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Background: Ferroptosis and immunity are novel treatments that target several

cancers, including kidney renal clear cell carcinoma (KIRC). Long noncoding

RNAs (lncRNAs) are an important class of gene expression regulators that play

fundamental roles in the regulation of ferroptosis and immunity. We aimed to

identify ferroptosis- and immune-related lncRNAs as biomarkers in patients

with KIRC.

Methods: Corresponding data for each patient with KIRC were obtained from

The Cancer Genome Atlas (TCGA) database. Univariate and multivariate Cox

regression analyses were used to identify candidate biomarkers followed by

least absolute shrinkage and selection operator (LASSO) regression analyses,

weighted gene coexpression network analysis (WGCANA), and gene set

enrichment analysis (GSEA).

Results: Three ferroptosis- and immune-related differentially expressed

lncRNAs (FI-DELs) (AC124854.1, LINC02609, and ZNF503-AS2) were

markedly and independently correlated with the overall survival (OS) of

patients with KIRC. The area under the curve (AUC) value of the prognostic

model in the entire group using the three FI-DELs was > 0.70. The sensitivity and

specificity of the diagnostic model using the three FI-DELs were 0.8586 and

0.9583, respectively.

Conclusion: The present study found that AC124854.1, LINC02609, and

ZNF503-AS2 were considerably and independently correlated with the OS of

patients with KIRC, suggesting that the three FI-DELs could be used as

prognostic and diagnostic biomarkers for patients with KIRC.
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1 Introduction

Kidney cancer is one of the most common malignant tumors

originating in the kidneys. In 2020, approximately 180,000 deaths

and 430,000 new cases of kidney cancer were reported globally (Sung

et al., 2021). Almost 90% of kidney cancers are renal cell carcinoma

(KIRC) (Singh, 2021). According to the morphology, renal cell

carcinoma can be mainly divided into three subtypes: kidney

renal clear cell carcinoma (KIRC), kidney renal papillary cell

carcinoma, and kidney chromophobe (Owens, 2016). The most

common subtype of kidney cancer is KIRC, and it accounts for

approximately 80% of all primary malignant kidney tumors (Song

et al., 2019; Zhou et al., 2020). Additionally, previous studies have

demonstrated that 60% of patients with KIRC die within the first

2–3 years, and 30% of patients with KIRC are diagnosed with

metastases (Mendoza-Alvarez et al., 2019). Moreover, numerous

studies have demonstrated that the prognosis of patients with

KIRC with metastases is poor (Chaffer and Weinberg, 2011;

Forsea et al., 2012; Ljungberg et al., 2015). Currently, pathological

tumors, nodes, and metastasis (TNM) are usually used as a

biomarker to assess the risk of patients with KIRC (Wang et al.,

2019a). Additionally, numerous studies have indicated that several

molecular biomarkers, such as IL13RA2, SK1, and P4HB, can guide

diagnosis, prognosis, and therapy (Salama et al., 2015; Shibasaki et al.,

2015; Xie et al., 2020). However, the prognosis and diagnosis of KIRC

remain poor. Therefore, it is necessary to obtain reliable biomarkers

for the diagnosis and prognosis of patients with KIRC.

Ferroptosis is an iron-dependent form of cell death. Numerous

studies have indicated that dysregulation of ferroptosis participates

in the carcinogenesis and development of several cancers (Dixon

et al., 2012; Nie et al., 2018). The regulation of ferroptosis contributes

to anticancer therapy in various cancers, including drug-resistant

cancers, such as non-small cell lung cancer and pancreatic cancer

(Yamaguchi et al., 2013; Efferth, 2017). Immunotherapy targets

specific cancer antigens and alerts the immune system to eradicate

them through a concerted immune response (Johdi and Sukor,

2020). Immune cells and immune factors not only participate in

antitumor immunity but also in the initiation and development of

antitumor immunity (Berraondo et al., 2016; Chen et al., 2017).

Cancer immunotherapy has been successfully used to treat many

cancers (Im and Pavletic, 2017; Nixon et al., 2018). Interestingly,

evidence indicates that there is a close link between ferroptosis and

immunity. Ferroptosis cells can interact with immune cells such as

NK cells and CD8+ T cells, among others, to release chemotaxis to

regulate anticancer immunity (Wang et al., 2018a; Wang et al.,

2019b; Stockwell and Jiang, 2019). Ferroptosis and immunity can

regulate each other to participate in anticancer effects (Wang et al.,

2019b; Stockwell and Jiang, 2019; Shi et al., 2021). The synergistic

regulation of ferroptosis and immunity not only inhibits

carcinogenesis but also stimulates immune responses (Li and

Rong, 2020).

The lncRNAs are a group of transcriptional RNAs over

200 nucleotides in length that cannot encode proteins and are

considered one of the most sensitive and specific cancer

biomarkers (Fazal and Chang, 2016). Furthermore, they are

involved in carcinogenesis and the development of various

cancers (Wang et al., 2018b; Kim et al., 2018; Zhang et al.,

2018; Slack and Chinnaiyan, 2019). Many lncRNAs can be used

as prognostic biomarkers for several cancers, such as bladder

cancer and lung cancer (Sun et al., 2020a; Zhang et al., 2021;

Zhou et al., 2021). In this study, we evaluated FI-DELs as potential

prognostic biomarkers using differential expression, Pearson

correlation, and univariate/multivariate Cox regression analyses.

2 Materials and methods

2.1 Acquisition of corresponding data

The read counts data of KIRC (72 normal individuals and

530 patients with KIRC) and their corresponding clinical

information (Table 1) were downloaded from an open database

The Cancer Genome Atlas (TCGA) which do not need the

approval of the local ethics committee. The read counts data of

KIRC (45 normal individuals and 91 patients with KIRC) were

downloaded from another open database International Cancer

Genome Consortium (ICGC). DEseq2 in R (3.6.1) was used to

screen the differentially expressed genes (DEGs) as the following

criteria: baseMean ≥ 100, |log2FoldChange| ≥ 1.00, and p.adj <

TABLE 1 Characteristics of KIRC patients.

Characteristic Variable Total (n = 530) %

Age (years) ≤ 65 348 65.66

> 65 182 34.34

Gender Female 186 35.09

Male 344 64.91

Stage Stage I 265 50.00

Stage II 57 10.75

Stage III 123 23.21

Stage IV 82 15.47

Unknown 3 0.57

Tumor classification T1 271 51.13

T2 69 13.02

T3 179 33.77

T4 11 2.08

Lymph nodes N0 239 45.09

N1 16 3.02

Unknown 275 51.89

Distant metastasis M0 422 79.62

M1 78 14.72

Unknown 30 5.66

Survival status Alive 357 67.36

Death 173 32.64
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0.05. The recognized lncRNAs, ferroptosis-related genes, and

recognized immune-related genes were downloaded from the

GENCODE database (https://portal.gdc.cancer.gov/), FerrDb

database (http://www.zhounan.org/ferrdb), and ImmPort database

(http://www.immport.org).

Estimate in R (3.6.1) was used to evaluate the stromal,

immune, and ESTIMATE scores and tumor purity. The

evaluated infiltrating score of immune cells and immune

factors was downloaded from Tumor IMmune Estimation

Resource (TIMER) (https://cistrome.shinyapps.io/timer/).

2.2 Acquisition of ferroptosis- and
immune-related signatures

After differentially expressed analyses, overlapping analyses

were carried out for the differentially expressed genes (DEGs) with

the recognized ferroptosis- and immune-related genes to screen

the ferroptosis- and immune-related DEGs (FI-DEGs) and with

the recognized lncRNAs to screen the DELs. Pearson correlation

analyses were performed for the FI-DEGs and DELs to obtain the

FI-DELs as the following criteria r ≥ 0.5 and p < 0.05.

2.3 Acquisition of prognostic biomarkers

The median value of each gene expression was used to regroup

the patients with KIRC into low- and high-expression groups.

Univariate Cox regression analyses followed by least absolute

shrinkage and selection operator (LASSO) regression analyses

were used to investigate the relationship of the FI-DELs with their

overall survival (OS). Then, multivariate Cox regression analyses

were performed to screen the suitable FI-DELs as biomarkers.

2.4 WGCNA and gene set enrichment
analysis

The TIMER algorithm was utilized to estimate the stromal

score, immune score, tumor purity, and ESTIMATE score. We

used WGCNA that can convert coexpression correlation into

connection weights, to identify coexpressed genes in stromal and

immune cells (Langfelder and Horvath, 2008). Kyoto

Encyclopedia of Genes and Genomes (KEGG) was used to

assess the biological roles of the prognostic candidates by the

“clusterProfiler” R package.

2.5 Construction of prognostic and
diagnostic models

According to previous reports (Liu et al., 2020), the candidate

biomarkers were used to construct a risk assessment model as

follows: risk value = (0.831) × LINC02609 expression value +

(−0.585) × ZNF503-AS2 expression value + (−0.530) ×

AC124854.1 expression value. A comprehensive index of

ferroptosis and immune status (CIFI) was evaluated as

follows: CIFI = (risk score—Min)/Max. The Youden index

was used as the optimal cut-off value to regroup the patients

with KIRC into low and high CIFI groups.

A diagnostic model was constructed as following after a

stepwise logistic regression analyses: logit (P) = 0.747+

(0.212) × LINC02609 expression value + (−0.145) × ZNF503-

AS2 expression value + (0.200) × AC124854.1 expression value

(Liu et al., 2020). The Youden index was used as the optimal cut-

off value to regroup the sample into a normal group and a KIRC

group.

2.6 Statistical analyses

A repeated measure ANOVA followed by an unpaired two-

tailed student’s t-test was used as indicated. All results were

expressed as the mean ± SEM. Principal component analyses

were used to reduce the dimensions and visualize the distribution

of KIRC patients with different CIFI scores.

3 Results

3.1 Identification of ferroptosis- and
immune-related differentially expressed
lncRNAs as candidate biomarkers

Through differential expression analyses, we obtained

3,978 DEGs, including 2,573 upregulated and

1,405 downregulated DEGs (Supplementary Figure S1A). Of

these, there were 531 FI-DEGs (405 upregulated FI-DEGs and

126 downregulated FI-DEGs) (Supplementary Figure S1B) and

361 DELs (278 upregulated DELs and 83 downregulated DGLs)

(Supplementary Figure S1C). Pearson correlation analyses for the

531 FI-DEGs and 361 DELs found that there were 3,483 FI-

DEGs–DELs pairs involving 362 FI-DEGs and 261 DELs. These

261 DELs were renamed FI-DELs.

All patients with KIRC (n = 530) were randomly divided into

training (n = 265) and validation (n = 265) groups to verify and

obtain suitable biomarkers. Univariate Cox regression analyses

followed by LASSO analyses for the 261 FI-DELs in the training

group were performed, and results indicated that 17 FI-DELs

were correlated with the OS of patients with KIRC

(Supplementary Figure S1D–F). Through ESTIMATE analyses

in R software (3.6.1), we found that the stromal, immune, and

ESTIMATE scores were considerably increased, while tumor

purity was markedly decreased in patients with KIRC

(Supplementary Figure S2A–D). In the TCGA-KIRC cohort

dataset, we obtained 38 modules using WGCNA (Figures
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2E,F). Of which, six modules and seven models were highly

correlated with stromal and immune scores, respectively, which

enriched 2,858 lncRNAs. By overlapping analyses with the 17 FI-

DELs, we obtained seven FI-DELs (Figure 1A). Next,

multivariate Cox regression analyses for the seven FI-DELs

were performed, and the results indicated that four FI-DELs

(AC124854.1, LINC02609, U62317.1, and ZNF503-AS2)

remained independently correlated with the OS of patients

with KIRC (Figure 1B). The expression of AC124854.1,

LINC02609, and U62317.1 was significantly increased,

whereas the expression of ZNF503-AS2 was markedly

decreased in patients with KIRC (Figure 1C). To clarify the

expression of those four candidate prognostic biomarkers in

KIRC, we selected other independent samples for verification.

The expressions of AC124854.1, LINC02609, and ZNF503-AS2

in the ICGC dataset were consistent with that in the TCGA

dataset (Figure 1D). There was no expression of U62317.1.

Therefore, only the candidates AC124854.1, LINC02609, and

ZNF503-AS2 were selected for the subsequent analyses. Patients

with a high expression of LINC02609 displayed worse OS, while

patients with high expression of AC124854.1 and ZNF503-AS2

displayed better OS (Figures 1E–G).

3.2 Construction and validation of CIFI as a
prognostic model

Based on previous studies, we constructed a risk assessment

model using the three FI-DELs. The Youden index was used as

the optimal cut-off value to regroup patients with KIRC

(Supplementary Figure S3). The CIFI value and survival status

of each patient with KIRC are shown in Figure 2A. In patients

with KIRC having high CIFI values, the expression of

LINC02609 was markedly increased, the expression of

AC124854.1 was considerably decreased, and there was no

substantial difference for ZNF503-AS2 (Figure 2B). Patients

with KIRC and high CIFI values displayed a decreased OS

(Figure 2C). Receiver operating characteristic (ROC) curve

analyses indicated that the AUC value of this prognostic

model was 0.75 (Figure 2D). Time-dependent ROC analyses

FIGURE 1
Identification of FI-DEGs as candidate biomarkers. (A) K-M analysis illustrated that seven FI-DELs were correlated with OS of patients with KIRC
followed by LASSO analysis and WGCNA. (B) Multivariate Cox regression analysis illustrated that the four FI-DELs were correlated with the OS of
patients with KIRC independently. (C) Expression of the four FI-DELs between normal and patients with KIRC in TCGA dataset. (D) Expression of the
three FI-DELs between normal and patients with KIRC in the ICGC dataset. (E–G) K-M curve of the three FI-DELs in the training group. *p < 0.05,
**p < 0.01, ***p < 0.001.
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indicated that the AUC values at 1, 3, 5, and 10 years were 0.84,

0.81, 0.76, and 0.75, respectively (Figure 2D). Principal

component analyses (PCA) showed that patients with

different CIFI values could be well distinguished using the

three FI-DELs (Figure 2M).

Verification regarding the three FI-DELs as feasible

biomarkers was performed by validation studies in the

validation and entire groups; which indicated similar results

for the validation and entire groups (Figures 2E–L).

Particularly, the AUC values were 0.68 and 0.72 in both the

validation group and the entire group respectively (Figures

2H,L). PCA showed that patients with different CIFI values

could be well distinguished using the three FI-DELs in the

validation and entire group (Figures 2N–O).

3.3 Independent prognostic model of the
three ferroptosis- and immune-related
differentially expressed lncRNAs

Previous studies have demonstrated that TNM classification

and stage are usually used as predictors to assess the risk in

patients with KIRC. To determine whether the CIFI score was an

independent prognostic factor for patients with KIRC, we

FIGURE 2
Development and validation of CIFI as a prognosticmodel. (A–D) and (M)Analysis of the prognosticmodel in the training group (n=265). (A) For
risk value (up) and survival status (down) for each patient. (B) Expression of the three candidate biomarkers. (C) K-M curve of KIRC patients with
different CIFI values. (D) ROC curve of the risk assessment model. (M) Distribution of patients with different CIFI values. (E–H) and (N) Analysis of the
prognostic model in the validation group (n = 265). (E) For risk value (up) and survival status (down) for each patient. (F) Expression of the three
candidate biomarkers. (G) K–M curve of KIRC patients with different CIFI values. (H) ROC curve of the risk assessment model. (N) Distribution of
patients with different CIFI values. i-l and o Analysis of the prognostic model in the entire group (n = 530). (I) For risk value (up) and survival status
(down) for each patient. (J) Expression of the three candidate biomarkers. (K) K–M curve of KIRC patients with different CIFI values. (L) ROC curve of
risk assessment model. (O) Distribution of patients with different CIFI values. *p < 0.05, **p < 0.01, ***p < 0.001.
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performed univariate and multivariate Cox regression analyses

among the clinical characteristics and CIFI scored in the entire

group. Univariate Cox regression analyses showed that the CIFI

score, pathologic TNM, and pathologic stage were significantly

associated with the OS of KIRC (Figure 3A). Multivariate Cox

regression analyses showed that the CIFI score and pathologic M

were still significantly and independently associated with the OS

of KIRC (Figure 3B). Subsequently, we plotted the ROC curve of

the CIFI score and the different clinical characteristics and found

that the AUC value of the CIFI score was higher than that of

pathologic M (Figure 3C).

Correlation analyses showed that AC124854.1 and

LINC02609 were significantly correlated with the CIFI values

(Supplementary Figure S4). We carried out expression analyses

to determine the relationship between the three FI-DEGs, CIFI

scores, and clinical characteristics. The results are presented in

Figures 3D–G. For example, the CIFI score was markedly

associated with the pathologic TNM and stage (Figures 3D–G

left). The expression of AC124854.1 was associated with the

pathologic TNM, stage, and CIFI score (Figures 3D–G right).

3.4 Correlation analyses of CIFI with the
immune cells and factors

After regrouping, we re-evaluated the stromal score, immune

score, tumor purity, and ESTIMATE score between different

clusters. There was no significant difference in stromal scores

between patients with high and low CIFI values (Figure 4A). The

immune and ESTIMATE scores were significantly increased,

while tumor purity was significantly decreased in patients

with KIRC with high CIFI values (Figures 4B–D). We

performed correlation analyses for the estimated score with

the three candidate biomarkers and CIFI values for patients

with KIRC with high and low CIFI values (Figure 4E).

To determine which immune cells and immune factors were

correlated with CIFI, differential expression analyses were first

performed. There were 88 immune cells and immune factors that

were markedly different between normal individuals and patients

with KIRC (Supplementary Table S1). Of these, 56 immune cells

and factors were considerably different between patients with

KIRC with high and low CIFI values (Figures 4F–K). To further

FIGURE 3
Independent prognostic values of the three FI-DELs. (A) K-M analysis illustrated different clinical characteristics, and CIFI values were correlated
withOS of patients with KIRC. (B)Multivariate Cox regression analysis illustrated pathologic M, andCIFI values were correlatedwith theOS of patients
with KIRC independently. (C) ROC curve of different clinical characteristics and CIFI value. (D–G) CIFI score and expression of the three FI-DELs
within different clinical characteristics. *p < 0.05, **p < 0.01, ***p < 0.001.
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FIGURE 4
Correlation analysis of CIFI with the ESTIMATE score and immune infiltration. (A–D) Immune score between patients with KIRC with low CIFI
value and patients with KIRCwith high CIFI value. (A) Stromal score. (B) Immune score. (C) Tumor purity. (D) ESTIMATE score. (E)Correlation analysis
of the three FI-DELs with the ESTIMATA Score. (F–K) Differentially expression analysis of the infiltrating score between patients with KIRC with low
CIFI value and patients with KIRC with high CIFI value. (F) XCELL. (G) CIBERSORT. (H) quanTIseq. (I) EPIC. (J) CIBERSORT-ABS. (K)
MCPCOUNTER. (H) Significantly associated immune cells and factors with CIFI. Correlation analysis of the prognostic model with the immune cells
and factors. *p < 0.05, **p < 0.01, ***p < 0.001.
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determine the relationship among these 56 immune cells and

factors with CIFI values, Pearson correlation analyses were

performed and 13 out of 56 immune cells and factors were

correlated with the CIFI (Figure 4l).

3.5 Construction of logit (P) as a diagnostic
model and enrichment analyses of Kyoto
Encyclopedia of Genes and Genomes

To determine whether the three biomarkers could be used for

the diagnosis of patients with KIRC, a diagnostic model was

constructed and assessed. Stepwise logistic regression for the

three FI-DELs (Figure 5A) was performed. The diagnosis score

was markedly increased in patients with KIRC (Figure 5B) and

was markedly correlated with AC124854.1, LINC02609, and

ZNF503-AS2 (Figure 5C). The sensitivity and specificity of the

diagnosis were 0.8566 and 0.9583, respectively (Table 2). The

AUC value of this diagnostic model was 0.9097 (Figure 5D).

GSEA in R was used to compare the KEGG pathway between

different clusters. We found that 60 signaling pathways were

significantly enriched using the differentially expressed genes

between normal and KIRC patients. The top 10 signaling

pathways are shown in Figures 6A–J. We found that only five

signaling pathways were significantly enriched using the

differentially expressed genes between low CIFI and high CIFI

patients (Figure 6K-6O). However, the signaling pathways they

enriched were quite different.

4 Discussion

Kidney cancer is a heterogeneous disease. KIRC is one of the

most common subtypes of kidney cancer and is characterized by

FIGURE 5
Construction of the diagnostic model. (A) β-value of the analysis of three FI-DELs by stepwise logistic regression. (B) Diagnosis values between
normal and patients with KIRC. (C) Correlation analysis of the three FI-DELs with diagnosis values. (D) ROC curves of the diagnostic model. ***p <
0.001.

TABLE 2 Sensitivity and specificity of the diagnostic model.

Real KIRC Real normal

Predicted KIRC 454 3

Predicted normal 76 69

Total 530 72

Correct 454 69

Sensitivity 0.8566

Specificity 0.9583
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FIGURE 6
Significantly enriched KEGG pathway. (A–J) Top 10 significantly enriched signaling pathways between normal and KIRC. (A)Cytokine–cytokine
receptor interaction. (B) Neutrophil extracellular trap formation. (C) Systemic lupus erythematosus. (D) Platelet activation. (E) Chemokine signaling
pathway. (F) Human T-cell leukemia virus 1 infection. (G) Staphylococcus aureus infection. (H) Antigen processing and presentation. (I)Natural killer
cell-mediated cytotoxicity. (J) Viral protein interaction with cytokine and cytokine receptor. (K–O) Five significantly enriched signaling
pathways between patients with KIRCwith lowCIFI value and patients with KIRCwith high CIFI value. (K) Lipid and atherosclerosis. (L) Transcriptional
misregulation in cancer. (M) Alcoholism. (N) Cushing syndrome. (O) Systemic lupus erythematosus.
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high morbidity, mortality, and poor prognosis worldwide (Zhao

et al., 2018; Mendoza-Alvarez et al., 2019). Due to the limited

biomarkers in prediction, some patients with KIRC may be

diagnosed with inaccurate grades, which could influence their

OS (Wang et al., 2019a). Therefore, identifying new suitable

biomarkers with high sensitivity and specificity is crucial for the

prognosis and diagnosis of KIRC.

In the current study, gene expression data and clinical

information of KIRC were obtained from TCGA. We

obtained 261 FI-DELs through differential expression and

correlation analyses. For the 261 FI-DELs, we performed

univariate Cox regression analyses, multivariate Cox

regression analyses, and WGCNA and found that three FI-

DELs could be used as biomarkers for patients with KIRC.

We constructed prognostic and diagnostic models using the

three FI-DELs. Univariate and multivariate Cox regression

analyses indicated that the prognostic model using the three

FI-DELs was an independent prognostic factor. In addition, we

constructed a diagnostic model using the three FI-DELs. The

AUC value of the diagnostic model was 0.9097, indicating that

this diagnostic model may be feasible. Previous studies have

indicated that the three biomarkers identified in the present study

were related to OS in other cancers. For example, Wu et al. (2020)

found that ZNF503-AS2 could be used as an independent

prognostic biomarker for rhabdoid tumors of the kidney by

univariate and multivariate Cox analyses. Xing et al. (2021)

found that LINC02609 was associated with the OS of patients

with KIRC. Cao et al. (2021) found that the glycolysis-related

lncRNA AC124854.1 was markedly correlated with the OS of

renal cancer by univariate and multivariate Cox regression

analyses. Cheng et al. (2019) also found that

AC124854.1 could be used as a prognostic and diagnostic

biomarker for KIRC. Our results are consistent with those of

previous studies that reinforced the feasibility of our results.

Previous studies have found that surgery is the primary

treatment for patients with KIRC because most patients are

resistant to radiation and chemotherapy (Zhao et al., 2018;

Evelonn et al., 2019; Yin et al., 2019). Discovering recently,

ferroptosis and immunity are new therapeutic targets for

cancer. Additionally, some prognostic markers based on

ferroptosis and immunity also exist. For example, the AUC

value of the risk assessment model constructed by Sun et al.

using immune-related lncRNA signatures was 0.71 45, and Xing

et al. found that the AUC value of the risk assessment model

constructed using the ferroptosis-related lncRNA signatures was

0.72 40. We compared the present prognostic lncRNA features

with published predictive models in patients with KIRC. Yin et al.

(2018) found that nine lncRNAs (SLC25A5-AS1, COL18A1-

AS1, WT1-AS, AC016773.1, LINC00460, LINC00313,

HOTTIP, FGF14-AS1, and AC10502.1) could serve as

independent biomarkers to predict survival in patients with

KIRC. Sun et al. (2020b) found five immune-related lncRNA

signatures (AC008105.3, LINC02084, AC243960.1, AC093278.2,

and AC108449.2) with the ability to predict the prognosis of

patients with KIRC. Liu et al. (2018) found that 19 lncRNAs

(LOC606724, SCART1, SNORA8, LOC728024, HAVCR1P1,

FCGR1CP, LINC00240, LINC00894, GK3P, SNHG3,

KIAA0125, URB1-AS1, ZNF542P, TINCR, LINC00926,

PDXDC2P, COL18A1-AS1, LINC00202-1, and LINC00937)

that are potential biomarkers for the prognosis of KIRC. The

AUC values of the three models were 0.684, 0.709, and 0.723,

respectively, which were slightly lower than those of the present

study (Liu et al., 2018; Yin et al., 2018; Sun et al., 2020b).

Additionally, Zhang et al. (2019) found that 11 lncRNA

signatures (AC245100.1, AP002761.1, LINC00488,

AC017033.1, LINC-PINT, COL5A1-AS1, AC026471.4,

AL009181.1, AL078590.3, LINC00524, and HOTTIP) could be

potential biomarkers for KIRC. Yu et al. (2021) found that five

prognostic-associated m6A-related lncRNAs (AC012170.2,

AL157394.1, AP006621.2, AC025580.3, and AC124312.5) can

be used as prognostic biomarkers for KIRC. The AUC values of

these models were 0.781, and 0.809 respectively, which were

slightly higher than those in the present study (Zhang et al., 2019;

Yu et al., 2021). Comparatively, these two models used more

prognostic biomarkers than those used in this study.

Although previous studies and our results indicate that the

three FI-DELs may be used as prognostic and diagnostic

biomarkers for patients with KIRC, the lack of cross-

validation of other independent data and prospective clinical

validation is an important shortcoming of our study. In addition,

in vitro cell experiments and in vivo animal experiments are

necessary to understand the functions of the three FI-DELs as

biomarkers.

5 Conclusion

Through a series of bioinformatics analyses, we found that

three FI-DELs (AC124854.1, LINC02609, and ZNF503-AS2)

were independently significantly correlated with the OS of

patients with KIRC. The prognostic and diagnostic models

suggested that three FI-DELs could be used as prognostic and

diagnostic biomarkers in patients with KIRC.
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