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Abstract: Fontan circulation (FC) is a surgically achieved palliation state offered to patients affected by
a wide variety of congenital heart defects (CHDs) that are grouped under the name of univentricular
heart. The procedure includes three different surgical stages. Malnutrition is a matter of concern in
any phase of life for these children, often leading to longer hospital stays, higher mortality rates, and
a higher risk of adverse neurodevelopmental and growth outcomes. Notwithstanding the relevance
of proper nutrition for this subset of patients, specific guidelines on the matter are lacking. In this
review, we aim to analyze the role of an adequate form of nutritional support in patients with FC
throughout the different stages of their lives, in order to provide a practical approach to appropriate
nutritional management. Firstly, the burden of faltering growth in patients with univentricular heart
is analyzed, focusing on the pathogenesis of malnutrition, its detection and evaluation. Secondly,
we summarize the nutritional issues of each life phase of a Fontan patient from birth to adulthood.
Finally, we highlight the challenges of nutritional management in patients with failing Fontan.

Keywords: Fontan circulation; nutrition; faltering growth; congenital heart defects; univentricular heart

1. Introduction

Fontan circulation (FC) is a palliation state which represents the end stage (pre-
transplant) of different types of congenital heart conformations that are classified as func-
tional univentricular hearts. Almost ten percent of congenital heart defects (CHDs) are
classified as functional univentricular [1]. This wide range of cardiac malformations varies
from hypoplastic left heart syndrome (HLHS) to hypoplastic right ventricle and unbal-
anced atrioventricular septal defect. The more known palliative-staged surgery includes
a Norwood procedure (or hybrid) in the first week of life, superior cavopulmonary con-
nection (SCPC) at 3–6 months, followed by a total cavopulmonary connection (TCPC) by
Fontan procedure at 2–5 years of life [2]. Thus, we recognize a pre-stage 1 (before Norwood
procedure), an interstage 2 (before SCPC), and an interstage 2 (before TCPC).

In recent years, the fetal and perinatal management of HLHS has improved, leading
to a prenatal detection rate ranging from 39 to 97% [3–5]. Moreover, the surgical technique
has evolved into the lateral tunnel and extracardiac conduit approaches, resulting in
improved survival and a decreased rate of complications [6,7]. Even if approximately
one-third of live-born neonates with HLHS still die before any surgical intervention [8],
according to a recent systematic review [9], the 15-year survival rates reached up to 95%
during the most recent surgical era, compared to 52–82% of earlier reports on patients
with FC [10–13]. Nevertheless, there is increasing evidence of significant comorbidities
in survivors involving multiple organ systems, which undoubtedly impact the quality of
life and mortality of this population [14]. Malnutrition is a matter of concern in children
with CHDs, leading to a longer hospital length of stay, a higher risk of infection, higher
mortality rates, a higher risk of adverse neurodevelopmental outcomes, and ongoing family

Nutrients 2022, 14, 4055. https://doi.org/10.3390/nu14194055 https://www.mdpi.com/journal/nutrients

https://doi.org/10.3390/nu14194055
https://doi.org/10.3390/nu14194055
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nutrients
https://www.mdpi.com
https://orcid.org/0000-0002-6253-4396
https://orcid.org/0000-0001-8501-6244
https://doi.org/10.3390/nu14194055
https://www.mdpi.com/journal/nutrients
https://www.mdpi.com/article/10.3390/nu14194055?type=check_update&version=1


Nutrients 2022, 14, 4055 2 of 17

stress [15–18]. Notably, it has been shown that a lower weight-for-age Z-score (WAZ)
correlates with interstage morbidity in single ventricle (SV) patients and is an independent
and potentially modifiable risk factor for stage 2 complications [19,20]. In addition, feeding
issues and impaired growth are significant predictors of adverse neuro-developmental
outcomes in these patients [21]. Conversely, it has been demonstrated on a population of
148 infants that normal interstage growth and WAZ may be achieved through the close
surveillance of nutritional status, and it is associated with excellent interstage survival [22].

2. Methodology

This narrative review was conducted according to the Preferred Reporting Items for
Systematic Reviews and Meta-Analysis (PRISMA) guidelines. We performed a comprehen-
sive search through PubMed (National Library of Medicine); EMBASE (Excerpta Medica
database); and Cochrane Library, combining the keywords “Fontan circulation” OR “single
ventricle” with “nutrition therapy” OR “nutrition assessment” OR “growth”. MeSH (Med-
ical Subject Headings) was used to enhance the search process. All the relevant articles
published and written in the English language were included, and preference was given
to the sources published within the past 15 years. The results of the search and selection
process are summarized in Figure 1. We also referred to evidence-based guidelines re-
garding Parenteral Nutrition of Children and Pediatric Critical Care Nutrition, such as the
European Society of Pediatric and Neonatal Intensive Care (ESPNIC) recommendations for
CHD newborns, and the Guidelines for the Provision and Assessment of Nutrition Support
Therapy in the Pediatric Critically Ill Patient (ASPEN) [23,24]. Every article was screened
by at least two reviewers, who worked independently. The results were organized and
discussed according to their subject. The suggestions and opinions expressed in this review
are also based on personal experience in the management of patients with FC.
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3. The Burden of Faltering Growth in Patients with Fontan Circulation
3.1. Epidemiology

FC is the common end stage of different CHDs, which implies different comorbidi-
ties, neuromotor abilities and, thus, different preoperative nutritional conditions. Due to
its clinical variety, a severity stratification of malnutrition in this population is difficult.
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Nevertheless, all patients with univentricular heart share significant nutritional deficits,
starting from the early neonatal phase and continuing with growth [25]. A retrospective
study on 231 patients who had undergone Bidirectional Cavopulmonary Shunt (BCPS) and
Fontan procedures highlighted a failure to tolerate or achieve sufficient caloric intake via
oral feeding in 42 (33%) patients in the pre-BCPS period, 22 (18%) patients in the pre-Fontan
period, and six (5%) patients in the post-Fontan period [26].

A longitudinal analysis of a cohort of 555 patients with SV showed that the greatest
drop in WAZ was observed between birth and Norwood discharge, with a steady gradual
decline through the interstage period to the stage 2 procedure, followed by the period of
highest gain occurring between stage 2 and 14 months of age [25].

3.2. Pathogenesis

Major factors contributing to growth retardation in infants with SV include inadequate
caloric intake, high metabolic demand [27,28], hypoxemia [29,30], altered gastrointestinal
physiology, and coexistent genetic and extracardiac abnormalities.

First, unattended high metabolic demand is unavoidably related to malnutrition or
faltering growth: indeed, variables associated with a more complex postoperative course
and imbalance between systemic and pulmonary blood flow are associated with poorer
nutritional status [19]. Thus, the preservation of heart function during the earliest phases
may allow for adequate subsequent catch-up growth [31]. Admittedly, it appears that early
surgical intervention leans in favor of adequate catch-up growth [32,33].

The need for pharmacological therapy, notably ACE-inhibitors, is also associated
with impaired growth [26,34]. Furthermore, due to the immaturity of the gastrointestinal
tract, poor digestion, and limited chewing ability, in children with FC, feeding difficulties,
specific food preferences, and antifeeding behaviors are significantly more frequent [35,36].
Finally, faltering growth in patients with FC may be due to a genetic syndrome eventually
associated with CHDs [37]; an analysis on 503 patients undergoing Fontan palliation
identified chromosomal abnormalities in 107 neonates, which included Down, Turner and
Klinefelter syndromes, heterotaxy syndrome, and others [38].

Even so, we can count on nutritional strategies adopted during early hospital stay to
significantly improve growth. It has been demonstrated that infants undergoing cardiac
surgery while receiving a more aggressive feeding intervention have significantly better
weight gain and improved clinical outcomes [39], and have higher WAZ at discharge [19].

4. Assessment of the Nutritional Status

Regardless of the stage of the surgical journey (which is summarized in Figure 2), the
assessment of the nutritional status should be based on anthropometry, as well as body com-
position measurement. Nutritional intervention should start from the definition of energy
requirements and dietary intake. Measurements of weight, height, and head circumference
in infants, which must be taken using standardized techniques and calibrated equipment,
as well as Body Mass Index (BMI) calculation, are essential to properly assess growth,
nutritional status, energy requirements, and for monitoring nutritional interventions [40].
To plot individual measurements, the 2006 WHO charts should be used for children up
to 2 years of age, while CDC 2000 charts should be used for children and adolescents
aged 2–20 years. Monitoring Z-scores is advisable in clinical practice [41]. When a genetic
syndrome coexists, appropriate growth curves should be applied (i.e., curves for children
with Down syndromes and CHDs; curves for girls with Turner syndrome) [42,43]. The
BMI Z-score is used especially as an indicator of overweight and obesity in children, while
appropriate growth and nutritional status are defined through the Z-score of weight and
height for age. Indeed, acute malnutrition is defined as ponderal deficit (wasting) expressed
by WAZ or BMI-for-age Z-score < −2, while >-score < −1 refers to mild malnutrition or
at-risk condition [44]. Stature deficit (stunting) may be a consequence of chronic malnutri-
tion expressed by height/length-for-age Z-score < −2. Nonetheless, weight, height, and
BMI cannot return information on body composition, such as the percentage of body fat
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and lean mass, which have different metabolic and clinical significance. Techniques for
determining body composition are skinfold thickness (subject to high rates of inter-observer
and intra-observer errors); mid-upper-arm circumference (MUAC); bioelectric impedance
analysis; and dual-energy X-ray absorptiometry (usually used in research settings).
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Nutritional assessment should be completed by a physical examination, searching for
signs of malnutrition such as depleted subcutaneous fat, muscle wasting, dry skin, and
blood tests. Biochemical signs of malnutrition include low levels of total plasma proteins,
serum albumin, thyroxine binding globulin, prealbumin, transferrin, ceruloplasmin, retinol-
binding protein, lymphocytes, water-soluble (B2, B12, B9, C) and liposoluble (A, D, E)
vitamins, and trace elements (copper, selenium, zinc, iron, calcium) [40]. Moreover, patients
with FC present a significant risk of reduced levels of antioxidants such as selenium, zinc,
and ascorbic acid, because of their high level of oxidative stress. Maintaining iron within
normal levels is especially important for cyanotic individuals, while determinations of total
cholesterol, HDL, and triglycerides are useful to assess cardiovascular risk [45]. All the
aforementioned deficiencies must be promptly detected and adequately corrected by means
of supplementation and/or the optimization of nutritional intakes. Shifts in blood tests and
the determination of body compartments are useful tools for monitoring the nutritional
intervention [44].

As far as energy requirements are concerned, the gold standard for basal metabolic rate
determination is indirect calorimetry. However, since this is often impractical, basal energy
requirements are more frequently estimated through calculation, i.e., by the equations
endorsed in the 1985 report of the FAO/WHO/UNU expert consultation [46]. Useful
tools for the determination of dietary intakes are 24-h dietary recall and quantitative food
diaries (of 3–7 days) [40]. Given the specificity and complexity of these patients, referral
to an experienced Pediatric Nutrition Team is advisable both during hospital stay and
after discharge, as the team is responsible for the long-term monitoring of growth, body
composition, and the efficacy of nutritional intervention.
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5. Nutritional Management up to Fontan Surgery
5.1. From Birth to Stage 1

The most common surgical Stage 1 approach is the Norwood procedure: reconstruc-
tion of the aorta using the ascending aorta and native main pulmonary artery, in order to
ensure an appropriate pulmonary blood flow through a modified Blalock–Taussig shunt
(subclavian or innominate artery and pulmonary arteries) or a Sano shunt (right ventricle to
pulmonary artery) and guarantee an unobstructed left atrial egress via atrial septectomy. A
valid alternative to the Norwood procedure is a hybrid technique which integrates surgery
and interventional catheterization. At birth, SV patients’ weight is usually adequate to ges-
tational age, though lower than the mean of the general population, with a median Z-score
ranging from −0.7 to −0.01, as suggested by some retrospective studies; several studies
have demonstrated a significant drop in anthropometric measures in the early neonatal
period [25,26,37], which is consistent with other reports on children with CHD [47]. In fact,
meeting the nutritional requirements is often not feasible from pre-stage 1, and most new-
borns with a functional univentricular heart do not receive enteral nutrition. In addition,
the numerous surgical interventions and hospitalizations cause abrupt interruptions of a
delicate phase of growth and neuromotor development, including the oral-motor learning
and training parts [48]. Early nutritional management is controversial, primarily because
of the association between early enteral feeding and necrotizing enterocolitis (NEC) in
newborns with CHDs [49], notably those with SV physiology and/or shunt-dependent
pulmonary blood flow [50–52]. The risk of NEC has often led to a prohibitive approach
to enteral nutrition (EN) (mean time to the initiation of EN is 6 days, and 84% of infants
not receiving any EN preoperatively) [37], significant differences in feeding practices, and
the emergent necessity of a standardization of the latter. A feeding algorithm for patients
destined to Fontan palliation has been elaborated, showing a significantly less negative
WAZ change from birth to hospital discharge after implementation of the postoperative
feeding algorithm [52]. However, the most challenging phase is the critical post-stage 1
surgery, where malnutrition is often associated with postoperative complications: delayed
sternal closures, vocal cord palsy, and chylothorax might hamper the provision of adequate
nutrition in this phase [23,53–55]. Aware of the adverse impact of feeding difficulties on
these patients [56–59], the main factor determining a reduction in delivered EN remains
fluid restriction [60]. Low cardiac output, a transient state of renal impairment or acute kid-
ney injury after cardiopulmonary bypass [61], as well as the use of numerous postoperative
infusions, adversely affect the volume destined to TPN or EN. Furthermore, these patients
are not always liberalized to full maintenance fluid therapy immediately after surgery, and
the goal of postoperative PN in full term newborns is rarely achieved in these patients [62].
Aside from the severity of postoperative course, the use of PN and high calorie enteral
feeds is associated with improved nutritional status, and it seems that aggressive parenteral
and EN therapy after stage 1 surgery might help reduce the prevalence of growth faltering
in infants with HLHS [19]. At the time of initial discharge home from stage 1 surgery,
between 25% and 75% of patients with SV require home EN [16,19,57].

5.2. From Interstage 1 to Stage 2

After the Norwood procedure, i.e., in a context of univentricular circulation, the
SV pumps to great vessels placed in parallel (the aorta and the pulmonary arteries). As
a result, pulmonary blood flow is excessive, and the right ventricle works at systemic
pressures and high-volume load, from both the pulmonary and systemic circulations. The
load of pressure and volume of the RV leads to its progressive dilation, which requires a
load reduction through the second stage. Thus, the palliation continues with the SCPC,
including the bidirectional Glenn (end-to-side anastomosis of the superior vena cava to the
right pulmonary artery) and the hemi Fontan procedure, which is an anastomosis of the
confluence of the superior vena cava and the right atrium to the branch pulmonary artery
using a homograft dam to redirect the flow of the superior vena cava to the pulmonary
arteries. The bidirectional Glenn, as well as the hemi-Fontan, unloads the SV by the
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removal of the venous return (preload) from the upper body. The result is a reduction in
RV volume, its wall stress, and afterload. Stage 2 prevents the further deterioration of RV
ejection fraction.

Currently available data regarding growth during interstage 1 are controversial, with
some reporting a continued loss of WAZ [25] and others showing a trend toward improved
WAZ between post-stage 1 discharge and stage 2 surgery [37]. Nonetheless, this period is
particularly risky, with reported mortality rates as high as 22% [22,63,64]. In a retrospective
study on 124 patients with FC, factors impairing growth in the period pre-BCPS included
the number of surgical procedures and higher right atrial pressures at catheterization.
Moreover, the presence of two or more active venous collaterals was associated with
impaired growth independently from arterial oxygen saturation and pulmonary artery
pressure [26]. Growth is known to be an important sign of good health, so ensuring an
adequate growth rate during this critical period is crucial, as it is associated with improved
operative and long-term outcomes [22].

5.3. From Interstage 2 to Stage 3

Stage 3 is represented by the TCPC. The Fontan operation completes the separation of
pulmonary circulation from systemic. The procedure can be performed in two ways: one
is the lateral tunnel Fontan, incorporating an intra-atrial conduit from the inferior vena
cava to the pulmonary artery; the second is the extracardiac Fontan, with a conduit that
connects the inferior vena cava to the pulmonary arteries, avoiding atrial distension and
arrhythmias. Following stage 2 surgery, up to 22% of patients fail to achieve adequate
caloric intake, requiring feeding tube supplementation [26,35]. However, as seen in other
CHDs requiring surgical correction [47], weight usually improves by the time of completion
of the FC, and for the following first two years. Nonetheless, some authors reported a
failure to achieve adequate caloric intake requiring feeding tube supplementation in 5%
of patients following Fontan completion, and in long term follow-up, both mean weight
and length for age Z-scores remain significantly lower than the mean of the normative
population, as well as healthy parents and siblings [25,26,65].

5.4. General Approach up to Fontan Surgery

Despite the peculiarities of patients with HLHS or SV, in consideration of their vulner-
ability and in the lack of specific guidelines, it seems reasonable to follow the European
Society of Pediatric and Neonatal Intensive Care (ESPNIC) recommendations for CHD
newborns, and the Guidelines for the Provision and Assessment of Nutrition Support
Therapy in the Pediatric Critically Ill Patient (ASPEN) beyond the neonatal period [23,24].

It Is recommended to perform a detailed nutritional assessment on admission and
at least weekly during hospital stay and after, and to express these measurements in Z-
scores, including weight, height/length MUAC, and head circumference in young children,
considering that weight could be affected by fluid imbalance. In the acute phase, energy
intake provided to critically ill children should not exceed resting energy expenditure,
while after the acute phase, energy intake provided to critically ill children should account
for energy debt, physical activity, rehabilitation, and growth [23,24]. Daily measurements
of resting energy expenditure using indirect calorimetry and nitrogen balance is the best
way to optimize energy and protein intakes, avoiding under or overfeeding [66]. EN is
also recommended in stable patients receiving hemodynamic pharmacological support
or extracorporeal life support. However, it is suggested to progressively achieve at least
two-thirds of the prescribed daily energy requirement by the end of the first week in the
PICU, with adequate amounts of protein, in order to reach better clinical and nutritional
outcomes [24]. Slicker et al. proposed a nutritional algorithm for infants with HLHS from
birth through the first interstage period [67]. The authors suggest that enteral feeding is safe
in hemodynamically stable patients under an appropriate level of monitoring. Moreover,
PN should be initiated if the EN goal is not achieved and advanced to full calorie and protein
goals. Nevertheless, the initiation of PN within 24 h of PICU admission is not recommended
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and it may be postponed up to one week, while providing trace elements and vitamins,
if EN is feasible [23,24]. Furlong-Dillard et al. suggested that a standardized nutritional
approach in this phase can increase the percentage of patients enterally fed before surgery
and reduce the postoperative use of TPN, without an increase in complications [68]. At any
rate, the use of a stepwise algorithmic approach is recommended to advance EN in children
admitted to the PICU, including bedside support to guide the detection and management
of EN intolerance and the optimal rate of increase in EN delivery [24].

Oral feeding must also be promoted, as the literature highlighted that patients who
are orally fed during the preoperative period were more likely to be fed orally at hospital
discharge [52], and preoperative trophic/minimal enteral feeding may prime the intestine
to tolerate enteral feeding after surgery [37]. In hemodynamically stable term neonates
with or without pharmacological cardiovascular support, EN should be started within 24 h
from admission [23]. EN is also the preferred mode of nutrient delivery to the critically ill
child [24]. When oral feeding is possible, breast milk should be preferred in newborns and
infants because of its relevant role in reducing the risk of NEC [53].

There is evidence that the choice of feeding method at admission for stage 2 palliation
has a significant long-term impact, so particular attention should be paid to this matter.
Although tube feeding may help achieve caloric needs, oral feeding should be encouraged,
as feeding methods are not likely to change by discharge, and also impact on length of
stay [69].

6. Nutritional Management after Fontan Surgery
6.1. Energy Requirements

Patients with FC show a wide range of energy requirements, depending on several
factors such as: the type and severity of CHD, age at the time of intervention, and time
since FC. Following the Fontan operation, the SV pumps to the systemic and pulmonary
circulations are placed back in series, without a sub pulmonary pump. This implies a
striking increase in the central venous pressure. However, the FC is an effective palliation
for patients with an SV. Indeed, patients who underwent the Fontan procedure showed
a stabilization of WAZ [26]. However, they are often wasted [70] and stunted [37] and
an extra supply of energy is required for catch-up growth. Notably, children affected by
acyanotic lesions tend to be wasted because of the fluid buildup in the lung airspaces that
increase respiratory effort, while children with cyanotic lesions tend to be stunted because
of the low level of oxygen in the blood [71–74]. Obviously, children with pulmonary
hypertension and cyanosis show the greatest nutritional risk [71].

Energy requirements also depend on disease course after intervention. Following the
eventual catch-up-growth [26], energy expenditure seems to equalize peers’ requirements.
Moreover, factors such as relief of food-related symptoms, low levels of physical activity
due to impaired aerobic capacity [75,76] and, eventually, the presence of stunting [77], may
provoke excess in weight gain. Indeed, overweight and obesity involve 15% to 35% of
patients with FC [78].

For all these reasons and based on the age at intervention (ranging from 2 to 10
years), energy requirements vary widely: it is recommended to refer to the caloric needs
of healthy peers and then adjust based on the trend of growth and on BMI Z-score. Thus,
regular nutritional assessment is strongly encouraged in these patients. Due to the extreme
variability, whenever possible, energy requirements should be defined and monitored
through indirect calorimetry. Nutritional intervention should, therefore, be driven by
the assessed gap that exists between the energy requirements and the food nutritional
intake [40].

In addition, we suggest following up stable patients on an annual basis and monitoring
weight, height, and BMI Z-score, as well as serum albumin, total protein, calcium, iron,
selenium, vitamin A, 25-OH Vitamin D, and vitamin E; energy requirements and dietary
intake should be periodically re-evaluated and tailored to the patient’s needs.
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6.2. Somatic Growth and Bone Mineralization

Both mean weight and length for the age Z-scores of patients with FC remain signif-
icantly lower than the mean of the normative population and their parents and siblings,
despite the fact that many patients are within normal limits for height and weight [25,79].
The specific pathophysiology of how FC affects somatic growth is still unclear, although
the deficit in linear height has been associated with diminished functional health sta-
tus [79]. Although the precise mechanism by which low cardiac output and central venous
hypertension affect the bone structure is still unclear, an association between the cardio-
circulatory milieu of FC and bone abnormalities has been demonstrated; particularly,
lower cortical area (−0.59 ± 0.84 vs. 0.00 ± 0.88, p < 0.001) and periosteal circumference
(−0.50 ± 0.82 vs. 0.00 ± 0.84, p < 0.001) Z-scores were highlighted in a cohort of 43 patients
by Avitabile et al. [80]. Furthermore, secondary hyperparathyroidism is common in FC,
due to the alterations in calcium metabolism resulting from changes in renal perfusion
and poor intestinal absorption. The parathyroid hormone may be a valuable biomarker of
heart failure and may be helpful in predicting outcomes in patients with FC [81]. Finally,
there is a relationship between the mediators of growth hormone and circulating levels of
serum brain natriuretic peptide (BNP) [80], suggesting that an adequate treatment of heart
failure could reverse the decline of the growth factor, improve bone health, and promote
longitudinal growth.

Many studies have highlighted a high percentage of patients with FC with decreased
bone mineral density (BMD), as shown by dual X-ray absorptiometry or significant bone
deficits revealed by peripheral quantitative CT [80,82–87]. Indeed, hypoxia is a promoter of
osteoclast differentiation and bone reabsorption [86]. Moreover, the multifactorial etiology
and high incidence of hypovitaminosis D, which in some cohorts of FC patients reaches
70% [88], further impairs BMD. Children with PLE are at particular risk for reduced BMD
because of chronic hypocalcemia that is secondary to low levels of albumin [83]. In a recent
study, 42% of the subjects showed BMD below −2 SDs, and the mean serum calcium level
of the entire cohort appeared to be below normal range. Interestingly, patients with both
a height and weight Z-score below average showed lower DXA Z-scores, highlighting
the direct correlation of nutritional status and bone health [89]. More severe bone disease
is reported in patients with FC and PLE, due to chronic hypocalcemia linked to chronic
hypoalbuminemia and enteral losses.

6.3. Altered Body Composition

The body composition of patients with FC is characterized by a deficiency of skeletal
muscle mass [85,90,91] to such an extent that the term Fontan-associated myopenia has
been suggested to describe significant muscle deficits (lean body mass Z score <−2). In
a study conducted on a cohort of adolescents with FC [92], the percentage of skeletal
muscle mass appeared to be associated both to having suffered from late complications of
FC intervention and to lower peak oxygen consumption. Moreover, low skeletal muscle
mass has been linked to reduced exercise capacity, oxygen pulse, lower ventricular systolic
function, and compensatory erythrocytosis [85]. While some factors leading to reduced
muscle mass are not modifiable, others, such as adequate protein intake and physical
activity, may be achieved with appropriate management [93].

Conversely, thanks to the advance in care and the subsequent increased life expectancy
of children who undergo FC, new issues are rising regarding their nutritional manage-
ment. Low energy expenditure due to low skeletal mass, exercise intolerance, and frequent
hospitalizations may lead to an increased risk of being overweight or obese if nutritional
follow-up is not performed and/or in the case of inappropriate dietary intake. Moreover,
in the presence of low skeletal muscle mass, the sole BMI may be misleading and under-
estimate fat mass. The US “Fontan rehabilitation, wellness and resilience development”,
or FORWARD program (path forward), claims that a specific “Fontan diet” does not exist.
Instead, for most patients without growth deficit, the recommendation is for a diet high in
fruits, vegetables, whole grains, fiber, unsaturated fat, and omega 3 fatty acids, and low
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in fat dairy, added sugars, sodium, and saturated/trans fats. Indeed, this type of diet is
proven to optimize cardiovascular health [94]. It is of detrimental importance to prevent
obesity in people with FC, as a higher BMI has been associated with symptomatic heart
failure and higher mortality in a cohort of adult patients [95]; in fact, obesity may worsen
chronic myocardial dysfunction and/or residual anatomic lesions and increase the risk
of Fontan failure [96]. For these reasons, we suggest regularly monitoring MUAC and
performing a bioimpedance analysis during follow-up.

6.4. Protein-Losing Enteropathy

PLE is defined as the presence of hypoalbuminemia (<30 g/L) with no other identifi-
able cause of protein loss other than the gastrointestinal tract [97], occurring after Fontan
palliation in 5–12% of patients [23,53,97,98]. The morbidity and mortality of this condition
are still significant [99–101]. Signs of PLE appear after a median interval of 3.7 years (range
1.2–9.7) from Fontan intervention [102].

Even if its cause is not fully understood, recent literature reported an increase in
abnormal lymphatic vessels throughout the intestinal tract [103], as well as a lymphatic
congestion typically causing leakage and protein loss into the intestinal tract [100,103,104].
Cardiac dysfunction is a worsening factor, as low cardiac output causes blood flow redistri-
bution, with a selective increase in mesenteric vascular resistance [105], as well as a proin-
flammatory state causing the alteration of enterocyte membrane permeability [106,107].
Some patients with PLE present with reduced heparan-sulfate proteoglycans, enterocyte
membrane proteins involved in protein trafficking whose absence can cause protein leak-
age [106]. Essentially, the decrease in serum oncotic pressure causes systemic oedema, and
the intestinal wall oedema worsen malabsorption, thus, perpetuating the vicious cycle of
protein loss in episodes called PLE flares.

The gold standard for the diagnosis of PLE Is the elevation of fecal α-1- antitrypsin,
but false negatives (in the case of loss from the stomach) and false positives (in the case
of diarrhea) have also been observed [97]. In clinical practice it is important to monitor
early signs of PLE, such as low serum albumin and total proteins that drive the diagnosis
of PLE, although studies showed that enteric protein loss begins before the appearance of
hypoproteinemia [107,108].

Other blood anomalies often encountered in patients with PLE are low plasma levels
of fat-soluble vitamins (A, D, E); calcium (linked to chronic shortage of serum albumin
and intestinal losses); and immunoglobulins. The deficiency of Vitamin D and calcium
place children at a higher risk of low BMD [83], whilst poor antioxidant status due to
low vitamin A and E impair the red-ox balance and predispose to tissue damage by free
oxygen radicals. Thus, monitoring vitamin status is crucial, and in the case of vitamin
insufficiency, supplementation is required. Blood determinations of liver function and
urinalyses can help rule out impaired protein synthesis and renal protein losses, as in the
case of nephrotic syndrome. Other causes of gastrointestinal albumin losses should also be
excluded [97]. Given the possible malnutrition origin of low albumin and total protein level,
accurate nutritional evaluation is recommended to establish the nature of these alterations.
Clinical manifestations of PLE include chronic diarrhea, abdominal pain, ascites, peripheral
oedema, and pleural effusions, but also growth failure [97]. Non-specific symptoms such
as dyspnea or fatigue are also common [109].

PLE dietetic treatment is quite different from that of chronic malnutrition, being based
on a multidisciplinary approach (diet, drugs, and surgery). Well-conducted trials on the
impact of nutritional management on PLE are lacking and strong pieces of evidence are not
available. However, due to the low cost and safety, nutritional interventions should always
be part of PLE management: a high protein (>2 g/kg/day), low-fat (<25% energy intake)
and normo-hypercaloric diet is recommended. Supplementation with medium-chain
triglycerides (MCTs) is advisable to increase the overall energy intake. A low amount of
long-chain triglyceride fats (LCTs) allows the reduction of intestinal lymphatic production
and losses; instead, MCTs, due to their simple chemical structure, can be absorbed directly
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into the bloodstream, bypassing the lymphatic system. A low-fat diet must be managed by
a specialized dietitian, avoiding malnutrition risk, and promoting compliance. If dietetic
modification is unsuccessful, supportive PN may also be needed in a small percentage of
patients [40,45].

7. Fontan Failure and Heart Transplant

Even if FC supports these patients’ lives for several years, all of them are affected by
chronic heart failure, as the palliative circulation cannot ensure the metabolic requirements
for blood and oxygen—at rest and during exercise—at low filling pressures [110,111].
Fontan circulatory failure is the expected result of chronic systemic venous hypertension
and low cardiac output [112], which entails an exacerbation of signs and symptoms of
venous congestion, such as ascites, PLE, and liver cirrhosis. Consequently, heart transplant
(HT) (stage 4) is the only therapy offering long-term survival. A recent meta-analysis found
survival rates to be 88% immediately after HT, 78% at 5 years, 69% at 10 years, and 61% at
more than 10 years of HT [113]. On the one hand, a poor nutritional status and the presence
of comorbidities may preclude the HT option; on the other hand, patients who undergo HT
usually show poor nutritional status due to increased energy and protein requirements,
coexisting liver disease, nutrient deficiencies, and the need for hospitalization [114], which
can also affect the outcome after surgery. Thus, even if a consensus on the nutritional
management of these patients is still lacking, an adequate nutritional condition is crucial
for their outcomes and survival.

During the pre-transplant period, the schedule of nutritional follow-up should be
more frequent than usual. Indeed, a low WAZ has been associated with an increased risk
of postoperative complications and 6-months mortality following CHD surgery [115].

Nutritional status and body composition should be monitored through both anthro-
pometric measures and blood nutritional tests, and bioimpedance analysis, as previously
explained. Blood tests should include short-term indices of malnutrition, such as prealbu-
min and cholinesterase, and long-term indices, such as serum albumin.

After the transplant, EN is recommended because it has been linked to benefits such
as the maintenance of the gut mucosal barrier and the improvement of splanchnic blood
flow [116,117]. However, in the case of hemodynamic instability, PN is required. PN
should be prescribed by an expert nutritionist to avoid metabolic complications such as
fluid overload, overfeeding, hyperglycemia, and hypertriglyceridemia [118]. The delivery
of medical nutritional therapy according to standardized protocols, preventing caloric
and protein deficit, has been linked to better outcomes such as the reduced prevalence of
nonocclusive bowel ischemia and reduced ICU length of stay [118].

According to the aforementioned meta-analysis [113], HT patients may present im-
paired renal function due to both diuretic chronic therapy [119,120] and insufficient renal
perfusion, while renal failure has been associated with a higher risk of death after HT (RR
= 5.8). As ICU mortality has been linked to both negative and positive fluid balance [121],
post-transplant management should ensure the right fluid balance. Fluid requirements
vary widely based on individual situations, such as the degree of heart failure and kidney
function, but amounts of 80–100 mL/kg are usually required; diuretic therapy should be
evaluated on an individual basis.

In case of chyle leaks, which can occur after chest surgery [122–124], medical nutri-
tional therapy should be implemented with the aim of replacing losses of calories, protein,
fat-soluble vitamins, lymphocytes, immunoglobulins, and electrolytes, which are usually
present in chyle and whose deficiency may lead to electrolytes imbalance, impaired immune
function, and impaired wound healing [123]. Nonetheless, protein-loss compensation with
a high-protein diet may lead to hyper azotemia; therefore, the optimization of nitrogen
load should be considered (maximum dose of 3 g/kg of lean body mass) [114]. Medical
nutritional therapy should be implemented alongside medical and surgical therapy. The
first option is a low-LCT or fat-free and high-protein diet that should reduce the lymphatic
flow; however, fasting and total PN may be necessary in some cases [114]. A review found
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that the most common interventions were total PN and MCTs administration and that there
were no significant differences in the efficacy between the different nutritional approaches
in resolving chyle leakage [125]. We recommend personalizing nutritional intervention on
an individual basis, as the same goals may be reached through a variety of approaches.

8. Clinical Implications and Future Directions

Despite advances in the management of univentricular CHDs, patients with FC have
a high risk of malnutrition and growth deficit, affecting development and outcomes. Al-
though malnutrition is known to be a modifiable risk factor, specific guidelines addressing
nutritional therapy and the management of patients with FC are still lacking. In this narra-
tive review, we aim to offer a practical guide to the comprehension and management of
nutritional issues in patients undergoing Fontan surgery from birth to adulthood, according
to current evidence-based literature. Ideally, we aim to help physicians carry out an appro-
priate nutrition assessment, detect faltering growth early, and properly set up a nutritional
intervention. This may lead to a more systematic and standardized approach, and eventu-
ally to improved outcomes. The key points of the suggested nutritional interventions are
summarized in Table 1.

Table 1. Key points of nutritional interventions in patients with Fontan circulation. REE (resting
energy expenditure.)

Periodic nutritional assessment

• Physical examination, measurement of anthropometric parameters (height/length, weight,
head circumference) and calculation of BMI/weight for length, which should be plotted on
appropriate charts and expressed as Z-score.

• Body composition analysis by MUAC and/or bioimpedance.
• Evaluation of energy requirements by indirect calorimetry or Schofield equation.
• Evaluation of dietary intake by food diaries and/or 24-hours dietary recall.
• Periodic blood tests: total plasma proteins, serum albumin, thyroxine binding globulin,

prealbumin, transferrin, ceruloplasmin, retinol-binding protein, lymphocytes, water-soluble
and liposoluble vitamins, and trace elements (copper, selenium, zinc, iron, calcium).

Surgical phase

• Detailed nutrition assessment on admission and at least weekly during hospital stay.
• In the acute phase, energy intake should not exceed REE; after the acute phase, energy intake

should account for energy debt, physical activity, rehabilitation, and growth.
• Oral feeding by breast milk should be preferred whenever possible.
• A stepwise algorithmic approach is recommended to advance EN during PICU stay.

Chronic phase

• Stable patients may be followed-up on an annual basis.
• Refer to caloric needs of healthy peers and adjust based on trend of growth and on BMI

Z-score.
• Detection and supplementation of vitamins or trace elements deficits.
• Periodic monitoring of albumin, immunoglobulins, and fecal fats.
• A diet high in fruits, vegetables, whole grains, fiber, unsaturated fats, and omega 3 fatty

acids, and low in fat dairy, added sugars, sodium, and saturated/trans fats is recommended.
• When PLE is diagnosed, a high protein (>2 g/kg/day), low-fat (<25% energy intake), and

normo-hypercaloric diet is recommended.

9. Conclusions

Malnutrition is a matter of concern at any stage of life in children with SV, leading
to a longer hospital length of stay, higher mortality rates, and a higher risk of adverse
neurodevelopment and growth outcomes. Thus, it represents an opportunity to improve
outcomes and survival rate. Several studies have demonstrated a significant drop in
anthropometric measures in the early neonatal period and during the different surgical
stages. Consequently, optimal nutrition should be pursued right from birth until Fontan
intervention, according to surgery complications and the patient’s hemodynamic state;
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EN should be started whenever possible under appropriate monitoring. After surgery
completion, the role of the Pediatric Nutrition Team remains crucial: on the one hand,
growth should be strictly monitored until final height is reached; on the other hand,
nutritional deficits and FC complications should be detected and compensated by nutrition
optimization. When HT is indicated, the Pediatric Nutrition Team should be involved
in both preparing the patient for surgery and after the procedure, especially when PN is
needed. Body composition may help to understand nutritional status and define the best
nutritional strategy. Further cohort studies are needed to establish the best nutritional
approach, and to define appropriate and standardized feeding algorithms for each stage of
these patients’ lives.
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