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Identification of ubiquitinated substrate proteins and their gene 
expression patterns in lung adenocarcinoma
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Background: Lung cancer is a malignant disease with the highest cancer-related mortality rate. In lung 
adenocarcinoma (LUAD), protein ubiquitination can regulate multiple biological processes. A LUAD 
ubiquitylome analysis has not yet been reported.
Methods: We used for the first time ion mobility into liquid chromatography-mass spectrometry to 
perform accurate and reliable ubiquitylome and proteomic analysis of clinical LUAD and normal tissues and 
combined it with transcriptome data obtained from public databases. Ubiquitinated protein substrates and 
their gene expression pattern landscapes in LUAD were identified using bioinformatics methods.
Results: Our data revealed a ubiquitination landscape in LUAD and identified characteristic protein 
ubiquitination motifs. We found that the ubiquitinated peptide motifs in LUAD were completely different 
from those of previously published lung squamous cell carcinoma (LUSC). Moreover, we identified two 
gene expression patterns of ubiquitinated proteins and revealed that survival differences between these 
patterns may be correlated with the tumor immune infiltrating microenvironment. Finally, we constructed a 
prognostic predictive model to quantify the relationship between expression patterns and survival. We found 
a relationship between the patient-applied model score and multiple drug sensitivity. Therefore, our model 
can serve as a guide for LUAD clinical treatment.
Conclusions: Our work addresses the lack of ubiquitylome studies in LUAD and provides new 
perspectives for subsequent research and clinical treatment.

Keywords: Lung adenocarcinoma (LUAD); ubiquitylome; proteomic; proteasome; prognosis

Submitted Sep 29, 2021. Accepted for publication Nov 17, 2021.

doi: 10.21037/atm-21-5645

View this article at: https://dx.doi.org/10.21037/atm-21-5645

Introduction

Lung cancer is the second most common cancer in males 
and females. Due to advancements in detection and 
treatment, its mortality rate has been decreasing over 

time. However, it remains the leading cause of cancer-

related deaths worldwide (1). Lung adenocarcinoma 

(LUAD) is the most common type of lung cancer and 

more effective approaches are required to improve LUAD 
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patients’ prognosis. Given advancements in genomics, 
our understanding of LUAD initiation and progression 
continues to increase. Consequently, potential therapeutic 
targets are being discovered (2) and targeted therapies are 
promising (3). Additionally, the rise of immunotherapy has 
greatly improved patient prognosis (4). 

Recently, the focus on gene or protein expression 
shifted to other regulatory mechanisms, such as DNA 
methylation (5), histone modification (6), regulation 
of non-coding RNAs (7), and protein posttranslational 
modification (PTM). PTMs can rapidly respond to 
changes in the internal environment, being essential for 
different biological processes regulation (8).

Ubiquitination is a dynamic protein PTM, which affects 
multiple biological processes (9). For example, ubiquitination 
can change protein cellular localization (10), and histone 
ubiquitination can influence gene transcription (11).  
However, the most studied aspect of PTM involves the 
proteasome—a complex that recognizes ubiquitinated 
substrate proteins and degrades them and thus changes 
protein expression (12,13). In cancers, protein ubiquitination 
regulates the proliferation, migration, invasion (10,14), and 
metabolic reprogramming of cancer cells (15). An essential 
role for protein ubiquitination in immune-related pathways 
regulation has also been reported (16); this ubiquitination can 
perturb the tumors’ immune microenvironment (17). Given 
the robust regulatory function of protein ubiquitination on 
numerous pathways and its great potential in cancer therapy, 
anti-tumor therapeutic strategies that target ubiquitination 
have caught researchers’ attention (18-20). 

Regarding LUAD, various ubiquitination-related 
E3 ligases have been demonstrated to affect biological 
processes. For example, ubiquitin-specific-processing 
protease 7 (USP7)-monoubiquitinated histones can 
epigenetically regulate cancer cell ferroptosis (21). Also, 
ubiquitin-conjugating enzyme E2 O (UBE2O) can 
ubiquitinate and degrade MAX interactor 1 (MXI1) to 
promote LUAD progression and radioresistance (22). 
Moreover, Cul3-ROC1 (CRL3)BTBD9 suppresses LUAD cell 
migration by targeting tumor necrosis factor-alpha-induced 
protein 1 (TNFAIP1) (23). The ubiquitination act through 
substrate proteins regulation on tumor cells. Although 
a global analysis of ubiquitination in lung squamous cell 
carcinoma (LUSC) has been reported (24), there are no 
analogous studies in LUAD. Therefore, it is crucial to 
explore the LUAD ubiquitination landscape.

We used an anti-K-ε-GG-based ubiquitination peptide 

enrichment combined with liquid chromatography-mass 
spectrometry (25) to obtain LUAD ubiquitylome data. 
A series of analyses were performed to reveal the LUAD 
protein ubiquitination landscape and unique ubiquitinated 
peptide motifs were found. Additionally, we focused on the 
analysis of genes encoding ubiquitinated substrate proteins 
and found different expression patterns. These expression 
patterns revealed heterogeneity between tumor samples 
and identified differences in the tumor immune infiltration 
microenvironment. Finally, we specifically analyzed the 
differences between genes encoding ubiquitinated substrate 
protein expression patterns and constructed a predictive 
model for patients’ overall survival, which can be used as 
a reference for LUAD clinical treatment. Although many 
articles have reported on the regulatory mechanism of 
ubiquitination in LUAD, our study is the first systematic 
analysis of the ubiquitination landscape in LUAD through 
ubiquitylome and proteomics and identified the characteristic 
motifs of the ubiquitinated substrate peptides. In addition, 
further genomics studies have also revealed the heterogeneity 
of the ubiquitination landscape in LUAD and provided new 
methods for the detection of patient prognosis. This study 
aimed to address the lack of LUAD ubiquitylome studies and 
to provide new perspectives for future research and clinical 
treatments. We present the following article in accordance 
with the MDAR reporting checklist (available at https://
dx.doi.org/10.21037/atm-21-5645).

Methods

Tissue specimens

All tissue specimens were obtained from the Department 
of Thoracic Surgery of the Second Affiliated Hospital of 
Harbin Medical University. Patients with early operable 
lung nodules were included in the study, and those who 
were inoperable were excluded. Lung nodule tissues were 
randomly collected during surgery. After surgical resection, 
the pathologist confirmed five pairs of LUAD and adjacent 
normal lung tissues were preserved in liquid nitrogen. 
Patients’ clinical information is detailed in Table 1. All 
patients provided written informed consent and the Ethics 
Committee of the Second Affiliated Hospital of Harbin 
Medical University approved this study (KY2021-166). 
All procedures performed in this study involving human 
participants were in accordance with the Declaration of 
Helsinki (as revised in 2013).

https://dx.doi.org/10.21037/atm-21-5645
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Protein extraction and digestion

Samples were thoroughly ground into powder in a mortar 
precooled with liquid nitrogen. Four volumes of lysis 
buffer (1% Triton X-100, 1% protease inhibitor, 50 μM 
PR-619) (P0013; Beyotime, China) were added to each 
sample group and then lysed via sonication. Samples were 
centrifuged (12,000 g/10 min at 4 ℃), and the supernatant 
was transferred into new tubes. Protein concentration 
was determined using a bicinchoninic acid assay (BCA) 
kit (23225; Thermo Fisher). An equal protein mass from 
each sample was withdrawn for enzymatic hydrolysis. 
Volumes were adjusted using the lysis buffer. Then, 
trichloroacetic acid (20%) was slowly added to the mixture, 
which was vortexed and precipitated for 2 h at 4 ℃. 
Afterward, the mixture was centrifuged (4,500 g/5 min), 
and the supernatant was discarded. The pellet was washed 
(2–3 times) with precooled acetone and subsequently 
dried. Tetraethylammonium bromide was added at a 
final concentration of 200 mM. The pellet was dispersed 
using sonication, and trypsin was added at a ratio of 1:50 
overnight. Dithiothreitol was added to a final concentration 
of 5 mM and reduced at 56 ℃ for 30 min. Finally, 
iodoacetamide was added to a final concentration of 11 mM 
and incubated for 15 min at room temperature.

Ubiquitinated peptide enrichment

Peptides were dissolved in IP buffer (100 mM NaCl,  
1 mM ethylenediamine tetraacetic acid (EDTA), 50 mM 
tris(hydroxymethyl) aminomethane (tris)-HCl, and 0.5% 
NP-40; pH 8.0) (87788; Thermo Fisher), transferred to a 
prewashed K-ε-GG binding resin (PTM-1104, Hangzhou 
Jingjie Biotechnology, Hangzhou, China), placed on a 
rotating shaker (4 ℃), and gently shaken and incubated 
overnight. After incubation, the resin was washed four 
times with IP buffer and twice with deionized water. Finally, 

the resin-bound peptides were eluted three times using 
0.1% trifluoroacetic acid eluent. The eluent was collected 
and freeze-dried under a vacuum. Then, desalination 
was performed according to the C18 ZipTips (Z720070, 
Millipore, Burlington, MA, USA) instructions for liquid 
chromatography-mass spectrometry analysis.

Liquid chromatography-mass spectrometry

The trypsin-digested peptides were dissolved in formic acid 
(0.1%), separated, and purified using a nanoElute UHPLC 
system (Burker, Billerica, MA, USA). Next, peptides were 
injected into a capillary ion source for ionization, and 
mass spectrometry was performed using the tims-TOFPro 
(Burker, Billerica, MA, USA)). The experimental procedures 
have been previously reported (25). 

Results obtained from mass spectrometric analysis were 
searched using Maxquant (version 1.6.6.0), and we used the 
Homosapiens_9606 dataset from Uniprot (https://www.
uniprot.org). We added common protein contaminants to 
the dataset to calculate the false positive rate (FDR) caused 
by random matching. The FDR was used to eliminate the 
protein contamination effect on the results. Trypsin/P 
was specified as a cleavage enzyme, and up to four missing 
cleavages were allowed. The minimum peptide length was 
set to seven amino acid residues; the maximum peptide 
modifications number was set to five, and GlyGly (K) was 
designated as a fixed modification. The quantification 
method was selected for label-free quantification, and the 
FDR was set to 1% for both protein and peptide-spectrum 
match identification.

Proteome, ubiquitylome, and gene mutation analysis 

Principal component analysis (PCA) and identification 
of differentially expressed ubiquitinated residues were 

Table 1 Clinical information of the samples

ID Gender Age Pathology Degree Location Size (mm)

1 Male 57 Adenocarcinoma Low Right upper lobe 15×12

2 Female 63 Adenocarcinoma Middle Left upper lobe 10×10

3 Female 57 Adenocarcinoma Middle Right middle lobe 8×10

4 Male 49 Adenocarcinoma High Left lower lobe 10×4

5 Male 57 Adenocarcinoma High Right upper lobe 15×10

https://www.uniprot.org
https://www.uniprot.org
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performed using the “ggplot2” R package (https://cran.
r-project.org/web/packages/ggplot2). All heatmaps were 
plotted using the “pheatmap” R package (https://cran.
r-project.org/web/packages/pheatmap). The “survival” R 
package was used to plot the survival curves (https://cran.
r-project.org/web/packages/survival). For ubiquitinated 
motifs analysis, we used “momo” (https://meme-suite.org/
meme/tools/momo), an online tool based on the “Motif-x” 
algorithm. All histograms were plotted using GraphPad 
Prism 8. The LUAD messenger RNA (mRNA) expression 
data were obtained from The Cancer Genome Atlas 
(TCGA) (https://portal.gdc.cancer.gov/). The “maftools” 
R package was used for gene mutation analysis (https://
bioconductor.org/packages/maftools/).

Western blotting

Tissues or cells were homogenized and lysed using RIPA 
buffer, and the supernatant was extracted via centrifugation 
at 14,000 g for 5 min. Protein concentrations were 
determined using the BCA kit. After adjusting to the 
appropriate protein concentrations, loading buffer was 
added and heated to 100 ℃ for 6 min. Electrophoresis was 
performed using 10% acrylamide gels, and the proteins 
were transferred to polyvinylidene difluoride (PVDF) 
membranes at 250 mA for 120 min. After blocking with 5% 
skimmed milk for 1 h at room temperature, the membranes 
were incubated overnight at 4 ℃ with their corresponding 
primary antibodies. In this study, the primary antibodies 
were anti-SLC1A5 (ab237704, 1:1,000; Abcam), anti-
beta actin (ab6276, 1:20,000; Abcam), and anti-ubiquitin 
(#58395S,1:1000; Cell Signaling Technology). The 
PVDF membranes were washed three times with TBST 
for 15 min and incubated for 1 h at room temperature 
with secondary antibodies of the corresponding species. 
The secondary antibodies (ab6721, ab6728, 1:10,000) 
were purchased from Abcam. The BeyoECL Star ECL 
kit (P0018AS; Beyotime, China) was used to image the 
western blots.

Immunoprecipitation

The immunoprecipitation kit (88805; Thermo Fisher) 
was used for the immunoprecipitation analysis. Briefly, 
the tissue was washed three times using pre-chilled 
phosphate-buffered saline, lysed for 1 h using NP40 lysate 
homogenate, and centrifuged at 14,000 g for 10 min to 
isolate the supernatant. A BCA kit was used to determine 

protein concentrations and to retain a fraction as the 
input group. The inclusion of the target protein in cell 
lysis was determined via western blotting analysis of the 
input group. The co-immunoprecipitation steps followed 
the kit’s instructions. To ensure equal sample sizes for the 
immunoblotting analysis, the protein concentration of the 
immunoprecipitated eluate was determined using the BCA 
kit. SLC1A5 ubiquitination levels were detected using the 
anti-ubiquitin antibody at the time of immunoblotting.

Identification of prognosis-related genes encoding 
ubiquitinated substrate proteins 

Prognostic associated genes were screened in the eight 
Gene Expression Omnibus (GEO) datasets pooled data 
using univariate Cox regression and a P value <0.01 was 
considered as indicating statistical significance. Then, all 
genes were screened again using least absolute shrinkage 
and selection operator (LASSO) regression. Univariate 
Cox regression was performed using the “survival” and 
“survminer” R packages (https://cran.r-project.org/web/
packages/survminer). For LASSO regression, the “glmnet” 
R package was used (https://cran.r-project.org/web/
packages/glmnet).

Gene expression patterns identification and tumor immune 
infiltrating microenvironment analysis 

The “ConsensusClusterPlus” R package was used 
f o r  e x p r e s s i o n  p a t t e r n  i d e n t i f i c a t i o n  b e t w e e n 
tumor samples (https://bioconductor.org/packages/
ConsensusClusterPlus/). The optimal number of clusters 
was determined using the proportion of ambiguously 
clustered pairs (PAC) algorithm (26). The immune and 
stromal score of each sample was first assessed with the 
“ESTIMATE” algorithm. Then, the infiltration of common 
22 immune cells in was assessed using the “CIBERSORT” 
algorithm. Group contrast boxplots were prepared using the 
“ggpubr” (https://cran.r-project.org/web/packages/ggpubr) 
and “ggplot2” R packages.

Tumor hallmark enrichment analysis

The “GSEABase” and “GSVA” R packages and hallmark 
gene sets (h.all.v7.4.symbols.gmt) were obtained from 
MSigDB (https://www.gsea-msigdb.org) and used for 
enrichment analysis. The contrast of enrichment scores was 
based on prognostically related gene expression patterns.

https://cran.r-project.org/web/packages/ggplot2
https://cran.r-project.org/web/packages/ggplot2
https://cran.r-project.org/web/packages/pheatmap
https://cran.r-project.org/web/packages/pheatmap
https://cran.r-project.org/web/packages/survival
https://cran.r-project.org/web/packages/survival
https://meme-suite.org/meme/tools/momo
https://meme-suite.org/meme/tools/momo
https://bioconductor.org/packages/maftools/
https://bioconductor.org/packages/maftools/
https://cran.r-project.org/web/packages/survminer
https://cran.r-project.org/web/packages/survminer
https://cran.r-project.org/web/packages/glmnet
https://cran.r-project.org/web/packages/glmnet
https://bioconductor.org/packages/ConsensusClusterPlus/
https://bioconductor.org/packages/ConsensusClusterPlus/
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Prognostic model constr uction of and drug sensitivity 
analysis

UB_Score model was constructed via multivariate Cox 
regression:

1
_ ( ) exp ( )

n

i
UB Score coef DEGs r DEGs

=

= ×∑ 	 [1]

Internal and external validation was performed on 
the GEO and TCGA datasets using receiving operator 
characteristic (ROC) curves. The prognostic model ROC 
curve was prepared using the “pROC” R package. The 
nomogram was drawn using the “rms” R package (https://
cran.r-project.org/web/packages/rms). For the drug 
sensitivity analysis, we used the pRRophetic algorithm (27) 
to estimate each sample’s sensitivity to the drug-using ridge 
regression.

Statistical analysis

The student’s t-test was used for comparisons between two 
groups. For comparisons among multiple groups, a one-
way ANOVA was used. For all analyses, a P value <0.05 
was considered statistically significant. In this article, * 
represents P value <0.05, ** represents P value <0.01, and 
*** represents P value <0.001.

Results

Proteomics and ubiquitylome analysis of LUAD 
ubiquitinated proteins 

Following previously published methods for high-throughput 
liquid chromatography-mass spectrometry (25), we 
performed proteomic and ubiquitylome assays on five pairs 
of LUAD and normal lung tissues obtained from clinical 
samples (https://cdn.amegroups.cn/static/public/atm-21-
5645-1.xlsx and https://cdn.amegroups.cn/static/public/atm-
21-5645-2.xlsx). To ensure high confidence in the results, we 
filtered the obtained spectra using a localization probabilities 
criterion >0.75. Accordingly, we identified 7,330 proteins 
(6,400 were quantifiable); i.e., quantitative information on 
protein expression was present in at least one normal and 
LUAD tissue pair (Figure 1A). 

The PCA of all protein expressions revealed that LUAD 
and normal tissues can be approximately divided into 
two categories (Figure 1B), demonstrating the technical 
reproducibility of our data. After a log2 transformation 
(Log2FoldChange >1.5; P value <0.05) of quantitative 

protein expression values of all proteins identified, 194 
were upregulated and 110 were downregulated in LUAD  
(Figure 1C). Figure 1D presents the heatmap of all 
differentially expressed proteins. 

Regarding ubiquitylome, we identified 6,658 protein 
ubiquitylation sites, distributed among 2,504 proteins 
(Figure 1E). Similarly, the PCA also confirmed data 
reproducibility (Figure 1F). Of all identified ubiquitination 
sites, 192 were upregulated and 97 were downregulated 
(Figure 1G). A quantitative heatmap of all differentially 
expressed ubiquitination sites is shown in Figure 1H.

Identification of LUAD ubiquitination motifs 

We plotted a heat map of 20 amino acids near the lysine 
modification residues. Isoleucine, lysine, valine, and alanine 
were commonly distributed near the modified residues 
(Figure 2A). Also, we evaluated the characteristic motifs 
of LUAD ubiquitination peptides using the Motif-X 
algorithm (Figure 2B) (28). According to the scores derived 
from Motif-X, xxxxxxxxxx_K_LxxxxxxRxx, xxxxxxxxxA_K_
xIxxxxxxxx, and xxxxxxxxxx_K_xLxAxxxxxx were the top 
three ranked characteristic motifs (Figure 2C). They differed 
completely from previously published LUSC ubiquitination 
motifs (24), suggesting that the LUAD characteristic 
ubiquitination motifs are unique.

Functional analysis of differentially expressed 
ubiquitinated proteins

To determine which pathways are regulated by proteins 
undergoing ubiquitination, we first performed GO/KEGG 
functional enrichment analyses for all ubiquitinated proteins 
(Figure 3A). The results revealed that these ubiquitinated 
proteins  regulate  numerous biological  processes 
important for lung cancer development and progression, 
including immune system regulation, protein localization, 
transmembrane transport of drugs, cell cycle, and various 
metabolic processes. 

To explore the correlation between protein ubiquitination 
levels and pathway enrichment, we divided all proteins into 
four groups according to their differences in modification 
levels (Figure 3B). Group Q1 was defined as a tumor/normal 
ratio <0.5 and represented significantly lower levels of 
ubiquitination in tumors, while Q4 was defined as a ratio >2 
and represented a significantly higher level of ubiquitination 
in tumors. The remaining proteins were divided into the 
slightly lower ubiquitination modification group (Q2) and 

https://cran.r-project.org/web/packages/rms
https://cran.r-project.org/web/packages/rms
https://cdn.amegroups.cn/static/public/atm-21-5645-1.xlsx
https://cdn.amegroups.cn/static/public/atm-21-5645-1.xlsx
https://cdn.amegroups.cn/static/public/atm-21-5645-2.xlsx
https://cdn.amegroups.cn/static/public/atm-21-5645-2.xlsx
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Figure 1 Global lung adenocarcinoma (LUAD) proteomics and ubiquitylome analysis. (A) LUAD proteomics data statistics. (B) Principal 
components analysis (PCA) of proteomic data from LUAD and normal tissues. (C) Identification of differentially LUAD expressed 
proteins. (D) Heatmap of differentially expressed proteins in LUAD and normal tissues. (E) LUAD ubiquitylome data statistics. (F) PCA of 
ubiquitylome data from LUAD and normal tissues. (G) Identification of differentially LUAD expressed ubiquitination sites. (H) Heatmap of 
differentially expressed ubiquitination sites in LUAD and normal tissues.
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Figure 2 Sequence analysis of lung adenocarcinoma (LUAD) ubiquitinated peptides. (A) Amino acid distribution near the ubiquitinated 
residues. (B) Motif-x algorithm-based analysis of ubiquitinated peptide motifs. (C) Statistics of peptides matched for characteristic motifs.
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the slightly higher ubiquitination modification group (Q3) 
(Figure 3C). Then, GO/KEGG enrichment analyses were 
performed separately for the proteins of each group. The 
heat maps of the results are shown in Figure 3D,3E. 

The GO analysis indicated that Q1 category proteins 
with significantly reduced ubiquitination mainly participated 
in regulating protein transport receptors within the plasma 
membrane and in the cellular response to hypoxia, It is 
well-known that under hypoxic conditions, cancer cells 
will reorganize their metabolic processes to promote cell 
growth, survival, proliferation, and long-term maintenance, 
an effect known as the Warburg effect (29). In contrast, Q4 
category proteins with significantly higher ubiquitination 
were enriched in the regulation of intracellular transport 
and cell-cell adhesion pathways. 

The KEGG enrichment analysis revealed that proteins 
with significantly reduced ubiquitination (Q1) are involved 
in both cysteine metabolism and the ferroptosis pathway. 
Cysteine is the main raw material in the intracellular 
synthesis of glutathione which, under the action of 
glutathione peroxidase 4 (GPX4), constitutes the main 
intracellular antioxidant system resisting the accumulation 

of lipid reactive oxygen species (ROS). This process 
is closely associated with the ferroptosis pathway (30). 
Accordingly, ubiquitination events in LUAD likely influence 
the ferroptosis pathway.

Identification of ferroptosis-related ubiquitination proteins

To identify ferroptosis-pathway-regulating proteins 
undergoing ubiquitination in LUAD, we searched the 
ubiquitylome data with ferroptosis regulatory proteins from 
the FerrDb database (http://www.zhounan.org/ferrdb/) 
(Figure 4A). Overall, we identified nine differentially 
expressed ubiquitinated peptides from six ferroptosis-
related proteins (CYBB, SCP2, SLC1A5, DUOX1, KRAS, 
and CAV1) in LUAD (Figure 4B-4F). CYBB, SCP2, 
SLC1A5, and DUOX1 are ferroptosis promoters with 
low ubiquitination levels, whereas KRAS is a ferroptosis 
promoter with high levels of ubiquitination. Notably, CAV1 
was the only ferroptosis suppressor identified and compared 
to normal tissue, its ubiquitination levels vary at different 
residues. The ubiquitination sites of these proteins are 
described further in Table S1.

https://cdn.amegroups.cn/static/public/ATM-21-5645-Supplementary.pdf
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Figure 3 Functional enrichment analysis of ubiquitinated proteins. (A) GO-biological process enrichment analysis of ubiquitinated proteins. 
(B) KEGG enrichment analysis of ubiquitinated proteins. (C) Group all ubiquitinated modified proteins according to the difference in 
ubiquitination level. (D) GO enrichment analysis of each group. (E) KEGG enrichment analysis of each group.
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Construction of the ubiquitin–proteasome system (UPS) 
regulatory network based on the ubiquitinated  
ferroptosis-related proteins in LUAD

To elucidate the UPS regulatory network of  the 
ubiquitinated proteins, we obtained protein interaction 
data from the BioGRID database (https://thebiogrid.org/), 

which was screened using the ubiquitinated regulatory 
enzymes from the IUUCD database (Figure 5A-5F). 

The constructed ubiquitination regulatory network 
consisting of CYBB, SCP2, SLC1A5, DUOX1, KRAS, 
and CAV1 is shown in Figure 5G. Among them, KRAS, 
CAV1, and SLC1A5 are the most extensively studied 
proteins in LUAD. KRAS has been reported to promote 

https://thebiogrid.org/
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the development of lung cancer in response to OTU 
deubiquitinase 1 (31), suggesting that KRAS ubiquitination 
events in LUAD cells are significant. CAV1 has been 
observed to interact with PSMD14 (32), which was in 
our constructed regulatory network and therefore further 
validates its accuracy. Finally, SLC1A5 has been reported 
to promote lung cancer cell proliferation, invasion, and 
metastasis (33,34). It can be an independent prognostic 
biomarker in LUAD patients (35), and its high expression is 
associated with poor survival (36). 

With respect to epigenetic regulation, a circular RNA, 
circ-LDLRAD3, has been found to upregulate SLC1A5 
expression to promote lung cancer cell progression (37). 
Further, the epigenetic silencing of microRNA-137 in lung 
cancer enhances SLC1A5 expression to promote cancer cell 

growth (38). Consequently, we next focused on SLC1A5 
ubiquitination and performed a validation experiment.

SLC1A5 is regulated by ubiquitination events in LUAD

We first analyzed our proteomic data from the clinical 
tissue samples, which revealed that SLC1A5 protein 
expression was higher in tumors than in normal tissues, 
although this difference was not statistically significant 
(Figure 6A). Due to the small sample size of our experiment, 
we also analyzed the LUAD proteomics data from the 
CPTAC database (https://cptac-data-portal.georgetown.
edu/). Here, we found that SLC1A5 protein expression was 
significantly higher in LUAD tissues (Figure 6B). Moreover, 
the Immunol staining data from the Human Protein Atlas 
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Figure 5 Construction of the ubiquitin-proteasome system (UPS) regulatory network of ubiquitinated ferroptosis-related proteins. (A-F) 
Screening of E3s/Dubs in interacting proteins. (G) Construction of protein interaction network.
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database (39-41) (https://www.proteinatlas.org/) confirmed 
the elevated SLC1A5 protein expression observed in tumors 
compared to normal tissue (Figure 6C). We also performed 
western blotting to validate the higher expression of 
SLC1A5 in tumors (Figure 6D). 

We predicted that ubiquitination may regulate the 
protein expression levels of SLC1A5. By analyzing the 
liquid chromatography-mass spectrometry data of all 

ubiquitinated peptides, we found two types of ubiquitinated 
peptides that may originate from the SLC1A5 protein. 
Quantitative analysis of SLC1A5 ubiquitination levels 
revealed that SLC1A5 is ubiquitinated at lower levels in 
tumors (Figure 6E). After lysing cancerous and normal 
tissues, SLC1A5 was purified via immunoprecipitation, 
after which its ubiquitination levels were quantified using 
western blot (Figure 6F). The results indicated that SLC1A5 
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ubiquitination levels in tumors was lower than in normal 
tissues, suggesting that in LUAD, deubiquitinases play a 
significant role in regulating SLC1A5 ubiquitination. To 
investigate whether SLC1A5 also regulates other pathways, 
we divided the samples into two groups according to SLC1A5 
expression levels. The results from the GSEA enrichment 
analysis indicated that the up-regulation of immune-
related pathways results from reduced SLC1A5 expression, 
which suggests that low SLC1A5 expression may improve 
the immune microenvironment of tumors. In the high 
SLC1A5 expression group (Figure 6G), the proteasome and 
glutamine metabolic pathway enrichment analyses support 
our findings that SLC1A5 is a ferroptosis-associated protein 

regulated by ubiquitination. Moreover, the high SLC1A5 
expression group was also enriched in N-glycosylation-
related pathways, which is consistent with previously 
published reports of N-glycosylation in SLC1A5 (42).  
In conclusion, our experiments indicate that SLC1A5 is an 
essential ferroptosis-regulating protein that in LUAD is 
regulated by protein ubiquitination.

Genomic analysis of LUAD ubiquitinated proteins and 
identification of prognostic genes

To better understand the LUAD ubiquitinated substrate 
proteins obtained above, we performed a series of analyses 
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Figure 7 Genomics analysis of lung adenocarcinoma (LUAD) ubiquitinated proteins and prognostic genes identification. (A) Mutation of 
genes encoding ubiquitinated substrate proteins in The Cancer Genome Atlas (TCGA)-LUAD dataset. (B) Survival analysis of mutations 
in genes encoding ubiquitinated substrates and non-mutated groups. (C,D) Least absolute shrinkage and selection operator (LASSO) 
regression for genes with P value <0.01 after univariate Cox regression. (E) Hazard ratio of prognosis-related genes on LUAD patients’ 
prognosis. (F) Expression of genes encoding prognostically related ubiquitinated substrate proteins. *, P<0.05; **, P<0.01; ***, P<0.001.

of the mRNAs encoding these proteins. First, we checked 
the mutations of these genes in the TCGA database. We 
found that KRAS, AHNAK, HUWE1, and UBR4 had the 
highest mutation frequency (Figure 7A). Additionally, in 
the cBioportal database, we found poor overall survival in 
patients with mutations in genes encoding ubiquitinated 
substrates (Figure 7B). It has been reported that wild-type 
and mutant KARS encoding protein ubiquitination substrates 

possess different responsiveness to ubiquitinase (43). Targeted 
ubiquitination of proteins encoded by mutant oncogenes 
may become a new strategy for cancer treatment. Therefore, 
understanding mutations in genes encoding ubiquitinated 
substrate proteins is important.

To explore the relationship between these ubiquitinated 
substrate-encoding genes and patient survival, we collected 
eight datasets containing patient survival status from 
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the GEO database (GSE11969, GSE13213, GSE29016, 
GSE30219, GSE31210, GSE42127, GSE50081, and 
GSE72094) and used univariate Cox regression to obtain 
prognostically relevant genes (P value <0.01) (https://
cdn.amegroups.cn/static/public/atm-21-5645-3.xlsx). To 
increase the credibility of prognostically related genes, 
LASSO was used for further screening. Thirty-two 
prognostically relevant ubiquitinated substrate protein-
coding genes were obtained (Figure 7C,7D). The hazard 
ratio of these genes on prognosis is shown in Figure 7E. 
Finally, we contrasted these genes’ expressions in tumorous 
and normal samples (Figure 7F).

Correlation of different prognosis-related ubiquitination 
protein-encoding genes expression patterns with cancer 
hallmarks and immune infiltration

Our consensus cluster-based method grouped the 
expression patterns of prognosis-related ubiquitination 
protein-encoding genes in all tumor samples from the 
GEO datasets to mine heterogeneity. In all, 1,244 tumor 
samples were classified into “UB_Cluster1” and “UB_
Cluster2” after clustering (Figure 8A). When we performed 
survival analysis of these two expression patterns, we 
found that there was a significant difference between 

Figure 8 Expression patterns identification of prognostically related ubiquitinated protein-encoding genes. (A) Consensus clustering of 
prognostically relevant genes for all Gene Expression Omnibus (GEO) samples. (B) Survival analysis between two expression patterns. (C) 
Expression of genes encoding prognostically relevant ubiquitinated substrates in clusters. (D) Gene set variation analysis (GSVA) cancer 
hallmarks enrichment analysis. 
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them, and that “UB_Cluster1” overall survival was worse  
(Figure 8B). Survival differences in this clustering pattern 
are similarly reflected in the TCGA-LUAD dataset  
(Figure S1). Figure 8C shows the expression of prognosis-
related ubiquitination protein-encoding genes in the 
two patterns. To further investigate the reason for the 
survival difference between the two expression patterns, 
we performed gene set variation analysis (GSVA)-based 
enrichment analysis of cancer hallmarks for the clusters 
(Figure 8D). The MYC pathway is one of the major 
pathways regulating the cell cycle (44), and we found that 
it was widely activated in “UB_Cluster1”, indicating that 
tumor cells have a more active cell cycle. Moreover, G2M 
and E2F checkpoints enrichment also confirmed the “UB_
Cluster1” active cell cycle. The epithelial-mesenchymal 
transition (EMT) pathway had a high enrichment level 
in “UB_Cluster1”. EMT also plays an important role in 
lung cancer progression, metastasis, and drug resistance. 
Altogether, our results indicated that tumors have a more 
active cell cycle and EMT profile, which may be responsible 
for the shorter “UB_Cluster1” overall survival.

Next, we evaluated the immune and stromal scores in both 
clusters using the ESTIMATE algorithm (Figure 9A-9D). We 
found that samples in the “UB_Cluster2” had higher 
immune and stromal scores, as well as reduced tumor 
purity—a feature defined in the previous study as an 
“immunity high” subtype, which has higher sensitivity to 
immunotherapy and chemotherapy (45). Additionally, most 
of the immune cell infiltration in “UB_Cluster2” samples 
were observed to be higher after scoring the immune 
infiltrating cells in each tumor sample by single-sample 
gene set enrichment analysis (ssGSEA) (Figure 9E).

Patterns differential analysis and UB_Score model 
construction

To thoroughly investigate the differences between the two 
expression patterns, we identified differentially expressed genes 
between clusters. We identified 31 differentially expressed 
genes using a Log |Foldchange >1.5| and a P value <0.001 as 
criteria. Twenty-nine of them were upregulated and two were 
downregulated in the “UB_Cluster2” (Figure 10A). Next, we 
performed a univariate Cox regression analysis of these 
genes in the full dataset and found that all of them were 
associated with patients’ overall survival. We found that 
only two genes (KRT6A and SERPINB5) had hazard ratios 
>1, and that they were downregulated in the “UB_Cluster2” 
(Figure 10B), which could explain its better overall survival 

(Figure 4B). Similarly, we found two Database of Essential 
Genes (DEG) expression patterns in the samples, “DEG_
ClusterA” and “DEG_ClusterB” (Figure 10C). Also, there 
were survival differences between the DEG expression 
patterns, and “DEG_ClusterB” overall survival was poor 
(Figure 10D). Additionally, we plotted the expression of 
these differentially expressed genes and found that “UB_
Cluster1” with poor prognosis possessed a high coincidence 
rate with “DEG_ClusterB” (Figure 10E). Finally, to quantify 
the relationship between this differential expression pattern 
and overall survival, we constructed a quantitative value 
formula (UB_Score) for the DEGs expression pattern 
using multivariate Cox regression with these differentially 
expressed genes (Figure 10F,10G).

Evaluation and validation of the UB_Score model for 
prognosis prediction and nomogram construction 

We set the GEO-dataset as the training group and 
calculated UB_Score values of all samples with the model 
obtained above. The median value of all sample scores 
was the cut-off value, and samples were divided into high-
and low-score groups (Figure 11A). After comparing the 
two groups' survival time, we found that the high-score 
group’s survival was worse compared to that of the low-
score group (Figure 11B). The UB_Score model predictive 
effect ROC curve on patients’ prognosis showed a good 
predictive effect (Figure 11C). Furthermore, we validated 
the model in the TCGA-LUAD dataset and results showed 
that the UB_Score model had a good predictive ability  
(Figure 11D,11E). After introducing other clinical 
indicators, we performed univariate (Figure 11F) and 
multivariate (Figure 11G) Cox regression analyses, and the 
UB_Score P value was <0.001. This demonstrated that the 
UB_Score is an independent prognostic factor for LUAD 
patients. Moreover, the area under the curve (AUC) of the 
UB_Score model ROC curve was greater than that of other 
clinical indicators. This indicates that our model is superior 
to other clinical indicators to predict LUAD patients’ 
prognosis (Figure 11H). Finally, the nomogram of UB_Score 
and other clinical indicators was constructed (Figure 11I).  
The calibration curves show that our constructed 
nomogram has a good predictive value (Figure S2).

UB_Score can be used as a reference for LUAD clinical 
treatment

We compared PD1 and CTLA4 expression between the two 

https://cdn.amegroups.cn/static/public/ATM-21-5645-Supplementary.pdf

https://cdn.amegroups.cn/static/public/ATM-21-5645-Supplementary.pdf



Annals of Translational Medicine, Vol 9, No 22 November 2021 Page 15 of 22

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2021;9(22):1692 | https://dx.doi.org/10.21037/atm-21-5645

Figure 9 Immune cell infiltration analysis of “UB_Cluster1” and “UB_Cluster2”. (A-D) Estimation of immune score, stromal score, 
estimate score, and tumor purity based on the ESTIMATE algorithm. (E) Immune cell infiltration based on CIBERSORT algorithm. *, 
P<0.05; ***, P<0.001.

patient groups (high or low UB_score) (Figure 12A,12B). 
Results showed that the expression of these two immune 
checkpoints was significantly higher in the high UB_score 
group. This indicates that timely immunotherapy in patients 
with a high UB_score improves survival. Additionally, it has 
been reported that the combination of PD1 and CTLA4 
inhibitors leads to better results (46). We also evaluated 
the sensitivity of common chemotherapy and targeted 

therapy drugs in the two groups (Figure 12C-12H). Results 
showed that the high UB_Score group had a low half 
maximal inhibitory concentration (IC50) to multiple drugs, 
indicating that patients in this group are more sensitive 
when using these drugs. Therefore, our findings suggest that 
the constructed UB_Score model can be used as a clinical 
treatment guide for LUAD patients, and that timely clinical 
intervention may lead to better survival outcomes.
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Figure 10 Differential patterns analysis and UB_Score model construction. (A) Differentially expressed gene analysis between two clusters; 
red dots represent high expression, and blue dots represent low expression in “UB_Cluster2”. (B) Differentially expressed genes are 
associated with patients’ prognoses. (C) Differentially expressed genes similarly divide samples into two clusters in consensus clustering. 
(D) Database of Essential Genes (DEG)_Clusters survival analysis. (E) Expression of differentially expressed genes in Clusters and DEG_
Clusters. (F) Multivariate Cox regression of differentially expressed genes. (G) Establishment of the UB_Score prognostic model.
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Figure 11 Validation of UBscore model prediction effect and nomogram construction. (A) Patients’ scores were calculated and grouped 
according to the UB_Score model. (B) Survival analysis of Gene Expression Omnibus (GEO) dataset samples grouped according to 
UBScore model score. (C) UB_Score ROC curve predicting patients’ prognosis in GEO dataset. (D-E) UB_score validation to predict 
patients’ prognosis in The Cancer Genome Atlas (TCGA)-lung carcinoma (LUAD) dataset. (F) Univariate Cox regression of UB_Score 
and other clinical information on prognosis. (G) Multivariate Cox regression of UB_Score and other clinical information on prognosis. (H) 
Receiver operating characteristic (ROC) curve of UB_Score and other clinical information on prognosis. (I) Nomogram of UB_Score and 
other clinical information for prognosis prediction.

Discussion

It has been reported that protein degradation in mammals 
is mainly through two pathways, the autophagy-lysosome 
pathway, and the ubiquitin-proteasome pathway (18). E3 
ubiquitinates are generally considered as regulators mediating 

protein degradation, and substrate proteins are degraded 
via the ubiquitin-proteasome system. But, when ubiquitin-
proteasome regulation is unbalanced, a variety of biological 
processes that may induce the development of cancers are 
activated, mainly involving metabolic reprogramming, 
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Figure 12 Drug sensitivity analysis of samples. (A,B) PD1 and CTLA4 expression in UB-score groups. (C-H) Assessment of half maximal 
inhibitory concentration (IC50) of anti-tumor drugs between UB_Score high and low groups based on the pRRophetic algorithm. 

regulation of cell death, adaptation to stress response, 
regulation of signal transduction pathways, DNA damage 
repair (47), and tumor microenvironment changes (48), 
etc. In addition, deubiquitinating enzymes also stabilize 
oncogenic proteins by deubiquitinating modifications and 
play an important role in the development of a variety 
of tumors (49-51). Drug resistance is a major problem 
in the current clinical application of anticancer drugs. 
Overexpression of drug efflux proteins or low expression 
of drug influx proteins, as well as mutations in drug direct 
targets, are the main mechanisms by which cancer cells 
develop resistance to anticancer drugs (52). Ubiquitinase 
and deubiquitinase, therefore, make them effective 
therapeutic targets against drug resistance by epigenetic 
regulation of a variety of cancer-related pathways and their 
ability to regulate atypical drug targets such as transcription 

factors and skeleton proteins (53). It has been reported 
that deubiquitinase is abnormally activated in a variety of 
cancers, resulting in increased protein expression related 
to drug efflux and changes in drug target molecules (54), 
activating a variety of oncogenic pathways and forming 
drug resistance (55-57), so deubiquitinase has the potential 
to be developed as drug targets. It is therefore essential to 
study the ubiquitylome of cancers to provide new ideas for 
new drug target development.

Due to  recent  advances  in  mass  spectrometry 
technology, our understanding of proteomics has grown 
and various protein PTMs have been discovered. To 
clarify the LUAD proteins undergoing ubiquitination, 
we performed ubiquitylome and proteomic analysis using 
a new mass spectrometry technique (25). Overall, we 
identified 11,545 ubiquitination sites among 3,642 LUAD 
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proteins. Moreover, we identified for the first time unique 
ubiquitination peptides motifs in LUAD by analyzing the 
modified peptides. At the genetic level, we found different 
expression patterns of LUAD ubiquitinated protein-coding 
genes, revealed heterogeneity among tumor samples, and 
found that different expression patterns can lead to different 
tumor immune infiltration microenvironment landscapes. 
Finally, by analyzing the differences between expression 
patterns, we constructed a survival prediction model for 
LUAD patients, which can be used as a guide for clinical 
treatment.

Although ubiquitylome and proteomics analysis in LUSC 
have been reported (24), we are the first to systematically 
carry out LUAD proteomics and ubiquitylome. We added 
ion mobility to the original liquid chromatography-
mass spectrometry analysis index (25), such that our 
results are more sensitive and accurate. We found that 
the characteristic amino acid motifs “xxxxxxxxxx_K_
LxxxxxxRxx”, “xxxxxxxxxA_K_xIxxxxxxxx”, and “xxxxxxxxxx_
K_xLxAxxxxxx” are prone to ubiquitination in LUAD. 
These motifs differ completely from previous LUSC-
related reports. This difference may be due to the different 
pathogenetic molecular mechanisms and tumor properties 
between LUAD and LUSC. It is predicted that different 
lung cancer types have different protein ubiquitination 
landscapes, which has implications for LUAD treatment 
strategies targeting protein ubiquitination pathways. 
Previous studies reported that wild-type and mutant KRAS 
respond differently to ubiquitinase, thus providing new 
therapeutic strategies to target mutant LUAD oncogenic 
proteins (43). Therefore, we also studied mutations in genes 
encoding LUAD ubiquitinated substrate proteins to provide 
new insights for subsequent studies. Protein ubiquitination 
is a type of post-translational protein modification. 
Ubiquitinase often affects numerous biological processes 
by regulating substrate proteins. Therefore, we focused on 
the expression patterns of genes encoding substrate proteins 
and found differences between them regarding cancer 
hallmarks and the immune infiltration microenvironment. 
After expression patterns differential analysis,  we 
constructed a prognostic model to quantify the relationship 
between expression patterns and prognosis, and our model 
had a good predictive ability. Moreover, in the immune 
checkpoint and drug sensitivity analysis for all samples, we 
observed that our model can be used as a guide for clinical 
lung cancer treatment.

In short, we are the first to systematically analyze LUAD 
ubiquitylome. We identified proteins with differential 

ubiquitination levels in LUAD compared to normal lung 
tissues, thus providing important insights for further 
investigation of the protein ubiquitination mechanism in 
LUAD. Additionally, gene-level analysis of these substrate 
proteins revealed heterogeneity among tumor samples. 
Then, we constructed a prognostic model to quantify the 
relationship between expression patterns and prognosis, 
which can be used as a guide for LUAD clinical treatment. 
However, this study is limited by the small ubiquitination 
sample size. Therefore, a study with a larger sample size 
would provide more detailed information on which to base 
clinical guidance. In future studies, we plan to study the 
protein ubiquitination regulatory mechanism in LUAD 
to expand its clinical treatment indications. This study 
provides the basis for the study of protein ubiquitination 
modification mechanisms in LUAD and provides a new 
perspective for the development of therapeutic agents based 
on ubiquitin-proteasome mechanisms to overcome existing 
drug resistance. In addition, we also identified different 
molecular subtypes of LUAD by genomics analysis, 
reflecting the heterogeneity among tumors and emphasizing 
the importance of  individual ized treatment.  The 
constructed prognostic prediction model also provides a 
reference for timely intervention and treatment of patients, 
but its application requires targeted sequencing of the genes 
in the model, so its economic benefits and feasibility need 
to be further verified.

Conclusions

In this  research,  we used an ant i-K-ε-GG-based 
ubiquitination peptide enrichment combined with liquid 
chromatography-mass spectrometry to obtain LUAD 
ubiquitylome data. A series of analyses were performed 
to reveal the protein ubiquitination landscape in LUAD, 
and unique ubiquitinated peptide motifs were found. 
Additionally, further analysis of their gene expression 
patterns was performed, and we found that patterns are 
related to multiple drug sensitivity. Our work addresses 
the lack of ubiquitylome studies in LUAD and provides 
new perspectives for subsequent research and clinical 
treatment.
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