized from the data. For sparse norms, they control the
amount of sparsity (number of zero elements) in the solution
of u and v. The terms ‖u‖2

2 = 1 and ‖v‖2
2 = 1 result

from replacing the covariance matrix of each dataset by its
diagonal, known as “diagonal penalized CCA” (Witten et al.,
2009). This simplification has been shown to produce good
results in high dimensional classification problems, even when
correlation between variables is evident (Dudoit et al., 2002;
Tibshirani et al., 2003). In addition, assuming thatX1 andX2 have
been standardized, as described before, the solution of SCCA is
unique, i.e., the vectors u and v are unique even when the number
of variables in each dataset, p1 and p2, greatly exceed the number
of samples, n. In this paper, we use the Least Absolute Shrinkage
and Selection Operator (LASSO) penalty function (Tibshirani,
1996) for both u and v vectors: P1 (u) = ‖u‖1, and P2 (v) =
‖v‖1 where ‖u‖1and ‖v‖1are the L1-norms of vector u and v,
respectively (i.e., the sum of the absolute value of the elements
of each vector). The estimation procedure for SCCA proposed by
Witten et al. (2009) is based on a penalized matrix decomposition
and is summarized in the Supplementary Material. We note
that although other penalty functions are possible (such as
the total variation penalty), the LASSO penalty performs well
in practice for neuroimaging data. In practice, the solutions
obtained by SCCA are less sparse than for other problems such as
logistic regression because of the additional L2 penalty implicitly
imposed by the penalized matrix decomposition (see Witten
et al., 2009). Additionally, we restrict the elements of u and v to
be nonnegative (i.e., ui, vi = 0), so that the solution of SCCA can
be interpreted as a sparse weighted average of the variables in X1

that maximally correlates with a sparse weighted average of the
variables in X2 (Witten and Tibshirani, 2009). It is important to
note here that SCCA does not provide a variable-wise (e.g., voxel-
wise) measure of similarity between the two datasets. It provides
a single measure of similarity (the canonical correlation) and a
vector of weights, representing the basis vectors u and v, for each
dataset.

Selection of Regularization Parameters
We use a permutation-based approach for choosing the
regularization parameters from the data. We adapt the
permutation-based framework proposed by Witten and
Tibshirani (2009) in order to allow the regularization parameter
for each set of variables to be optimized independently of
the other set. In other words, we allow a different value for
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c1and c2. In the original implementation, this is not allowed
and the same parameter setting must be used for both. As
noted, this is important because X1 and X2 may not have the
same properties (e.g., number of activated voxels). This does,
however, entail estimating two model hyper parameters in place
of one. A didactic simulation illustrating this is presented in the
Supplementary Material. Since we use SCCA with the L1-norm
penalty function, as mentioned above, these parameters control
how sparse the solution is, i.e., how many elements of u and v are
zero. The permutation-based algorithm proceeds as follows:

1. Given a value of c1 and c2, we independently permute the
samples of the datasets, X1 and X2, to create two new datasets,
Ẋ1 and Ẋ2. We then apply SCCA with parameters c1 and c2 as
described before, to obtain vectors u̇ and v̇.

2. We calculate the canonical correlation for the permuted data:
q̇ = Corr(Ẋ1u̇, Ẋ2v̇).

3. We repeat steps 1 and 2 k times, each time by permuting the
data again and calculating a new q̇.

4. We repeat steps 1 to 3 but use a different choice of parameters
c1 and c2 (a grid-search approach is used to exhaustively cover
all combinations of c1 and c2).

5. For each pair of parameters c1 and c2 we then use
the Fisher transformation to convert the correlation
values, q̇, into random variables that are approximately
normally distributed and compute a z-statistic:
zc1c2 =

(

Fisher
(

q
)

−mean(Fisher(q̇))
)

/std(Fisher(q̇)),
where q is the canonical correlation obtained using the
original data and parameters c1 and c2. We then choose c1
and c2 that yield the highest z-statistic.

6. Finally, we re-estimate SCCA using the original data and the
chosen parameters c1 and c2 from the last step to obtain the
final u and v vectors.

It is common practice in machine learning and statistics to
estimate a model using the entire dataset once model selection
has been performed using the permutation-based approach
described above or other method, such as cross-validation
(Burbidge et al., 2001; Lin et al., 2013b). The permutation-based
approach is preferable to cross-validation when the number of
samples is small, since it avoids the need to split the data into
even smaller sets for training and testing (Witten and Tibshirani,
2009). For this reason and the fact that our approach is purely
unsupervised, we do not separate the data into training and test
sets in this study.

Determination of Significance
To determine the significance of the estimated canonical
correlation values (i.e., to measure how unlikely it is to obtain
a particular value of q or higher if there was no relationship
between the two datasets) we use the same permutation-based
approach described above. This involves counting how many
times the canonical correlations obtained with the permuted
data, q̇, are equal or higher to the canonical correlation obtained
with the original data, q, and dividing by the number of
permutations. This calculation yields an estimate of the p-value
for the overall significance of the correlation.

Multiple Canonical Vectors
The algorithm for SCCA described above can be extended to
output more than one set of canonical vectors. The procedure to
obtain the ith set of canonical vectors simply involves applying the
algorithm to the residual data obtained from removing the effect
of the ith-1 set of canonical vectors from the data. This technique
is known in linear algebra as matrix deflation. For example, the
second set of canonical vectors is obtained by applying SCCA to
the dataset:

X′
T
1X
′
2 ← XT

1 X2 −

(

uTXT
1 X2v

)

uvT,

where u and v are the first set of canonical vectors. It is important
to note here that the different sets of vectors are not orthogonal
given the presence of the penalty terms in the main SCCA
equation, although alternative approaches to deflation can be
employed to enforce orthogonality (Monteiro et al., 2014).

Pharmacological MRI Data
We illustrate SCCA with Arterial Spin Labeling (ASL) data
published in Handley et al. (2013). This study focused on
univariate differences between the effects of two antipsychotic
drugs (haloperidol and aripiprazole) on resting cerebral blood
flow (rCBF) in the human brain. The details of the study can be
found in Handley et al. (2013), but for completeness, the main
experimental details are reported briefly here.

Participants
Twenty healthy right-handed English speaking Caucasian males,
aged 18–33 (mean 23 years SD 4.5), participated in the
experiment. Mean IQ and body mass index were within
the normal range (Handley et al., 2013). Participants were
nonsmoking, university students with no recent or current
drug or medication use and had no exposure to psychotropic
medication, nor a history of personal or familial psychiatric
diagnosis. Written informed consent was obtained from all
participants and the study was approved by the Human Research
Ethics Committee of the Institute of Psychiatry, London, and
conducted in compliance with the Declaration of Helsinki.

Design
A crossover, randomized within-subject, double blinded,
placebo-controlled design was used. Participants received a
single oral dose of haloperidol (3mg), aripiprazole (10mg), or
placebo, presented in identical capsules, in a randomized order
on three visits. Antipsychotic dose and time of administration
(3 h and 30min) before scanning were intended to achieve
a striatal D2 receptor occupancy level comparable across the
two compounds (Handley et al., 2013). A minimum of 14 days
separated each visit to allow for drug washout. No alcohol or
medications were used for 24 h, nor caffeine for 6 h, before
scanning.

Data Acquisition
Participants were scanned with their eyes open and images were
acquired in a General Electric Signa HDX 1.5 T scanner at
the Centre for Neuroimaging Sciences, Institute of Psychiatry.
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Regional CBF measurements were made using a pulsed-
continuous Arterial Spin Labeling technique (pCASL, Dai et al.,
2008). The pulse sequence parameters can be found in Handley
et al. (2013).

After labeling, images were acquired with a three-dimensional
Fast Spin Echo (FSE) spiral multishot readout. To minimize
blurring, the spiral acquisition for each slice was very short
(4ms), and the required resolution was achieved with eight
interleaves (TE 32ms/TR = 5500ms; ETL = 64). Images were
acquired at a 48× 64× 48 matrix on an 18× 24× 18 cm field of
view. Images were reconstructed to a 256× 256 matrix, resulting
in a nominal spatial resolution of 1 × 1mm in plane. Sixty
slices of 3mm thickness were obtained. Three pairs of tagged-
untagged images were collected. Following the three ASL control-
label pair averages, images were acquired with the same imaging
sequence but with inversion recovery preparation instead of ASL.
These images were used to quantify blood flow from the ASL,
as described in Handley et al. (2013). Two additional structural,
high spatial resolution images were acquired for co-registration
and normalization, including a T2 weighted fast spin echo and
fluid-attenuated inversion-recovery fast spin echo scan to exclude
the presence of any brain pathology.

Data Analysis
The pre-processing of the ASL data was performed
according to Handley et al. (2013). The rCBF images were
processed using Statistical Parametric Mapping 8 (SPM8,
www.fil.ion.ucl.ac.uk/spm). For each participant: (i) the extra-
cerebral signal from the T2 scan was removed using the “Brain
Extraction Tool” (BET) of the Functional Software Library
(FSL, Smith, 2002). The skull stripped T2 volume and its
corresponding binary mask were then coregistered to the
rCBF map; (ii) the coregistered, binary, brain-only mask, was
multiplied by the rCBF map to remove extra-cerebral signal
from this scan. The skull stripped T2 and rCBF maps were then
coregistered back to the space of the original T2 scan; (iii) the
original T2 scan was normalized to the MNI based T2 template
provided in SPM, and the transformation matrix was applied to

the rCBF map and the T2 scan. After normalization, the data
were downsampled to 3 × 3 × 3mm voxels and then smoothed
using a 10mm Gaussian smoothing kernel.

In addition, we mean scaled each ASL scan (i.e., subtracted
the mean of each image) to remove the session effect and
subtracted the placebo scan from the haloperidol and aripiprazole
images for each subject individually. This way we look for
similarities in the mean effects of haloperidol and aripiprazole
relative to placebo. The resulting images were then masked
with a gray matter template (obtained by thresholding the
gray matter template provided by SPM) and used as input to
SCCA. Finally, SCCA analyses were based on 18 subjects per
group (drug) as the data of two subjects had to be discarded
because these subjects developed nausea and vomiting with
aripiprazole.

Results

We first applied SCCA to the haloperidol (n = 18 subjects and
p1 = 37702 variables) and aripiprazole data (n= 18 subjects
and p2 = 37702 variables) to find the first 10 canonical
correlations and sets of canonical vectors, as described above. As
can be seen in Figure 1A, only two correlations had a p < 0.01
(p-value estimated using 1000 permutations). The first significant
canonical correlation was 0.92 (p-value = 0.003) and the second
significant correlation was 0.94 (p-value = 0.003). The value of
the regularization parameters, c1,2, that account for how sparse
the solution vectors are was varied from 0.3 to 0.9 in steps of 0.1.
This range was chosen based on pilot runs, and covered a wide
range of sparsity values while enforcing sufficient regularization
to avoid the trivial solution (Hardoon et al., 2004). The optimal
parameters (c1 = 0.4 and c2 = 0.7) were chosen based on the
first set of canonical vectors and using 1000 permutations, as
described in the Materials and Methods section.

The first two sets of significant canonical variables are plotted
in Figure 1B. As can be seen, the correlation between canonical
variables (linear transformation of the original samples) is very
high, meaning that in the space spanned by the first and second

FIGURE 1 | (A) p-values for the first 10 canonical correlations obtained from applying SCCA to the ASL dataset. The horizontal line depicts the p = 0.01 value. The x

axis comprises the order of the canonical correlations. (B) Correlation between the first and second set of canonical variables.
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significant set of canonical vectors, the mean effects of the two
drugs on rCBF are highly correlated.

The first set of canonical vectors with significant correlation
is shown in Figure 2. As can be seen, the first set of canonical
vectors is more sparse for haloperidol relative to aripiprazole but
with many overlapping regions between the drugs. In both cases,
most clusters of non-zero variables were distributed across areas
of the frontal cortex (especially medially), limbic system and the
striatum. The second set of canonical vectors with significant
correlation were characterized by clusters of non-zero variables
distributed across areas of the temporal cortex, insula and the
middle part of the cingulum (Figure 3). We also present an
alternative visualization of the weights in the Supplementary
Material. As can be seen in Figure 2 and in the Supplementary
Material, the rCBF signature obtained from the first set of
canonical vectors shows a similar pattern of non-zero coefficients
(network) for haloperidol and aripiprazole on rCBF across the
brain. Both drugs seem to affect a network of regions that mainly
comprises frontal regions (such as the orbito-frontal cortex and
olfactory cortex), the striatum structures (caudate and putamen),
the amygdala, anterior cingulate cortex, straight gyrus, the insula,
and the temporal poles. One of the main differences between the
networks highlighted for the two drugs seems to be the extent of
non-zero weight found in frontal regions, which is much larger
for aripiprazole (Figure 2).

As can be seen, the second set of vectors (Figure 3 and
Supplementary Material) highlights similar networks for the
two drugs, comprising mostly temporal regions (temporal poles,
superior, and middle temporal cortex), and Heschl’s gyrus,
the insula, the amygdala, parahippocampal regions, the frontal
operculum and the supra-marginal cortex.

Discussion

Here we illustrated the utility of SCCA for investigating
multivariate linear relationships between high-dimensional

intra-modal neuroimaging datasets acquired for the same group
of subjects. We applied the technique to pharmacological ASL
data acquired using a repeated measures design to study the
effects of two antipsychotic drugs [haloperidol—first-generation
(FGA), and aripiprazole—third-generation, (Mailman and
Murthy, 2010); on rCBF of healthy volunteers]. We found
similar distributed rCBF networks that maximize the correlation
between the two drugs. In particular, the first set of canonical
vectors highlighted a network comprising mainly the striatum
(caudate and putamen), anterior cingulate cortex, orbital
frontal cortex, amygdala, straight gyrus (rectus), olfactory
cortex, and temporal poles for both antipsychotics. The second
set of canonical vectors highlighted a network comprising
mostly temporal regions, the insula, frontal operculum, the
supra-marginal cortex and Heschl gyrus. Differences between
the networks obtained from the first set of canonical vectors
highlight a larger number of frontal regions involved in the
effect of aripiprazole compared to haloperidol. The second set
of vectors suggests a stronger response in the cingulum again in
aripiprazole compared to haloperidol. These differences could
be related to the fact that haloperidol is principally a dopamine
D2, D3, and D4 receptor antagonist (Okuyama et al., 1997),
while aripiprazole on the other hand is a partial agonist at D2
receptors, a serotonin 5-HT1a partial agonist, and an antagonist
at serotonin 5-HT2a receptors (Pae et al., 2008).

It is not straightforward to compare these results with
previous univariate analyses of the same data, because the SCCA
coefficients have a different interpretation to mass-univariate
general linear model (GLM) coefficients: SCCA coefficients are
multivariate and describe the weight applied to each brain
region to maximize the overall correlation between the inputs.
In contrast, GLM coefficients describe focal differences between
brain regions in a univariate sense. Nevertheless, many features
of the networks detected do seem to overlap with previous
findings (Handley et al., 2013). Handley et al. (2013) have shown
that both haloperidol and aripiprazole have focal effects on

FIGURE 2 | First set of significant canonical vectors for haloperidol and aripiprazole. The canonical vectors have the same dimension as the number of

variables (in this case voxels) and can therefore be represented in the original voxel space as an image. The weights (entries of the canonical vectors) are all positive by

construction.
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FIGURE 3 | Second set of significant canonical vectors for haloperidol and aripiprazole. The canonical vectors have the same dimension as the number of

variables (in this case voxels) and can therefore be represented in the original voxel space as an image. The weights (entries of the canonical vectors) are all positive by

construction.

rCBF in the striatum, frontal regions, insula, hippocampus, and
cingulum. Univariate differences between the two drugs were
mostly found in the motor cortex, where changes in rCBF were
present for haloperidol but not aripiprazole, and vice-versa in
the cerebellum and occipital regions. The effects observed in
the motor cortex for haloperidol, could be due to the fact that,
in contrast to aripiprazole, haloperidol induces Parkinsonian-
like symptoms (or extrapyramidal symptoms) that start to be
detectable at the dose used in Handley et al. (2013) and in the
present study. Primary somato-motor cortex and inferior parietal
cortex activation can be seen in akinetic Parkinson’s disease
patients (Sabatini et al., 2000). Although we do not observe the
motor cortex as part of the network obtained for haloperidol,
differences to previous studies could be due to the fact that
we are examining similarities between whole-brain effects of
the two drugs on rCBF, rather than differences in focal effects.
In other words, this could simply reflect different information
conveyed by the univariate and multivariate analyses, including
the different statistical methodologies used in each approach.

Other univariate pharmacological studies using FGA,
second/third generation antipsychotics or both types have shown
significant effects in striatal functional activation (Barouche
et al., 1994; Miller et al., 2001; Lahti et al., 2003, 2009; Kim et al.,
2008). Both types of drugs have also been found to affect the
temporal and frontal cortices (Barouche et al., 1994; Bartlett
et al., 1996; Lahti et al., 2005, 2009; Kim et al., 2008), as well as
the cingulum (Lahti et al., 2005; Kim et al., 2008). In interpreting
the results presented here, it is important to keep in mind that
they reflect the particular drug doses administered. Different
doses of either drug may result in different patterns of findings.
This issue also affects univariate analyses.

The framework presented here is highly flexible and can
easily accommodate more than two sets of variables (Witten
et al., 2009). This is potentially useful for studies with more
than two repeated measures, such as more than two compounds

of the same pharmacological class, or imaging modalities. In
addition, SCCA can be used in a supervised context, where
in addition to the sets of imaging measurements we have
an output variable that we would like to predict, such as a
cognitive variable or a clinical score. Supervised SCCA seeks
linear combinations of variables in each set that are highly
correlated with each other and associated with the outcome
variable (Witten et al., 2009). Sparse CCA can also be easily
extended to incorporate other regularization functions, such as
a group-structured penalty function (Chen et al., 2012; Lin et al.,
2014). Our results indicate that the LASSO penalty we employed
in this work performed relatively well in finding an optimal
number of variables to maximize the canonical correlation
between drug conditions. Nevertheless, an interesting area of
future work could be to evaluate alternative structured sparse
regularization penalties such as total variation (Michel et al.,
2011) or GraphNet (Grosenick et al., 2013). These may be useful
to accommodate spatial dependencies between brain voxels (for
example smoothness), and may therefore be better suited to
modeling the anatomical structure of neuroimaging data than the
penalty used here.

Here we used a permutation-based approach for choosing
the optimal sparsity parameters from the data. Alternative data-
driven ways of choosing these parameters could be investigated
such as cross-validation approaches for larger sample-sized data
and other criteria for sparsity optimization, such as stability
and reproducibility of the obtained patterns (Meinshausen and
Bühlmann, 2010; Ryali et al., 2012). Bayesian techniques may
be particularly useful in this regard as they provide the ability
to automatically infer regularization parameters from the data.
Indeed, a Bayesian CCA approach has recently been proposed
(Klami et al., 2013) although this does not permit sparsity over
the feature (i.e., voxel) weights. Moreover, this approach has
been demonstrated to show inferior performance for detecting
associations between high-dimensional neuroimaging data and
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genetic polymorphisms (Grellman et al., 2015). For future work,
it may be interesting to extend Bayesian methods to provide
sparsity over the features, perhaps using a similar approach to the
Bayesian LASSO (Park, 2005) but at the present time we favor the
sparse CCA approach presented here.

Sparse CCA has many other potential uses in neuroimaging in
addition to the application reported here. The canonical variables
can be compared between groups (e.g., between patients and
control subjects) when there are more than one group of subjects
for whom more than one dataset was acquired (Sui et al., 2012).
Sparse CCA can also be used as a feature selection method
in a discriminative framework. In other words, SCCA can be
used to discriminate two or more classes based on variables
that maximize the multivariate correlation between two sets of
measurements obtained for each class. This may be useful to
find an optimal subspace for classification based on multiple
measurements where class differences are more salient.

One limitation of themethodological approach presented here
is the fact that even though we constrain the entries of the
canonical vectors to be non-negative in order to facilitate their
interpretation (in terms of a weighted average of the variables in
each dataset), these coefficients are part of a multivariate model
and, consequently, regional inferences cannot be performed
directly on SCCA maps (i.e., canonical vectors should not be
thresholded for local inference). This issue is not specific to SCCA
and affects classical CCA, KCCA, and most multivariate-based
predictive models used in neuroimaging, such as commonly
used linear classifiers. The only way to mitigate this problem
to some extent, without relying on post-hoc permutation tests
and corresponding analytical approximations (Gaonkar and
Davatzikos, 2013), is to enforce sparsity within the model, as was
done in this work.

To our knowledge this is the first study to present multivariate
similarity measures of the effects of two antipsychotic drugs
on human rCBF. In general, these measures can be potentially

useful to characterize the effects of any two different tasks
or conditions (such as mental and neurological disorders) on
human brain activity. In drug studies, similarities are particularly
important in drug discovery, where the effects of novel
pharmacological compounds are routinely compared to those of
existing drugs.

To conclude, we have shown that SCCA is a powerful
technique to investigate multivariate similarities between
different sets of measurements. In particular, we have
demonstrated its feasibility when applied to the challenging
question of finding meaningful image-to-image correspondences
between neuroimaging data acquired from the same group of
subjects. Using ASL data from two different classes of drugs, the
feasibility was clear, even in the case of small sample sizes, typical
of pharmacological imaging studies.
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