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Numerical learning of deep 
features from drug‑exposed 
cell images to calculate IC50 
without staining
Kookrae Cho1,2, Eun‑Sook Choi1,2, Jung‑Hee Kim1, Jong‑Wuk Son1* & Eunjoo Kim1*

To facilitate rapid determination of cellular viability caused by the inhibitory effect of drugs, numerical 
deep learning algorithms was used for unlabeled cell culture images captured by a light microscope as 
input. In this study, A549, HEK293, and NCI‑H1975 cells were cultured, each of which have different 
molecular shapes and levels of drug responsiveness to doxorubicin (DOX). The microscopic images 
of these cells following exposure to various concentrations of DOX were trained with the measured 
value of cell viability using a colorimetric cell proliferation assay. Convolutional neural network (CNN) 
models for the study cells were constructed using augmented image data; the predicted cell viability 
using CNN models was compared to the cell viability measured by colorimetric assay. The linear 
relationship coefficient  (r2) between measured and predicted cell viability was determined as 0.94–
0.95 for the three cell types. In addition, the measured and predicted IC50 values were not statistically 
different. When drug responsiveness was estimated using allogenic models that were trained with 
a different cell type, the correlation coefficient decreased to 0.004085–0.8643. Our models could be 
applied to label‑free cells to conduct rapid and large‑scale tests while minimizing cost and labor, such 
as high‑throughput screening for drug responsiveness.

In vitro high-throughput assays for screening drug responsiveness are increasingly needed not only for medical 
and pharmaceutical research, but also for clinical purposes using cell lines, patient-derived primary cells, or 
organoids. In this context, automatic analysis of drug responsiveness using cell images have facilitated advanced 
microscopic technology such as counting cell numbers and discriminating between live and dead cells to deter-
mine in vitro  responses1,2.

Recently, artificial intelligence-involved instrumental analysis has improved the experimental process by 
using accumulated data from researchers as training data to predict analytical results, reducing time, cost, and 
labor. Deep-learning-based training has been applied to obtain optimized results for the counting of cells with 
fluorescence or colorimetric  staining3,4. An image-based learning approach was also applied to the discrimina-
tion of live and dead cells following the fluorescence staining of cells after drug  treatment5,6. The continuous 
values of labels assigned to cell images were predicted by performing numerical deep learning on label-free input 
images using a recent image analysis  technique7,8. In these studies, the continuous values of fluorescent intensity 
from stained cells were assigned to non-stained light microscope images, and then the fluorescent intensity was 
predicted using the label-free cell images.

To provide numerical values of cell viability without staining, label-free cell images could be assigned with 
measured values obtained by colorimetric cell proliferation assay and used as input data for numerical learning. 
In this case, it would be possible to predict 50% inhibitory concentration (IC50) based on precisely predicted 
cell viability from the training of cell images. Using this model, high-throughput drug responsiveness screening 
could be achieved by rapid and automatic analysis saving time, cost, and labor.

In this study, we provide numerical deep learning results using label-free cell images, which were used to 
determine IC50 values based on the predicted cell viability in cell culture dishes. The ground truth label was 
the cell viability indicator, optical density at 450 nm  (OD450 nm), which was obtained by cell proliferation assay 
following drug treatment of cells. Cell viability can be defined as the number of cells that are either alive or dead 
after undergoing drug treatment. The prediction result was compared to the measured values, and the correlation 
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coefficient and statistical difference between the measured and predicted data were evaluated. The drug doxoru-
bicin (DOX) was used to induce cytotoxicity in three types of cell lines: A549, HEK293, and NCI-H1975. These 
cell lines were used to prepare label-free cell images.

Because an efficient method for cell viability prediction is critical for various cellular culture-based experi-
ments, including anti-cancer drug discovery, a web-based algorithm for image-based IC50 determination without 
staining of cells was introduced to support high-throughput image analysis with low cost and time requirements. 
Finally, the prediction result of cell viability and IC50 values was evaluated in aspect of possible alternative 
method to replace the conventional colorimetric cell proliferation assays.

Materials and methods
Cell lines and cultures. Human epithelial lung carcinoma A549 cells (CCL-185), human kidney HEK293 
cells (CRL-1573), and human non-small cell lung cancer NCI-H1975 cells (CRL-5908) were purchased from the 
American Type Culture Collection (ATCC, Manassas, VA, USA). The cells were cultured in Gibco RPMI-1640 
culture medium (Thermo Fisher, Waltham, MA, USA) supplemented with 10% fetal bovine serum albumin 
(FBS, Thermo Fisher, Waltham, MA, USA). During the culture process, the cells were placed in a humidified 
incubator at 37 °C with 5%  CO2.

Measurement of cell viability. To prepare images of the cultured cells corresponding to the molar con-
centration of a drug to inhibit normal cellular growth, DOX was added to A549, HEK293, and NCI-H1975 cells 
in concentrations ranging from 0.001 nM to 100 μM (total 11 concentrations). For each DOX concentration, 
eight repetitive samples were prepared, and three sets of experiments were performed separately for the A549, 
HEK293, and NCI-H1975 cell types. Briefly, cells were seeded into 96-well plates at a density of 1 ×  103 cells/well, 
and DOX was added to each well at a selected concentration after 24 h of incubation. After 48 h of incubation, 
the cell images from each well were captured by light microscopy (Leica DMI3000B, Leica Microsystems, Wet-
zlar, Germany) equipped with a Zyla sCMOS camera (Andor Technology Ltd, Belfast, UK). An image for each 
well was captured, and every sample was in the center of the field of view.

Cell viability was then determined using Cell Counting Kit-8 (CCK kit, Dojindo Molecular Technology Inc., 
Rockville, MD, USA), according to the manufacturer’s instructions. The  OD450 nm for the CCK assay was measured 
using a spectrophotometric microplate reader (Promega, Madison, WI, USA).

Image pre‑processing. We used bright-field images of the cells in 96-well plates as input variables. For the 
classification of learning data, each cell image was assigned quantitative labels of cell viability data  (OD450 nm) fol-
lowing 48 h of DOX exposure, which was also taken as the expected output. Before predicting drug responsive-
ness using label-free cell images and further calculation of IC50, we performed an exploratory analysis on the 
actual dataset. For all the dataset images, we constructed 1028-dimensional feature vectors using MobilenetV2, 
which was pre-trained using the ImageNet dataset (https:// www. image- net. org/) without classification layers. 
Patterns such as clustering, abnormality, and outliers were obtained as the training results from the learned 
feature vectors.

In addition, we performed data augmentation for the training images, artificially increasing the diversity and 
size of the training samples to reduce the required number of  datasets9,10. This included using random 90-degree 
rotations, random cropping (to 70% of the original size), and vertical/horizontal flipping of each image. All the 
original images are in RGB, JPG format with a resolution of 2160 × 2560 pixels. The training images were cropped 
to 1512 × 1792 pixels which is 70% of the original image. In addition, the images were adjusted for brightness 
in the range [− 0.2, 0.2], saturation in the range [0.6, 1.6], contrast in the range [0.7, 1.3], and hue in the range 
[–0.08, 0.08].

Model construction for the prediction of cell viability. For model training, transfer learning was 
applied using MobileNetV2 architecture and feature weights, which were pre-trained for the ImageNet dataset 
as described earlier. The MobileNetV2 architecture without the top classification layer was used as the base 
model for the CNN image analysis. One fully connected layer with 10 hidden nodes was linked to it, followed 
by another fully connected layer that outputs the prediction result. The frozen base model was used as a feature 
extractor, and only the added layers were trained using the base model.

Among the 264 images labeled with  OD450 nm values determined by the cell proliferation assay, 198 images 
were used for training and validation and 66 images were reserved for testing. Original (unaugmented) images 
were used to predict cell viability, with the splitting ratio of the dataset being 6:4. For a regression analysis, the 
numerical output for each cell image was predicted as a drug responsiveness score and compared it to the meas-
ured values determined by the cell proliferation assay. To support the test results, we additionally performed 
fourfold cross validation. Each fold had 25% of the data set without repetition. In addition to MobileNetV2, 
Inception  V311 and InceptionResNet  V212 models were also trained and applied for fourfold cross validation.

Visualization of feature attributions. We applied two visualization techniques to investigate the behav-
ior of the trained model. First, we extracted the feature vectors of the test images from the output of the trained 
model without the final prediction layer. These high-dimensional feature vectors were transformed to low-
dimensional features using two-dimensional (2D) t-distributed stochastic neighbor embedding (t-SNE)13. Next, 
we adopted Google Explainable AI with XRAI option (https:// cloud. google. com/ expla inable- ai)14 to display the 
attributes of features in the CNN model.

https://www.image-net.org/
https://cloud.google.com/explainable-ai


3

Vol.:(0123456789)

Scientific Reports |         (2022) 12:6610  | https://doi.org/10.1038/s41598-022-10643-9

www.nature.com/scientificreports/

Determination of IC50 by doxorubicin. Based on the changes in cell viability following treatment of 
cells with DOX, IC50 values were determined from non-linear regression curves fitted to DOX concentration 
and  OD450 nm values, according to the following Hill Eq. (1), where Max and Min are the maximum and mini-
mum values of  OD450 nm in the sigmoidal regression, respectively.

The measured IC50 was calculated using the least square fit of four parameter-sigmoidal curves executed 
using Prism ver. 9 (GraphPad Software, San Diego, CA, USA).

Web application. We developed a web application that allows a user to predict drug responses from cell 
images and calculate the IC50 from the predicted responses. First, we used the Python-based TensorFlow to 
build and train the model according to the structure and method mentioned earlier. Then, the trained model was 
saved in HDF5 standard format and converted to TensorFlow.js Layers format for use in the browser (Fig. S1). 
The converted model files were loaded from a URL where the hosted model files were hosted. When a user 
uploads the images of the cells that had been treated with a specific concentration of drugs to a web browser, the 
drug responsiveness in cell viability can be predicted, allowing for the IC50 to be calculated at once. Three types 
of models were developed separately, predicting drug responsiveness by calculating the IC50 based on the A549, 
HEK293, and NCI-H1975 cell images.

Statistical analysis. Comparison between the measured and predicted values was performed using the 
correlation coefficient  r2. Unpaired and paired t tests were also performed for groups of measured and predicted 
values using Prism ver. 9.3.0 (GraphPad Software, San Diego, CA, USA, https:// www. graph pad. com/ scien tific- 
softw are/ prism/). Differences between measured and predicted values were calculated as average (AVE) ± stand-
ard deviation (SD) from the paired t test.

Results and discussion
Images obtained for training of the deep learning model. Three cell types, A549, HEK293, and 
NCI-H1975, were treated with DOX at concentrations of 0.0001, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, and 
100 μM in 96-well cell culture plates. For each of the 11 concentrations, eight repetitive samples were prepared, 
and three sets of 11 concentration × 8 repetitive samples were prepared for the numerical learning of bright-field 
cell images. The images of cells in 96-well plate wells under the given concentration of DOX were captured using 
a light microscope at × 100 magnification and used as input data for image classification to predict the cell viabil-
ity and IC50 quantitatively. Representative cell images are shown in Fig. 1.

Convolution of neural network model construction to predict drug responsiveness. In this 
study, we propose a CNN-based regressor that predicts the drug responsiveness of cells from their bright-field 
images. The CNN model was constructed using MobileNet2, which is very similar to the original MobileNet, 
except that it uses inverted residual blocks with bottlenecking features for  analysis15. MobileNet is suitable for 
mobile vision applications because it dramatically reduces network complexity and model  size16. The model was 
trained using unlabeled cell images with the assigned cell viability scores as inputs. These cell viability scores 
were determined by a cell proliferation assay using the colorimetric method, with continuous values ranging 
between 0 and 2. By setting the cell viability predictions as expected outputs, the responsiveness to DOX was 
estimated using the IC50 indicator for three types of cells: A549, HEK293, and NCI-H1975.

In this study, data augmentation and transfer learning were performed to induce high performance in the 
accuracy of the prediction, showing that even a relatively small dataset (264 images for each cell type) could 
be used in numerical learning. Data augmentation techniques can be used to overcome the limited number of 
available data by artificially increasing the diversity and size of the training  samples9,10. In this study, training 
images were augmented by performing operations such as zoom, flip, and rotate. When data augmentation such 
as random crop or zoom operation were applied to train a model that predicts continuous values, the augmented 
images might not reflect the absolute response. Therefore, the size of the cropping or zooming of the original 
image should be predetermined to sufficiently reflect the cell distribution of the original cell images. In this study, 
the responsiveness of drugs represented by IC50 was determined by the relative 50% inhibition concentration 
between 0 and 100% inhibition, rather than being determined by the absolute number of dead or living cells. 
Therefore, it was required to determine the appropriate random crop size to accurately predict the IC50 value 
while increasing the amount of training data by data augmentation. We randomly cropped the original image 
to 70% size, computed the feature vectors, and performed 2D t-SNE visualization. Figure S2 presents the 2D 
t-SNE visualization of the augmented image embedding. Images augmented at the same concentration formed 
a cluster, with a distance maintained between different clusters. It was expected that a random crop of 70% size 
would be optimal for data augmentation in this study. As a result, the data augmentation process is suitable for 
pre-processing the model construction.

Among 264 cell proliferation images for each cell type, 198 images were used for training and validation, and 
66 images were kept for testing. The splitting ratio of the dataset used in this analysis (6:4) was different from the 
commonly suggested ratio for training, validation, and testing (8:1:1)17. This was because a set of testing images 
were composed of eleven images corresponding to the eleven concentration of DOX: six sets of experimental 
results were used as testing sets.

(1)Y = Min+
Max −Min

1+
(

X
IC50

)Hill coefficient
.

https://www.graphpad.com/scientific-software/prism/
https://www.graphpad.com/scientific-software/prism/
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Finally, three types of models, A549-M, HEK293-M, and NCI-H1975-M, were constructed, each of which 
used input images of A549, HEK293, and NCI-H1975, respectively. The trained model was constructed in a web-
based application so that it could be used in a web browser to provide an easily accessible user interface (https:// 
bioan alysis- 79545. web. app/ main/ images/ a549). Based on the cell viability predicted from the microscopic cell 
image taken under a specific concentration of DOX treatment, IC50 was subsequently calculated using a cus-
tom algorithm that solved the Hill equation with four parameters. To obtain an accurate result of cell viability 
using the web-based application, the images should be captured using a sCMOS camera (Andor Technology) 
under × 100 magnification ratio.

Prediction of cell viability using a CNN image analysis model. After training, the model was vali-
dated to determine whether the predictions based on label-free cell images were comparable to those of the 
conventional cell proliferation assay. The predicted values from the three types of models were plotted against 
the measured values obtained from the CCK assay. Linear regression analysis was performed to determine the 
correlation coefficient  r2. Figure 2 shows the relationship between the measured and predicted values. The devia-
tion from linearity was lowest when the  OD450 nm was estimated by the autologous model of each cell type; for 
example, the measured  OD450 nm values of A549 treated with various DOX concentrations were predicted more 
straightforwardly by A549-M, which was the model trained using A549 cell images. HEK293 and NCI-H1975 
cells were also best fit by each autologous prediction model.

Table 1 shows the quantitative evaluation of the correlation between the measured and predicted values of 
 OD450 nm by statistical analysis. The correlation coefficient  r2 values between the measured  OD450 nm of A549, 
HEK293, and NCI-H1975 and the values predicted by autologous models A549-M, HEK293-M, and NCI-
H1975-M, were determined to be 0.9513, 0.9404, and 0.9491, respectively. These values are relatively higher 
than those estimated by allosteric prediction models: for example, decreased  r2 (0.07962) was observed between 
measured  OD450 nm values for A549 cell viability and predicted  OD450 nm by the model trained using NCI-H1975 
cell images (NCI-H1975-M). The slopes of the linear regression curves between the measured and estimated 
values using autologous prediction models were 1.138, 1.079, and 1.002 for A549, HEK293, and NCI-H1975, 
respectively. This result indicates that the relationship is almost comparable with the proportional ratio near ~ 1.0.

The difference ± SD between the measured and predicted values was also determined, as shown in Table 1. 
The difference was calculated as 0.04874 ± 0.1714, 0.02182 ± 0.1107, and 0.01163 ± 0.1370 for A549, HEK293, and 
NCI-H1975, respectively, when each autologous model was used for estimation. The deviation of the prediction 
from the measured values increased over tenfold when the allosteric models were used to estimate cell viability. 
In the case of the difference between the measured and predicted values for HEK293 cell viability using the 
allogenic model of NCI-H1975, the average difference decreased to 0.0041, even though the autologous model 
prediction was 0.0218, which was attributed to the compensation effect of the summation of the difference in 
positive and negative values. The SD of the difference was still enhanced in the case of allogenic NCI-H1975-M.

Figure 1.  Representative cell images used in this study. The images were captured by light microscope with a 
magnification ratio × 100.

https://bioanalysis-79545.web.app/main/images/a549
https://bioanalysis-79545.web.app/main/images/a549
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Figure 3 shows the distribution of the measured and predicted values based on the autologous and allogenic 
models. The difference between the measured and predicted values based on the autologous models showed a 
narrower distribution compared to that of the allogenic models, and the predicted values of  OD450 nm for A549, 
HEK293, and NCI-H1975 were more precisely matched to the estimated values from the respective autologous 
models A549-M, HEK293-M, and NCI-H1975-M.

In a previous study on the numerical deep learning of CNN to predict cell viability using label-free 3D cell 
images, the correlation coefficient  r2 was determined to be 0.82–0.937. In this case, cell images were assigned 
by fluorescence intensity following LIVE/DEAD cell staining of 1920 tumor sphere samples. In our study, the 
correlation coefficient  r2 improved to over 0.94, and moreover, this was achieved by almost one-seventh of the 
training samples, more efficient than the previous study.

To support the improved accuracy even using the limited number of samples in this study, we additionally 
performed fourfold validation analysis by three types of CNN models, MobileNetV2, InceptionV3, and Incep-
tionResNetV2. Table S1 shows the  r2 coefficients between the measured and predicted values of  OD450 nm for 
A549 cells by fourfold cross validation. The results indicated that the  r2 values were 0.9237, 0.9325, and 0.9331 
for MobileNetV2, InceptionV3, and InceptionResNetV2 models, respectively, which were close to each other. 

Figure 2.  Correlation of measured and predicted optical density measured at 450 nm following colorimetric 
cell proliferation assay (CCK assay). The models constructed for the three types of cells were A549-M, 
HEK293-M, and NCI-H1975-M. The predicted values were drawn up from allogenic models as well as 
autologous models for cross validation. The linearity and statistical analysis results are shown in Table 1.

Table 1.  Statistical analysis of linear relationship of measured and predicted  OD450 nm.

Cell type A549 HEK293 NCI-H1975

Prediction model A549-M HEK293-M NCI-H1975-M HEK293-M A549-M NCI-H1975-M NCI-H1975-M A549-M HEK293-M

Correlation,  r2 0.9513 0.6996 0.07962 0.9404 0.8634 0.4474 0.9491 0.004085 0.7028

Equation Y = 1.138*X − 0.09013 Y = 0.6197*X + 0.5682 Y = 0.1278*X + 0.5311 Y = 1.079*X − 0.07736 Y = 1.168*X − 0.3292 Y = 0.5299*X + 0.3333 Y = 1.002*X + 0.009382 Y = 0.01832*X + 0.8454 Y = 0.8457*X + 0.2078

Difference between 
measured and 
predicted values 
(Ave ± SD)

0.04874 ± 0.1714 0.1868 ± 0.3259 0.3435 ± 0.5708 0.02182 ± 0.1107 0.2119 ± 0.1930 0.004189 ± 0.2946 0.01163 ± 0.1370 0.04499 ± 0.3372 0.1904 ± 0.6037
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Table S2 shows the results of fourfold cross validation using MobileNetV2 for A549, HEK293, and NCI-H1975 
cells. The  r2 values determined by the fourfold cross validation were 0.9237, 0.9218, and 0.9290 for A549, HEK293, 
and NCI-H1975, respectively, which were comparable to those determined by A549-M (0.9513), HEK293-M 
(0.9404), and NCI-H1975-M (0.9491), as shown in Table 1. These results supported the prediction power of the 
autologous models prepared in this study, which was achieved with total 264 samples for each cell line.

Visualization of learned features. To better investigate the classifiers discovered by deep learning, a 
visualization of the features linked to their biological meaning was presented, allowing for interpretation of 
the CNN model decisions. The extracted feature vectors of the test images in high-dimensional features by our 
trained model were transformed to lower-dimensional features by the well-known t-SNE13, as shown in Fig. 4A. 
Each dot corresponds to a test image, and the color is the treated DOX concentration. The plot of t-SNE shows 

Figure 3.  Correlation of measured and predicted optical density measured at 450 nm  (OD450 nm) analyzed by 
paired t test. The corresponding measured and predicted values and difference of two values are plotted. The left 
panel for each cell type shows predicted values from autologous models; in the middle and right panels, these 
values are compared with the predicted values from allogenic models.
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the local structure of the high-dimensional input space.  OD450 nm measured by cell proliferation assay according 
to the DOX concentration in Fig. 4B represents the concentration-dependent drug responsiveness, which was 
fitted by a sigmoidal curve generated by the Hill equation (Fig. 4C). Based on the Hill curve in Fig. 4C, the IC50 
concentration was determined for the concentration at which 50% cell viability was observed compared to that 
of control cells. Features from cell images corresponding to each concentration formed three clusters after trans-
formation by t-SNE (I, II, and III in Fig. 4A), which were largely divided in the Hill curve into top (I), slope (II), 
and bottom (III) regions in Fig. 4C. The results implied that numerical values of cell viability by visual inspection 
of cell images could be learned, and that the trained model predicted cell viability in continuous numbers linked 
to cell images.

Another visualization technique is to reveal the localization of discriminative regions for decisions in an input 
image. Google explainable AI was utilized to understand how our trained model predicted drug responsiveness 
from cell images. The XRAI option of explainable AI was used to display attributions, which was highlighted 
in accordance with the prominent image features that were impactful in the model rather than the individual 
pixels. XRAI highlights the most influential regions in yellow and the least influential in blue, based on the 
viridian color palette, as shown in Fig. 5. The localization of the attributions in the input images shows that the 
prominent features of the decision overlapped with the area of viable cells. This result complemented the t-SNE 
visualization by localizing important features in the final convolutional layer of the CNN.

Prediction of IC50 using label‑free cell images. To calculate the IC50, images corresponding to vari-
ous drug concentrations were required as input data. We used 11 drug concentrations to treat three types of cells, 
and captured the images of cells in each well. The histogram of the response values (assigned by cell viability) for 
the 198 training data samples are shown in Fig. S3. The responses were not uniformly distributed but covered a 
sufficiently large area.

Figure 6 shows the measured and predicted IC50 values, which were estimated using autologous and allogenic 
prediction models. For the three cell types,  IC50pred estimated by the autologous model was closest to  IC50meas 
for each cell line. The accuracy of  IC50pred reflected the precise cell viability estimated by the CNN models. This 
result indicated that prediction of drug responsiveness as IC50 was available, using the method of label-free 
imaging analysis through the numerical deep learning developed in this study.

Table 2 shows the IC50 concentration for DOX exposure obtained from the CCK assay  (IC50meas) and pre-
diction by CNN models  (IC50pred) for A549, HEK293, and NCI-H1975 cells. The average difference between 
 IC50meas and  IC50pred for the autologous model was 0.0935, 0.0015, and 0.0785 for A549, HEK293, and NCI-
H1975 cells, respectively. However, when the estimation was performed using the allogenic training model, the 
difference between  IC50meas and  IC50pred increased from several to hundreds of times over. In addition, unpaired 
t tests showed that  IC50meas and  IC50pred were not significantly different if autologous models were used to 
estimate  IC50pred (p = 0.094, 0.8205, 0.4334 for A549, HEK293, and NCI-H1975, respectively). In other cases, 
such as  IC50pred of A549 cells using HEK293-M and NCI-H1975-M, the unpaired t test showed that there was a 
significant difference compared to  IC50meas (p = 0.001 and p < 0.0001, respectively). For HEK293,  IC50meas, and 
 IC50pred estimated from allogenic NCI-H1975-M showed no statistically significant difference (p = 0.1597). This 
result was attributed to the estimated values of HEK293  IC50pred using NCI-H1975-M showing wide variation: 
the difference between  IC50meas and  IC50pred was 3.266 ± 5.266, which was almost a hundred times higher than 
that of  IC50pred using the autologous model.

Figure 4.  Feature visualization learned by MobileNetV2 for the entire dataset. (A) 1028-dimensional features of 
A549 cell images were projected to a 2D surface using t-SNE, and colored according to drug concentrations. (B) 
Responses to drug concentrations  (OD450 nm). (C) Hill curve drawn using the concentrations and the response 
in (B). The image features of the top (I), slope (II), and bottom regions (III) of the Hill curve (C) are clustered in 
different sections of (A). The response values from the images in the slope region (II) increase according to the 
concentration, which is clearly reflected by the feature visualization (A).
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In the paired t test, the estimated values of  IC50pred of DOX for HEK293 (p = 0.7765) and NCI-H1975 
(p = 0.4645) from autologous models were not significantly different compared to  IC50meas values of HEK293 
and NCI-H1975 cells, respectively. For A549 cells, p-values for measured and autologous model prediction of 
IC50 were different in the paired t test (p = 0.012); however, the difference of  IC50pred to  IC50meas for A549 from 
allogenic models, HEK293-M and NCI-H1975-M, was dramatically enhanced, which was reflected by statistical 
parameter, p = 0.0015 and < 0.0001, respectively.

As a result, the predicted IC50 values for DOX exposure were comparable to that of the IC50 values meas-
ured by colorimetric assay, because there was no statistical difference between the distribution of  IC50meas and 
 IC50pred by the paired and unpaired t test (the only exception was the paired t test for A549 cells). The results 
indicated that the CNN model predicted the cell viability sufficiently precisely to determine drug responsiveness 
statistically, but the prediction capability could degrade when the numerical learning was performed using cell 
images from different types of cells.

Figure 5.  Heat map of important features in the input cell images for the decision of cell viability generated 
using the prediction model A549-M.
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Table S3 shows  IC50pred of A549 cells determined by three CNN models (MobileNetV2, InceptionV3 and 
InceptionResNetV2) by fourfold cross validation. When  IC50meas was 0.3747,  IC50pred values were determined 
as 0.3939, 0.3753, and 0.3163, and the average difference  (IC50pred −  IC50meas) was 0.01928, 0.00067 and − 0.0535, 
by MobileNetV2, InceptionV3 and InceptionResNetV2, respectively. In this case, three types of CNN models 
estimated  IC50pred similar to  IC50meas, without statistical difference (p > 0.05). Table S4 shows the  IC50pred for 
A549, HEK293, NCI-H1975, determined by fourfold cross validation using MobileNetV2. The average difference 
between  IC50meas and  IC50pred  (IC50pred −  IC50meas) for A549, HEK293, NCI-H1979 were 0.01928, 0.00202, and 
0.03274, respectively. The paired and unpaired t test indicated that the distribution of  IC50meas and  IC50pred values 
was not statistically different (p > 0.05). These results supported the IC50 prediction capability using A549-M, 
HEK293-M, and NCI-H1975-M provided in Table 2.

There are several reports to predict IC50 of anti-cancer drugs using genomic profiles and drug  fingerprints18,19. 
In these studies, genomic profiles of various cancer cell lines and fingerprints of drugs were trained to categorize 
IC50 levels in three steps, high responsiveness (class 0), intermediate responsiveness (class 1), and low responsive-
ness (class 2). The genomic profiles could be an excellent input data to predict IC50 values, because response to 
drugs in cancers are known to be closely related to genetic variations by pharmacogenomic mechanisms. How-
ever, the genomic profiles require time and cost to obtain, compared to the captured images of cells following 
an exposure to drugs. The present models developed in this study involved simple, cheap, and prompt methods 
to prepare input datasets, and furthermore, could be exploited in well-established assay methods to determine 
cell viability and IC50.

Conclusion
We constructed cell viability-based IC50 prediction models for three cell types: A549, HEK293, and NCI-H1975. 
These cells originated from different tissues and diseases, which have different morphologies and IC50 values. In 
this context, three models were trained with different input images, and the prediction capabilities were cross-
validated to determine the specificity of the models according to the input cell images. The results showed that 
the model accuracy was dependent on the input data: by using autologous input data with the corresponding 
model, more accurate prediction results were achieved  (r2 > 0.94).

Figure 6.  Distribution of IC50 values from 6-repeated tests of doxorubicin effects. Measured and predicted 
IC50 for three cell types compared to each other. The results of the statistical analysis are provided in Table 2.

Table 2.  Averages and differences between  IC50meas and  IC50pred for doxorubicin effects (n = 6). Prediction 
values from autologous models are in bold.

Cell type A549 HEK293 NCI-H1975

Prediction 
model A549-M HEK293-M NCI-H1975-M HEK293-M A549-M NCI-H1975-M NCI-H1975-M A549-M HEK293-M

IC50meas 0.4035 ± 0.0642 0.0346 ± 0.0085 0.2801 ± 0.0529

IC50pred 0.4970 ± 0.1062 0.9236 ± 0.1956 0.0484 ± 0.0846 0.0331 ± 0.0138 0.0861 ± 0.0181 3.3010 ± 5.2675 0.3586 ± 0.2296 0.7183 ± 0.2302 5977 ± 14,392

Difference 
between 
measured and 
predicted values 
(Ave ± SD)

0.0935 ± 0.0602 0.5201 ± 0.2015 − 0.3551 ± 0.06613 − 0.0015 ± 0.0126 0.0515 ± 0.0184 3.266 ± 5.266 0.0785 ± 0.2429 0.4382 ± 0.2425 5977 ± 14,392

p-value 
(unpaired t test) 0.0947 0.0001  < 0.0001 0.8205  < 0.0001 0.1597 0.4334 0.0011 0.3330

p-value (paired 
t test) 0.0126 0.0015  < 0.0001 0.7765 0.0010 0.1892 0.4645 0.0069 0.3557
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Recently, a CNN model was shown to predict drug responsiveness in IC50 by examining 3D tumor spheroids 
to determine responsivity of anticancer drugs such as doxorubicin, oxaliplatin, and  irinotecan7. The ground truth 
value of the cell viability was determined by fluorescence intensity followed by LIVE/DEAD cell staining, which 
was used as the input image layer. In another study, fluorescent LIVE/DEAD cell classification was performed in 
image processing, using deep learning and taking bright-field images as  input5. The ground truth label for each 
cell was set by LIVE/DEAD cell fluorescence staining and paired to the bright-field images, which were used to 
train the prediction model. In this case, the quantitative assessment of cell growth by drug treatment was not 
exploited. Until now, non-labeled microscopic images and numerical values determined by conventional cell 
proliferation assays has not been applied to determine IC50 values by deep-learning approaches. In this study, 
numerical deep learning models constructed with those input datasets could be proposed as an alternative 
method to replace colorimetric cell proliferation assays.

In this study, we used over 200 image data samples, which is a relatively low number of images for deep 
learning. However, the augmentation of data during pre-processing was effective in improving the prediction 
accuracy of the models. In addition, the visualization of important image features for model decisions supported 
the classification results by t-SNE and the heat map of the images.

Our model does not require any labeling of probes; thus, using cell images from bright field microscopy of 
cell culture dishes, drug responsiveness could be determined rapidly and with low cost and labor. The cultured 
cells used for the estimation of drug responsiveness are still available for further study.
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