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Abstract

Several clinical trials started during the COVID-19 pandemic to
discover effective therapeutics led to identify a few candidates
from the major clinical trials. However, in the past several
months, quite a few SARS-CoV-2 variants have emerged with
significant mutations. Major mutations in the S-glycoprotein
and other parts of the genome have led to the antibody’s
escape to small molecule-based therapeutic resistance. The
mutations in S-glycoprotein trigger the antibody escape/resis-
tance, and mutations in RdRp might cause remdesivir resis-
tance. The article illustrates emerging mutations that have
resulted in antibody escape to therapeutics resistance. In this
direction, the article illustrates presently developed neutralizing
antibodies (with their preclinical, clinical stages) and antibody
escapes and associated mutations. Finally, owing to the RdRp
mutations, the antiviral small molecules resistance is
illustrated.
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Introduction
Recently, several SARS-CoV-2 variants have emerged in
the last several months due to SARS-CoV-2 evolution
[1e3]. At the same time, WHO (World Health
Current Opinion in Pharmacology 2022, 62:64–73
Organization), CDC (Centers for Disease Control and

Prevention), USA (United States of America), and
ECDC (European Centre for Disease Prevention and
Control) have entitled the significant variants as VOC
(Variant of Concern) or VOI (Variant of Interest)
considering the current epidemiological status and risk.
WHO has entitled the significant variants as Alpha,
Gamma, Epsilon, Beta, Theta, Delta, Delta Plus, Iota,
Eta, Kappa, Lambda, and so on. Some significant VOCs
are Alpha variant (B.1.1.7 lineage; initially observed in
the UK), Beta variant (B.1.351 lineage; first observed in
South Africa), Gamma variant (P.1 lineage; initially

noted in Brazil), and Delta variant (B.1.617.2 lineage;
initially recorded in India). At the same time, some VOIs
are Epsilon variant (B.1.427/B.1.429 lineage; initially
detected in the USA), Zeta variant (P.2 lineage; initial
observed in Brazil), Iota variant (B.1.526 lineage; initial
observed in the USA) and Eta variant (B.1.525 lineage;
initial observed in the USA) [2,4]. Researchers noticed
the variants in the last quarter of the year 2020 with
some changed features such as augmented trans-
missibility, increased disease severity, and immune
escape property. Simultaneously, different mutations

have been acquired from time to time during the gen-
eration of the SARS-CoV-2 variants. Scientists observed
significant mutations in the S-glycoprotein and other
regions of the genome. Spike mutations in SARS-CoV-2
variants have gained more attention because of the as-
sociation with changes in viral characteristics [5].

Significant spike mutations (D614G, E484K, K417N/T,
N501Y, L452R, T478K) are found associated with
different clinical consequences throughout the globe
[6]. Scientists observed successful therapeutics from

the significant clinical trials, including small antiviral
molecules such as remdesivir or antibody-based thera-
peutics against SARS-CoV-2 [7]. Several antibodies have
shown significant neutralization activity against the
virus. Some antibodies have received EUA (Emergency
Use Authorization) for the treatment of this virus. Most
of the antibodies are designed against the S-glycopro-
tein of this virus. Therefore, any S-glycoprotein muta-
tions can trigger the antibody escapes/antibody
resistance in SARS-CoV-2 variants and hinder the
antibody-based therapeutic strategies against the virus
www.sciencedirect.com
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[6]. At the same time, the mutations in another part of
the SARS-CoV-2 genome can result in antiviral small
molecules resistance. One example is Nsp12 (non-
structural protein 12) mutations that might cause amino
acid changes in RNA-dependent RNA polymerase
(RdRp), providing remdesivir resistance.

Antiviral small molecules target the ‘protein class’of the

SARS-CoV-2 virus (3C-like main protease (3CLpro) or
main protease (Mpro), RdRp, Helicase (Nsp13), Spike
(S)-glycoprotein), or host cell (Cathepsin L, Furin,
Transmembrane Serine Protease 2 (TMPRSS2) and
Angiotensin-Converting Enzyme 2 (ACE2) receptor)
[8]. The S-glycoprotein interacts with the ACE2 re-
ceptor for the SARS-CoV-2 entry into the host cell.
Therefore, S-glycoprotein is a significant drug target for
the drug discovery of small antiviral molecules. These
molecules act as viral entry inhibitors [9]. At the same
time, due to the high antigenicity of S-glycoprotein,

antibodies interact with the S-glycoprotein. Therefore,
several vaccines have been developed using the S-
glycoprotein or its components [10,11].

This article illustrates emerging mutations that result in
antibody escape and therapeutic resistance. In this di-
rection, neutralizing antibodies (nAbs) against SARS-
CoV-2, their preclinical and clinical developmental
stages have been discussed. The article exemplifies
antibody escapes due to emerging mutations in SARS-
CoV-2 variants. The small antiviral molecules resis-

tance by the mutations in RdRp of the virus has also
been described. Finally, significant mutations in the
variants have been discussed to properly understand the
antibody escape and small molecule-based therapeu-
tic resistance.
Neutralizing antibodies for COVID-19 and
antibody escape due to emerging mutations
in SARS-CoV-2 variants
nAb might hinder virus entry through their neutraliza-
tion. It is known that the natural infection or vaccination
helps to generate the nAbs production in our body. nAb
has been used to treat different viruses from time to
time, such as influenza virus, Ebola virus, respiratory
syncytial virus, HIV. There are some advantages of nAb
such as low toxicity, high affinity to target proteins, and
high-level specificity to antigen [12]. Recently, it was

noted that nAb could protect from COVID-19, which
can be generated through the vaccination against SARS-
COV-2 [12,13]. Simultaneously, nAb has also been
isolated from COVID-19 infected patients for thera-
peutic purposes.

Neutralizing antibodies against SARS-CoV-2
When SARS-CoV-2 spread, and the pandemic started,
scientists isolated nAbs from SARS-CoV-2 from pa-
tients with COVID-19 [14,15]. At first, researchers
www.sciencedirect.com
tried to understand the complexities of S-glycoprotein
and the S1 and S2 subunit that activate virus fusion. In
the S1 subunit, the RBD (receptor binding domain)
binds with the host ACE2. Using this understanding,
scientists have discovered several potent nAbs. Some of
the discovered nAb against SARS- CoV-2 are B38 [16],
CV30 [17], and C121 [18]. Developed nAbs were
divided into different classes concerning the confor-

mational binding to the target protein (Figure 1). Class
1 nAbs blocks the ACE2 binding against SARS-CoV-2.
More specifically, these nAbs binds with the ‘open
up’ conformation of RBDs. This class of nAb contains
heavy chains encoded by gene segments such as VH3-
52 and VH3-66 [19]. Class 2 nAbs can identify and
interact with the RBDs both in the ‘up’ and ‘down’
conformation. While class 3 nAbs bind outside the
binding site of the ACE2 [20].

Preclinical developmental stage
Some of the nAbs for COVID-19 are in the preclinical
stage of development. Researchers have obtained
several mAbs (monoclonal antibodies) from the B cells,

which are in the preclinical stage of development. Some
nAbs that are in the preclinical stage are CC6.30,
CC6.29, CC12.1, P2Be2F6, P2Ce1F11, 1e57, 2e7,2e
15, COV2-2130, COV2-2196, BD-368-2 [12] (Table-1).

Clinical developmental stage
A few nAbs (mAbs and polyclonal IgG) against SARS-
CoV-2 have entered into the different phases of clinical
trials (Table-2). Some examples of nAbs that have
progressed to the clinical trials are nAb LY-CoV555 and
themAb combinations of REGN10933 andREGN10987.
ThemAbcombination (REGN10933þREGN10987) has
completed the phase-III clinical trial (ClinicalTrials.gov;

Clinical trial ID: NCT04426695). It has been noted that
this mAb combination also shows effectiveness against
the SARS-CoV-2 variants [12]. Similarly, LY-CoV555
entered the phase-II/III clinical trial (ClinicalTrials.
gov; Clinical trial ID: NCT04427501). Renowned US-
based pharmaceutical company (Eli Lilly) is performing
the clinical trial with two collaborators (Shanghai Junshi
Bioscience and AbCellera Biologics). In phase-II clinical
trial, it was found that the application of LY-CoV555
declined the viral load in patients with COVID-19 [21].

Antibody escapes due to emerging substitution
mutations in SARS-CoV-2 variants
Recently, it has been noted that different mutations

might trigger the antibody escape phenomena, which
causes antibody escapes/antibody resistance (Figure 2).
Recently, Weisblum et al. pointed out the nAbs escape
instance by SARS-CoV-2 variants. They observed some
abundant mutations at the RBD and NTD (N-terminal
domain). The RBD substitutions are V445E and
K444 R/N/Q. While NTD substitutions are K150 R/E/T/
Q and N148S. It was observed that some mutations
Current Opinion in Pharmacology 2022, 62:64–73
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Figure 1

Interaction interface of a nAb (C118) with S-glycoprotein of SARS-CoV-2 (a) Figure shows the ribbon structure interaction interface of a nAb (C118) with
S-glycoprotein (b) Figure shows the ribbon structure of a nAb (C118) and surface structure of S-glycoprotein (c) Interaction interface of a nAb (C118) with
S-glycoprotein. The figure was generated using PDB ID: 7RKV.
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Table 1

Neutralizing antibodies in the preclinical developmental stage.

Sl.
No.

Name of neutralizing
antibodies (nAbs)

Type of nAbs Target site Remark Reference

1. Vh–Fc ab8 Human mAb Receptor-binding domain
(RBD)

Attached to S-protein trimer, and neutralized
pseudotyped, live SARS-CoV-2 infections

[52]

2. Convalescent
plasma

IgG Ab SARS-CoV-2 Retained neutralizing activity against the
infection of SARS-CoV-2

[53]

3. LY-CoV555 Human mAb S-protein Stopped the viral attachment and entry into
human host cells, neutralizing the SARS-
CoV-2 infection

[54]

4. P2C–1F11 and
P2B–2F6

Human mAb Receptor-binding domain
(RBD)

Participated with ACE2 to interact with RBD,
neutralizing pseudotyped and live SARS-
CoV-2 infection

[55]

5. SAB-185 Human IgG S-protein Neutralized live SARS-CoV-2 infection [56]
6. 4A8, 5–24, 2–17

and 4–8
Human mAb N-terminal domain Reduced the effects of pseudotyped and live

SARS-CoV-2 infections
[57]

7. n3088 and n3130 Human single
domain Abs

Receptor-binding domain
(RBD)

Reduced pseudotyped and live SARS-CoV-2
infections

[58]

8. VIR-7831 Human mAb S-protein Bind with a conserved epitope on the S-
proteins and neutralized the live SARS-
CoV-2 infection

[59]

9. CC6.29, CC6.30 and
CC12.1

Human mAb Receptor-binding domain
(RBD)

Reduced pseudotyped and live SARS-CoV-2
infections, protective hamsters against
SARS-CoV-2 (specific for CC12.1)

[14]

10. Ty1 Alpaca-derived
nanobody

Receptor-binding domain
(RBD)

Bind to RBD in up-and-down conformation
and blocked the binding of RBD–ACE2

[60]

11. H11–D4 and
H11–H4

Llama-derived
nanobodies

Receptor-binding domain
(RBD)

Blocked RBD–ACE2 binding, neutralizing live
SARS-CoV-2 infection

[61]

12. S304, S309 and
S315

Human mAbs or
Fabs

Receptor-binding domain
(RBD)

Attached to SARS-CoV-2 RBD, but did not
compete with RBD–ACE2 binding,
neutralizing pseudotyped and live SARS-
CoV-2 infections

[62]
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(E484K, N440K, F490L, Q493K) occurred at high fre-

quency in S-glycoprotein during the passage experiment
with replication component of chimeric virus (rVSV/
SARS-CoV-2/GFP). Because of the presence of these
mutations, antibody escape activity is more
common [22].

The same research group has performed an experiment
using the replication-competent of a chimeric virus. The
study used rVSV encoding a green fluorescent protein
and S-glycoprotein of SARS-CoV-2 (rVSV/SARS-CoV-2/
GFP) [23]. This experiment has adapted two high-titer

variants of this recombinant construct (rVSV/SARS-
CoV-2/GFP) and generated three to four passages. The
genome was sequenced during the passage experiment
(third or fourth passage), and the mutations were
analyzed. Here, researchers found those mutations with
high frequency in S-glycoprotein (E484K, N440K,
F490L, Q493K) [22].

Another study reported C144 resistance mutations
(Q493 R/K and E484 K/A/G) using SARS-CoV-2/rVSV.
The study revealed that E484K substitution causes

resistance to two antibodies (C051 and C052) [24].
Similarly, Hoffmann et al. observed nAbs escape by
www.sciencedirect.com
two SARS-CoV-2 variants (P.1 and B.1.351). The

research group observed three RBD mutations
(E484K, K417N/T, and N501Y). The study reported
the occurrence of total antibody escape against
Bamlanivimab and partial antibody escape phenomena
for Casirivimab [25]. A study by Liu et al. also re-
ported antibody-resistant or antibody escape phe-
nomena. They found that S477N mutation causes
antibody-resistant instances to several mAbs. Simi-
larly, E484K mutation is also responsible for antibody
escape occurrence [26]. Another research group re-
ported different mutations in the RBD that might

cause antibody escape of the different classes of an-
tibodies. The study observed E484K, K417N/T, and
L452R substitution responsible for other classes of
antibody escape. They concluded that the K417N/T
substitution causes class 1 antibody escape, and these
mutations are frequently observed in two SARS-CoV-2
lineages (P.1 lineage and B.1.351 lineage). Similarly,
class 2 antibody escape is attributed to the E484K
substitution which is observed in several lineages of
this virus (B.1.526 lineage, B.1.351 lineage, P.1 lineage,
P.2 lineage, and so on). Likewise, the L452R substi-

tution, found in B.1.617 lineage and B.1.427/429
lineage, is accountable for class 3 antibody escape. In
Current Opinion in Pharmacology 2022, 62:64–73
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Table 2

Status of the neutralizing antibodies in different phases in clinical trials.

Sl. No. Name of nAb Type of nAbs Clinical trial No. Status Target site Remarks

1. JS016 Human mAb NCT04441918 Phase I Spike protein Anti-SARS-CoV-2 monoclonal antibody targets spike protein
and blocks binding of the virus to host cells

2. TY027 Engineered human IgG NCT04429529 Phase I
completed/Phase III

SARS-CoV-2 Used for treatment of patients with COVID-19 to slow the
progression of the disease and accelerate recovery, and
providing temporary protection from infection

3. BRII-196 Convalesced-derived
human mAb

NCT04479631 Phase I SARS-CoV-2 Non-overlapping epitope binding regions provide a high degree
of neutralization activity against SARS-CoV-2.

4. BRII-198 Convalesced-derived
human mAb

NCT04479644 Phase I SARS-CoV-2

5. ABBV-47D11 Human mAb NCT04644120 Phase I Full-length spike protein
(conserved region)

The cross-neutralizing antibody targets a shared epitope on
viruses and could potential for prevention and treatment of
COVID-19

6. STI-1499 Cocktail mAb NCT04454398 Phase I Spike protein Potent neutralizing activity against SARS-CoV-2 virus isolates,
including the emerging spike D614G variant

7. MW33 Humanized IgG1k Ab NCT04533048 Phase I Receptor-binding
domain

Recombinant fully human antibody applied for patients with mild
or moderate COVID-19

8. HFB30132A Recombinant mAb NCT04590430 Phase I Spike protein Fc modified IgG4 with minimized binding to the human FcgRs,
which leads to decrease of risk for antibody-dependent
enhancement of SARS-CoV-2 infection,

9. ADM03820 Cocktail mAb NCT04592549 Phase I Spike protein Mixture of two human IgG1 non-competitive binding anti-SARS-
CoV-2 antibodies.

10. HLX70 Human mAb NCT04561076 Phase I Receptor-binding
domain

Genetically engineered, fully humanized mAb that targets RBD
of SARS-CoV-2 for the treatment of COVID-19 and acute
respiratory disorder

11. DZIF-10c Human mAb NCT04631705 Phase I & Phase II Receptor-binding
domain

Intravenous infusion and by inhalation protection from virus
infection in the respiratory tract.

12. COVI-AMG Hamster mAb NCT04584697 Phase I & Phase II Spike protein The reduced activity and protected against the SARS-CoV-2
and the highly infectious spike (D614G) isolate.

13. BGB DXP593 mAb cocktails NCT04532294 Phase I Spike ectodomain trimer Overlaps with the RBD-ACE2 complex structure, and inhibiting
the entrance of SARS-CoV-2

14. SCTA01 Human mAb NCT04483375 Phase I Spike protein Efficiently neutralized SARS-CoV pseudoviruses and SARS-
CoV-2 by blocking the (RBD) S-protein

15. CT-P59 Human mAb NCT04525079 Phase I Receptor-binding
domain

Reduced the viral load in the upper and lower respiratory tracts
and has therapeutic potential for patients with COVID-19.
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Figure 2

Different locations of significant mutations in S-glycoprotein that might be responsible for the antibody escape phenomena, which causes antibody
escapes/antibody resistance. (a) Location of the multiple mutations in the RBD (b) Location of the significant mutations in the NTD (c) Location of the
major mutations in the S-glycoprotein of the Alpha variant (d) Location of the important mutations in the S-glycoprotein of the Delta variant (e) The first
mutation was observed D614G in the S-glycoprotein. The mutation is located S1 subunit near the S1/S2 boundary, and the furin cleavage site is also
found in this particular point (S1/S2 boundary). All the figures were generated using any of the two PDB ID (6ZP0 and 7DK3).
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this study, researchers mapped all mutations using the
yeast-display system and high-resolution structures of
the different classes of antibodies [27]. Conversely, a

reduction in the effectiveness of the bamlanivimab
www.sciencedirect.com
against the delta variant was observed [28]. The
USFDA (United States Food and Drug Administra-
tion) approved the EUA of the mAb, bamlanivimab,

for the COVID-19 therapy recently.
Current Opinion in Pharmacology 2022, 62:64–73
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However, scientists are trying to solve the antibody es-
capes occurrence for flawless antibody therapy. In this
direction, Miersch et al. [29] have developed tetravalent
nAbs, which have shown improved effectiveness of the
nAbs toward the antibody resistance or anti-
body escapes.
Significant mutations and small molecule-
based therapeutic resistance
Recently, various scientists have observed several small
molecule-based therapeutics resistance phenomena.
Favipiravir or Remdesivir (GS-5734) are small molecule-
based antiviral therapeutic, and these two molecules

received EUA by the regulatory authorities from several
countries to treat patients with COVID-19 [30,31]. It
was noted that the RdRp (RNA-dependent RNA poly-
merase) is the drug target for favipiravir and remdesivir.
Recently, remdesivir resistance was observed by several
scientists due to the several mutations in RdRp
(Figure 3). Nsp12 gene encodes the RdRp enzyme, and
the polymerase structure (nsp12 polymerase) is bound
with the two co-factors (nsp7 and nsp8) [32]. These two
co-factors significantly trigger polymerase activity [33].
Simultaneously, the scientists reported several muta-

tions in RdRp variants [34]. However, Mari et al.
observed significant mutations in the RdRp (V557L,
V473F, N491S, and F480 L/S/C) that are significantly
responsible for remdesivir resistance [35]. It was noted
that the V557L mutation in Nsp12 changes binding af-
finity to the RNA template and ultimately to remdesivir
[36]. Similarly, V473F is a potential escape mutation
described byMari et al. It is one of the essential residues
in the structural context of RdRp, which is associated
with the fingers region. At the same time, researchers
found an association between V473F mutation and an
SNP, which is positioned at 24,378 genomic positions
Figure 3

Different locations of significant mutations in RdRp that might be responsible
V557L mutations (b) Different locations of the P323L, F480 L/S/C, E802D. Th
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[35]. Simultaneously, scientists found that N491S in
Nsp12 is associated with high-frequency nsSNPs (non-
synonymous SNPs) related to escape mutations. It is
also associated with the fingers region. Similarly, F480 L/
S/C, another key mutation in Nsp12, is found to
destabilize the interface between diverse sub-domains
(‘palm’ and ‘fingers’) of the RdRp protein.

Padhi et al. [37] tried to understand the potential resi-
dues with a higher probability of mutations in
remdesivir-binding sites. The study will help to under-
stand the remdesivir-resistance phenomena. In another
work, Mari et al. [38] one primary mutation (P323L) in
RdRp, which might provide remdesivir resistance RdRp
to the virus. A study by Szemiel et al. [39] introduced
another mutation, E802D, in vitro, which reduces the
remdesivir sensitivity but did not influence the repli-
cation of this virus.
Significant mutations
The first D614G mutation was observed during April
2020 [33]. D614Gmutation is located at the S1 subunit
near the S1/S2 boundary. The furin cleavage site is also
found in this position (S1/S2 boundary). Later on, it

was observed that the mutation has a high dN/dS ratio
explaining the positive selection of the mutation
[40,41]. After D614G, several other mutations were
found associated with the epidemiological characteris-
tics. The researchers reported the E484K mutation
from different countries like Brazil, South Africa, and
the New York, USA [42e46]. This mutation was first
reported by Li et al. in September 2020. Understanding
the mutation will help unfold the resistance properties
to some nAb neutralizing antibodies by the virus [47].
Early 2021, another mutation, K417N, was noted from
the different variants. It was found responsible for the
for the remdesivir resistance (a) Different locations of the N491S, V473F,
e figures were generated using PDB ID: 7BV2.

www.sciencedirect.com
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reduced antibody effectiveness elicited by the
COVID-19 vaccines Pfizer-BioNTech (BNT162b2) or
Moderna (mRNA-1273) [48]. At the same time, an
additional mutation was found in the exact location
(K417), which is K417T. The mutation K417T was
found in the Gamma variant (P.1 lineage) [49]. K417T/
N mutation occurs due to the lack of other infrequent
RBD mutations. It was reported that the K417 might

decrease ACE2 binding [50]. It has been observed that
the RBD mutations and NTD mutations provide
antibody escape. Significant RBD mutations are
K417N/T, L452R, T478K, E484K, and N501Y. Simi-
larly, important NTD mutations include three de-
letions (D144, D69/70, D243/244) and L18F. Significant
mutations that have been observed in Delta variants
are L452R, T478K, and P681R (in spike protein).
Similarly, scientists noted important mutations in the
S-glycoprotein of Alpha variants which are D144, D69/
70, N501Y, and P681H. At the same time, some sig-

nificant mutations (V557L, V473F, N491S, F480 L/S/C,
P323L, E802D) were found in RdRp. Those mutations
might cause remdesivir resistance. However, more
studies are needed in this direction.
Conclusions
Presently, scientists are trying to understand the most

significant escape mutations or resistance mutations
that might contribute to increased antibody escape
especially neutralizing antibody escape or monoclonal
antibody escape, and the small molecule-based thera-
peutic resistance. Understanding the antibody escape
mutations or resistance mutations might help develop
proper antibody therapeutic to avoid antibody resis-
tance. Simultaneously, several researchers are preparing
a complete mutations map in this direction. Recently,
Starr et al. created a mutations map using different
antibodies that might help to understand escape mu-

tations. These mutations are present in the several
variants of circulating SARS-CoV-2 [51]. At the same
time, Greaney et al. developed a compressive antibody
escape mutations map of RBD of S-glycoprotein. The
researchers developed a deep mutational scanning
technique to explain how all amino-acid mutations in
the RBD influence antibody binding. Finally, they have
applied the method in ten human mAb [50]. Under-
standing the complete escape-mutation maps in S-
glycoprotein or major mutations in RdRp will help
design perfect antibody therapeutics or small molecule-

based therapeutic. These rationally designed thera-
peutics can compare the viral evolution and the anti-
genic consequences. The overall knowledge will help to
discover more highly potent, next-generation antibody
therapeutics or small molecule-based therapeutics.
Finally, a robust scientific approach toward under-
standing the consequences of evolutionary mutations in
the emerging variants will help end the present
pandemic and help prepare for the next pandemic.
www.sciencedirect.com
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