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Getting quantitative on the effects of somatic mutation on 
cancer
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Numerous powerful bioinformatic analyses of 
cancer tumor sequencing have applied sophisticated 
mutation calling, determining the key cancer-causing 
variants and quantifying their prevalence. The 
calculations of prevalence of a mutation across tumors 
and the determination of the statistical significance 
of whether it is a driver are the “shoulders” that have 
enabled the build-up to the most useful metrics about 
cancer variants—metrics which quantify the effect of 
the variant on replication and survival of the cancer 
lineage. Ostrow et al [1] effectively and comprehensively 
applied ratios of non-synonymous change to 
synonymous change to quantify natural selection in the 
somatic evolution of cancer, an approach that has been 
followed by others in different ways and contexts since 
then [2–4]. Martincorena et al [2] performed a cogent 
gene-wide analysis using mutation signatures c.f. [5] on 
the larger data sets available three years later.

More recently, it was revealed that previous 
studies have reported variant prevalence and P value, 
but have not reported cancer effect sizes, which quantify 
the effect of natural selection on somatic mutations 
within cancer cell lineages. Deconvolving the baseline 
variant mutation rates enables estimation of the selection 
intensity of individual mutations [6, 7]—a quantification 
that should be directly interpreted as a cancer lineage 
effect size that should be used in decision-making. This 
measure of the effect of specific somatic mutations on 
cancer cell proliferation and survival should be widely 
appreciated as a primary consideration of precision-
medicine tumor boards, which are in operation at 
hospitals around the world. Effect sizes of somatic 
mutations should also be a key consideration in the 
initiation and design of precision medicine clinical 
trials: the number of trials has been increasing so 
rapidly that some have argued that demand is vastly 
outpacing the supply of enrollable patients [8]. Effect 
sizes should guide target selection in pharmacological 

development, an approximately three billion dollar 
industry [9]. And gene-specific site-specific effect sizes 
should guide basic research prioritization toward those 
important components of molecular and cell biology that 
have long-term potential to lead to therapies and cures 
for cancer. 

There appear to be increasing numbers of drivers 
in each cancer as we examine larger and larger datasets 
[10], and each driver has its own quantitative effect on 
cancer [11]. Decoupling the contributions of mutation 
and cancer lineage selection to the frequency of somatic 
variants among tumors is critical to understanding—
and predicting—the therapeutic potential of different 
interventions [12]. Importantly, antagonistic and 
synergistic epistasis among mutations also impacts 
the potential therapeutic benefit of targeted drug 
development [13]. Active use of these quantitative 
approaches are essential to furthering basic research 
on cancer, informing clinical practice, and providing 
rigorous guidance regarding investment in targeted drug 
development. By integrating evolutionary principles and 
detailed mechanistic knowledge into those approaches, 
we can maximize our ability to apply and develop 
targeted therapies that are likely to yield substantial 
clinical benefit.
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