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ABSTRACT

Summary: We have developed an algorithm to detect copy number
variants (CNVs) in homozygous organisms, such as inbred laboratory
strains of mice, from short read sequence data. Our novel approach
exploits the fact that inbred mice are homozygous at virtually every
position in the genome to detect CNVs using a hidden Markov
model (HMM). This HMM uses both the density of sequence reads
mapped to the genome, and the rate of apparent heterozygous single
nucleotide polymorphisms, to determine genomic copy number.
We tested our algorithm on short read sequence data generated
from re-sequencing chromosome 17 of the mouse strains A/J and
CAST/EiJ with the Illumina platform. In total, we identified 118 copy
number variants (43 for A/J and 75 for CAST/EiJ). We investigated
the performance of our algorithm through comparison to CNVs
previously identified by array-comparative genomic hybridization
(array CGH). We performed quantitative-PCR validation on a subset
of the calls that differed from the array CGH data sets.
Availability: The software described in this manuscript, named cnD
for copy number detector, is free and released under the GPL. The
program is implemented in the D programming language using the
Tango library. Source code and pre-compiled binaries are available
at http://www.sanger.ac.uk/resources/software/cnd.html
Contact: rd@sanger.ac.uk
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Copy number variants (CNVs) are segments of DNA that have been
duplicated, or lost, in the genome of one individual or strain with
respect to another. CNVs are thought to contribute significantly
to phenotypic differences between mouse strains. In humans,
CNVs have been causally linked to a range of disorders including
schizophrenia (Moon et al., 2006), autism (Sebat et al., 2007) and
birth defect syndromes (Lu et al., 2008). High-resolution surveys
for CNVs have been performed in common laboratory strains of
mice using array-comparative genomic hybridization (array CGH)
(Cahan et al., 2009; Cutler et al., 2007; Graubert et al., 2007;
Henrichsen et al., 2009; She et al., 2008). These studies have found
a significant level of variation between strains, such that as much
as 15% of the reference C57BL/6J mouse genome may be found
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as CNVs in another strain. While array CGH can be an effective
way of identifying CNVs, aCGH studies are limited in resolution
by the number of probes that can be placed on a microarray. The
widespread adoption of short read sequencing platforms has led
to a rapid decrease in the cost of whole-genome re-sequencing
making it a viable alternative to array CGH (Xie and Tammi, 2009).
Hidden Markov Models (HMM) have previously been used to detect
copy number variation from array CGH data (Cahan et al., 2008;
Fridlyand et al., 2004). We have developed a HMM to detect CNVs
in inbred strains from the alignments of short read sequences to a
reference genome.

2 DESCRIPTION
The central idea behind our model is that the alignment of reads from
regions with copy number gains (with respect to a reference genome)
will be ‘collapsed’ to a single location on the reference genome.
The effect of this will be 2-fold. First, the sequence depth of this
location on the reference genome will be increased by an integral
amount corresponding to the relative number of copies that exist
in the sequenced strain. Second, any base-pair differences between
the copied regions will appear to be heterozygous single nucleotide
polymorphisms (SNPs) with respect to the reference. This fact is
crucial to our model as laboratory strains of mice are inbred to
be effectively homozygous at every position in the genome, hence
any apparent heterozygous SNPs that are not sequencing errors are
actually paralogous sequence variants and therefore define regions
collapsed in the reference genome. Conversely, the alignment of
reads from regions with copy number losses in the sequenced
genome will be distributed over the corresponding copies in the
reference genome and hence the reference regions will have lower
sequence depth, with the important distinction that there will not
be a heterozygous SNP signal. Our HMM exploits these factors to
detect regions of copy number gain and loss.

Our algorithm proceeds in three stages. First, the sequence reads
are aligned to the mouse reference genome (build NCBI 37, Mouse
Genome Sequencing Consortium, Waterston et al., 2002) using the
MAQ aligner (Li et al., 2008). MAQ calls SNPs and classifies them
as homozygous or heterozygous. Summary statistics are computed
for the sequence read depth, the number of heterozygous SNPs and
the average number of hits per read over 1 kb windows of the
reference genome sequence. This triplet of data for each 1 kb region
of the reference genome is input to the HMM which classifies each
region as corresponding to a gain, loss or no change in copy number.
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Fig. 1. (A) Plot of sequencing depth across a one megabase region of A/J
chromosome 17 clearly shows both a region of 3-fold increased copy number
(30.6–31.1 Mb) and a region of decreased copy number (at 31.3 Mb). The
solid black line above the depth plot indicates the called copy number gain
and the solid black line below the plot indicates the called copy number loss.
(B) Plot of the heterozygous SNP rate for the same region showing the high
number of apparent heterozygous SNPs associated with the copy number
gain.

2.1 The HMM
We developed a 10-state HMM of the copy number structure of
the genome being sequenced. There are five major states of the
model, representing normal sequence, a 2-fold increase in copy
number, a 3-fold increase in copy number, a 2-fold decrease in copy
number and zero copy number. In addition, each major state of the
model has a sub-state corresponding to highly repetitive sequence,
allowing the model to accommodate the frequent high-copy repeat
elements dispersed throughout mammalian genomes. In all states
expect for the repeat states the depth distribution is modeled by
a normal distribution with the mean and variance reflecting the
copy number of the state. For states representing a copy number
gain, the heterozygous SNP rate is modeled by a negative binomial
distribution. The heterozygous SNP rate is modeled by a Poisson
distribution in all other states. More information about the HMM
and emission distributions is given in the supplemental material.

The parameters of the model are learned for each chromosome
in the input data set by Viterbi training for both the transition
probabilities and emission distribution parameters (Durbin et al.,
1998). After the model parameters have been determined, the
sequence of states is computed by a final application of the Viterbi
algorithm. The output of the Viterbi algorithm is processed to extract
contiguous regions of gain or loss. The minimum threshold for
detection is the input window size, typically one kilobase. There
is a final optional filtering step to remove calls below a minimum
size threshold.

3 RESULTS
We tested our model on Illumina short read sequence data from
chromosome 17 for the A/J and CAST/EiJ strains of mouse that
were sequenced to 22- and 34-fold, respectively (ERA accession
number ERA000077). The data sets were generated using 36-bp
paired-end reads of 200-bp insert libraries. For this experiment, we
set a minimum call size threshold of 10 kb (see Supplementary Data).
We evaluated our calls against a collection of previously published
aCGH copy number variation data (Cahan et al., 2009; Cutler et al.,
2007; Henrichsen et al., 2009; She et al., 2008).

Our algorithm called 22 copy number gains (1.38 Mb of sequence)
and 21 losses (0.49 Mb) for the A/J data set (see Fig. 1 and
Supplementary Fig. 6 for example regions). The gain regions overlap
38% of the regions identified by aCGH (36% by sequence, 1.1 Mb).
Seventy-seven percent of the gains cnD found were previously seen
by aCGH. For CAST/EiJ, 45 gains (2.44 Mb of sequence) and 30
losses (1.16 Mb) were called. The gain regions overlap 76% of
the gains called by aCGH (79% by sequence, 1.3 Mb). Thirty-six
percent of the gains found by cnD were previously seen in the
array CGH data set. This figure is much lower than that of A/J due
to the fact that the CAST/EiJ strain was not used in the highest
coverage aCGH study (Cahan et al., 2009). In both strains the
regions of copy number loss called by our algorithm and aCGH
differed widely (11% concordance by region for A/J and 32% for
CAST/EiJ) owing to the relative difficulty of calling CNV losses
compared to gains. We performed qPCR validation on a subset of
both the gain calls that were novel to our algorithm (those not found
by aCGH) and the novel gain calls found by aCGH. In total we
attempted validation on 20 novel cnD gains, of which five were
confirmed to be amplified relative to C57BL/6J. Of the 14 novel
aCGH gains that we attempted to validate, one was confirmed to be
a gain relative to C57BL/6J. Our concordance with array CGH and
initial confirmation rates are similar to previously published copy
number variation studies (Conrad et al., 2009; Redon et al., 2006;
Scherer et al., 2007). Full details of the experimental validation are
provided in the Supplementary Data.
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