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Abstract

Network medicine approaches have been largely successful at increasing our knowledge of

molecularly characterized diseases. Given a set of disease genes associated with a dis-

ease, neighbourhood-based methods and random walkers exploit the interactome allowing

the prediction of further genes for that disease. In general, however, diseases with no

known molecular basis constitute a challenge. Here we present a novel network approach

to prioritize gene-disease associations that is able to also predict genes for diseases with no

known molecular basis. Our method, which we have called Cardigan (ChARting DIsease

Gene AssociatioNs), uses semi-supervised learning and exploits a measure of similarity

between disease phenotypes. We evaluated its performance at predicting genes for both

molecularly characterized and uncharacterized diseases in OMIM, using both weighted and

binary interactomes, and compared it with state-of-the-art methods. Our tests, which use

datasets collected at different points in time to replicate the dynamics of the disease gene

discovery process, prove that Cardigan is able to accurately predict disease genes for

molecularly uncharacterized diseases. Additionally, standard leave-one-out cross validation

tests show how our approach outperforms state-of-the-art methods at predicting genes for

molecularly characterized diseases by 14%-65%. Cardigan can also be used for disease

module prediction, where it outperforms state-of-the-art methods by 87%-299%.

Author summary

The elucidation of the genetic causes of diseases is central to understanding the mecha-

nisms of action of a pathology and the development of treatments. Disease gene predic-

tion methods streamline the discovery of the molecular basis for a disease by prioritizing

genes for experimental validation. Although some methods use disease phenotype to aid

the prioritization, the great majority use outdated static matrices which limits their disease

coverage. Our approach uses an updatable disease phenotype similarity, and employs a

non-linear transformation to define a prior probability distribution over the genes that

mimics the distribution of disease genes in the interactome. Subsequently, a semi-super-

vised learning method establishes a prioritization ordering for all genes in the interac-

tome, even for diseases with no known molecular basis. Our method can be used not only
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to obtain a better prioritization for disease-gene associations, but also for retrieving dis-

ease modules.

Introduction

High throughput sequencing and screening techniques have led to an increasing accumulation

of genomic data. Despite this growth, the mechanisms of action through which genomic vari-

ants drive disease development are not fully understood. As genomic alleles and malignant

mutations are continuously sequenced, most of them still miss a functional annotation [1].

Early approaches to find non-experimental disease gene associations were based on linkage

analysis, which establishes likelihood of observing alleles in an organism compared to random

chance [2]. However, this type of analysis is highly dependent on linkage disequilibrium, and

thus traditionally fails on genetically multifactorial and heterogeneous diseases [3]. Alternative

approaches, such as genome-wide association studies, do find gene candidates even for com-

plex diseases. However, they often produce hundreds of candidates, making experimental vali-

dation expensive and time consuming.

Recent network medicine based approaches bypass the lack of functional annotation by

drawing inferences from interaction data. Diseases are seen as perturbations in specific areas

of the interactome – the disease modules. Thus the guilt-by-association [4] principle can be

applied to find disease genes by prioritizing those close to already known ones. Several

approaches have been proposed that exploit this idea and they differ in how they quantify the

distance between candidate genes and known disease genes in the interactome. Common mea-

sures for the proximity are the number of direct connections, the length of shortest paths and

diffusion kernels, including random walkers with restart and propagation flow. For example,

Oti et al. [5] use direct neighbours, Köhler et al. [6] use random walkers with restart, and Nav-

lakha et al. [7] include propagation flow and clustering techniques.

Previous authors have also shown that diseases with overlapping modules present signifi-

cant similarities in terms of phenotype and occurrence (comorbidity) [8]. Phenotypic data has

been suggested to be particularly informative as different perturbations in a single disease

module often produce similar phenotypes [9, 10], and phenome networks (where genes are

nodes that are connected if they show correlated phenotypic profiles) strongly correlate with

protein-protein interactions and transcriptional regulatory networks [11]. Furthermore, dis-

eases found in distant neighborhoods in the interactome produce different phenotypes [8].

Several methods have been proposed that combine these different types of data to predict dis-

ease genes [12]. One group of methods integrates the data into a unique graph that is then

used for the prediction. Lage et al. [13] include disease phenotype in the form of clinical fea-

tures extracted by text mining from scientific papers; Wu et al. [14] create binary networks

where nodes represent genes, and these are connected when their BLAST E-values is higher

than a predefined threshold; Chen et al. [15] include information from the Gene Ontology

[16], the Mammalian Phenotype [17] and various types of pathway annotations; Li et al. [18],

Vanunu et al. [19] and Mordelet et al. [20] include the van Driel disease similarity information

[21] to enhance the network; and other authors use heterogeneous networks where nodes can

be either diseases or genes – Xie et al. [22] connect the nodes with Online Mendelian Disease

in Man (OMIM) [23] and MGI mouse phenotype-gene associations, and Zeng et al [24] use

HeteSim [25] scores. Another group of methods carries out inferences for each different type

of data separately, and then integrate the results. In particular, Aerts et al. [26] use co-expres-

sion networks, metabolic pathways, Gene Ontology, among others; Franke et al. [27] include
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the Gene Ontology and co-expression networks; Radivojac et al. [28] use the Gene Ontology,

the Disease Ontology [29], and features based on protein sequence; Karni et al. [30] use disease

based co-expression networks; and George et al. [31] use metabolic pathways and Pfams [32].

Similar techniques have been used on a related problem, that of predicting disease

modules – disease genes can then be found within members of these modules. Liu et al. [33]

recover disease modules through the analysis of gene expression data and partitions of co-

expression networks; Ghiassian et al. [34] use direct neighbour analysis on protein-protein

interaction (PPI) networks to iteratively add genes to the modules.

All these network methods produce high quality results, but require initial seeds (i.e. a few

known disease genes) to produce their predictions. In general, results are better when more

seeds are available, and several authors have employed disease families (rather than single dis-

eases) which were obtained by aggregating phenotypically similar diseases [5–7], thus increas-

ing the number of initial seeds for their predictions.

An important point to be made here is that there are many molecularly uncharacterized dis-

eases, for which no disease gene is currently known – as of 2018 these comprise 3359 diseases

in OMIM, i.e. 39% of the entire OMIM database. For these diseases, most of the methods

described earlier are not applicable since the initial seeds are not available (notable exceptions

are PRINCE [19] and ProDiGe4 [20], described in the Methods section). We shall refer to

molecularly uncharacterized diseases as uncharted, while those diseases for which at least one

disease gene is currently known will be referred to as charted.

In this paper, we present a disease gene prediction method that predicts disease genes for

both charted and uncharted diseases in OMIM, and can also predict disease modules. Our

approach, which we have called Cardigan (ChARting DIsease Gene AssociatioNs), is based on

a semi-supervised algorithm that propagates labels on the interactome. These labels integrate

disease phenotypic information expressed as a similarity measure between diseases, which is

obtained by mining and comparing sets of MeSH terms [35] relevant for the diseases. The

approach can be thought of as establishing the location for the modules of charted diseases

and using these to “triangulate” the location of the modules of uncharted diseases by exploiting

disease phenotypic similarities – the intuition for the approach is shown in Fig 1. We show

that Cardigan outperforms state of the art methods in disease gene and disease module

prediction.

Results

The Cardigan algorithm

Our idea exploits the fact that disease modules of diseases with a similar phenotype should be

placed close-by on the interactome [9, 21]. Therefore, genes associated to diseases that are phe-

notypically similar to a disease of interest should provide useful information to locate its dis-

ease module.

To predict disease genes for a given disease (query disease), Cardigan begins by calculating

its phenotypic similarity to every other disease in OMIM using the approach developed by

Caniza et al. [36]. Next, Cardigan assigns a weight to each known disease gene. The weight is

related to the Caniza similarity between the query disease and the disease to which the gene is

associated (Fig 2C). Weights of disease genes are real values between 0 and 1 and are calculated

by rescaling the Caniza similarity through a sigmoid function that is dampened by a multipli-

cative factor 0<h<1. (illustrated in Fig 2B; the motivation for the sigmoid function is pre-

sented in Section Significance of the sigmoid in S1 Text). If a gene is associated with more than

one disease, Cardigan uses the highest similarity value. Genes that are already known to be

associated with the query disease, if any, are assigned a weight equal to 1 – in this way, these
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genes are assigned a weight that is higher than the weight of disease genes of any other disease

(whose value is at most h). For a given query disease, we shall call the set of weights assigned to

the disease genes the Query Weight Set (QWS) for that disease. The parameters of the sigmoid

and the dampening factor h were learned using a small training set which we then removed

from all subsequent experiments (the training procedure is detailed in Section Estimation of
the default parameters for Cardigan in S1 Text).

The next step is to propagate the QWS through the graph with a semi-supervised learning

procedure (transition between C and D in Fig 2). Cardigan uses the consistency graph diffu-

sion method from Zhou et al. [37]. This is a graph labelling procedure based on minimizing a

cost function that takes into account network weights and an existing set of labels. Let us repre-

sent a weighted PPI network with n nodes as an adjacency matrix Wn×n, where each element

Wij is the weight between genes i and j (if the network is binary, then all the values in W are

binary, indicating the presence or the absence of an interaction). The final labelling vector F
(of size n) having one element for each gene, whose value is related to the probability of that

gene of being associated with the query disease, is obtained by minimizing the following cost

function:

CðFÞ ¼
1

2

Xn

i;j¼1

Wij
1

Dii
Fi �

1

Djj
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�
�
�
�
�

�
�
�
�
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þ m
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i¼1

kFi � Yik
2

 !

Fig 1. Disease module “triangulation” using disease phenotypic similarity. The area where the module for a disease

with no known genes (the query disease, in red) should be located, is identified using the distance to the modules of

three charted diseases (blue, purple and green). Colored nodes represent the disease genes of each charted disease and

their disease modules are represented with highlighted backgrounds. The distances between the query and the charted

diseases (close, medium and far) are represented by the dashed circles and are related to the phenotype similarity (e.g.

highly similar diseases should be close in the graph). The disease module for the red disease should lie in the red area.

https://doi.org/10.1371/journal.pcbi.1007078.g001
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where vector Y (of size n) is the QWS and μ>0 is a regularization parameter. Let us briefly analyze

the cost function in order to get some intuition for the method (a formal description of the entire

procedure is presented in Section Mathematical formulation of Cardigan in S1 Text). The cost

function being minimized is the sum of two terms. The first term accounts for the consistency of

the labels of adjacent nodes (reflecting the guilt-by-association principle)–this term is minimized

when adjacent nodes have similar labels (i.e. the difference between Fi and Fj becomes small). Also

note that the importance of the difference between Fi and Fj is proportional to the edge weight

(Wij), i.e. it is related to the probability of the interaction. At the same time, the role of the second

term is to conserve the initial labels (QWS), thus it emphasizes the reliability of the initial data

for the prediction–this term is minimized when the nodes labels Fi are the same as the initial labels

Yi. Finally the μ parameter controls the relative importance of the two terms, while the Dii ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
k¼1

Wik

p
terms serve as normalization parameters for the node degree. The vector F that mini-

mizes the above cost function can be interpreted as a gene ranking (Fig 2D), and constitutes the

output of Cardigan. The minimum of the cost function above has the following closed form [37]:

F ¼ bðI � aSÞ� 1Y

where S = D−1/2WD−1/2, a ¼ 1

1þm
, and b ¼ m

1þm
.

Fig 2. The prediction on an uncharted disease using Cardigan. (A) The PPI network with disease genes associated to

three different diseases (green, purple, and blue), is used to predict genes for the uncharted (red) disease. (B) The

Caniza similarity is transformed into a weight for the red disease. (C) The query weight set (QWS)–the initial seed set

for the diffusion process. (D) The final state of the network after the diffusion process. All genes have acquired a

weight. These weights are used to rank all genes and constitute Cardigan’s prediction.

https://doi.org/10.1371/journal.pcbi.1007078.g002
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It is important here to note that Cardigan is able to predict genes both for charted and

uncharted diseases. In fact, the only input for the procedure is the QWS, which can be

obtained for both groups of diseases. The only difference is that charted diseases will contain

genes with label equal to one corresponding to disease genes already known for those diseases.

Furthermore, the method can be used for the prediction of disease modules, since the top pre-

dictions of Cardigan can be interpreted as the disease module for the query disease.

Performance evaluation

We compared the performance of Cardigan against PRINCE, ProDiGe1, ProDiGe4 and DIA-

MOnD at predicting disease genes for OMIM diseases (these algorithms are described in the

Methods section). PRINCE and Cardigan were run using both binary protein-protein interac-

tion networks (HPRD [38], BioGRID [39], DiamondNet [34]) as well as weighted networks

(HIPPIE [40] and FUNCOUP [41]), while ProDiGe1, ProDiGe4 and DIAMOnD can run only

on binary networks (see Methods for details). As a baseline, we also calculated the performance

obtained by a procedure that selects disease genes at random. Following previous authors [19,

20, 24], we evaluated the performance at predicting one gene at a time, measuring how often

that gene is found within the first 1, 10, 100, 200 genes output by the different algorithms.

We will present the evaluation for charted and uncharted diseases separately, and for each

type of disease we will analyze the performance using both time-lapse data and a leave-one-out

testing procedure. In time-lapse data experiments, we will attempt to predict genes which have

been associated with diseases in the period 2013–17 using data from 2013. Although these

experiments are limited in the size of the test set, they are very important as they provide an

evaluation of the system in real-life scenarios. In leave-one-out experiments, we will remove a

single disease-gene association and measure how well the system can retrieve it.

Performance on uncharted diseases

Time-lapse tests: We begin by presenting the performance of Cardigan at predicting genes

that are associated with diseases in 2017, but were uncharted in 2013, using data from 2013.

The 2013 OMIM database had 2670 descriptions of uncharted diseases, and 287 of those dis-

eases appear as charted in the 2017 OMIM database. Cardigan is the only method that can

make predictions for these 287 diseases. In fact PRINCE and ProDiGe4, the only other meth-

ods that could in principle make predictions for uncharted diseases, are not applicable since

their disease kernel does not include any of these diseases [21]. The prediction results are pre-

sented in Fig 3A, and show that Cardigan has a good performance which is stable across differ-

ent networks.

Leave-one-out tests: If a given disease has only one known disease gene, then by removing

it we obtain a “synthetic” uncharted disease. There are 5707 diseases with a single disease gene

in the 2017 OMIM database, and for 3252 of them the disease gene were present in HPRD. For

each of these diseases we removed its gene and measured the performance of the methods at

predicting it back. Since these are synthetic uncharted diseases, there is no initial set of disease

genes, and therefore ProDiGe1 and DIAMOnD cannot be used for this problem. Fig 3B shows

that Cardigan clearly outperforms both ProDiGe4 and PRINCE for different number of

retrieved predictions. Results using the BioGRID, DiamondNet, HIPPIE and FUNCOUP net-

works were similar and can be found in Section Other results in S1 Text.

Performance on charted diseases

Time-lapse tests: In these experiments we tested the performance of the different methods at

predicting genes for diseases which were already charted in 2013 and gained further genes by
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2017, using data from 2013. Out of the 1413 disease gene associations which were new in the

2017 version of OMIM, only 95 of them were added to diseases which were already charted in

2013. This number further reduced for testing since many of these genes were not contained

in the PPI networks (their number ranges between 64 for HPRD and 78 for FUNCOUP).

Results for HPRD are shown in Fig 4A, where Cardigan presents a minimum improvement of

8% with respect to the second best method at any threshold. Results using the other PPI net-

works were similar (see Section Other results in S1 Text).

Leave-one-out tests: This is the typical way in which disease prediction methods are tested

[7, 13, 19, 20, 34]. We evaluated the performance of the methods when disease genes were

removed one at a time and predicted back. The 2017 OMIM database contains 264 diseases

with two or more genes, which result in 970 possible test cases. Fig 4B shows the results for the

826 tests that can be performed using HPRD. We can see how Cardigan outperforms every

method at every threshold—the minimum performance improvement is 14% with respect to

the second best method at any given threshold. Results using the other PPI networks were sim-

ilar (see Section Other results in S1 Text).

Performance on disease module detection

We tested how well Cardigan performed at predicting disease modules, i.e. whether the set of

predicted disease genes formed a coherent disease module. To do this, we used the same dataset

and followed the same procedure that was previously used by Ghiassian et al. [34]. Their dataset

contains 70 diseases and their respective modules, which had been manually curated. In our

experiments, we evaluated the performance of Cardigan at reconstructing the module after

removing different percentages of genes (i.e. keeping different percentages of the module). The

evaluation measure used is the AUC of the ROC curve normalized for the first 200 false posi-

tives predictions, thus matching the sizes of disease modules as described by Ghiassian et al. (for

more details see Section Evaluation measure–area under the normalized ROC curve in S1 Text).

Fig 5 shows that Cardigan outperforms DIAMOnD consistently when keeping different

percentages of the module. At each percentage, we performed 10 random selections of the

genes that were kept for each disease to avoid biases on the experiments. The minimum

improvement is 87% when 95% of the module is kept, and this goes up to 299% when 5% of

Fig 3. Performance of disease gene prediction for uncharted diseases. Percentage of disease genes found in the predictions vs. the number of predictions retrieved.

(A) Cardigan performance for diseases which were uncharted in 2013, but were charted in 2017, measured on different PPI networks. (B) Comparison of performances

of different disease gene prediction algorithm for a leave-one-out testing for diseases with a single known gene in 2017 on HPRD.

https://doi.org/10.1371/journal.pcbi.1007078.g003
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the module is kept. Note how Cardigan is also able to recover modules even when 0% of the

module is kept. Also, as expected, both methods see an increase in performance as the percent-

age of kept module increases. We present an additional analysis of the modular properties for

the predicted modules of uncharted diseases in Section Modular properties of sets of predicted
genes in S1 Text.

Discussion

We have presented Cardigan, a novel network medicine based approach for disease gene pre-

diction. Its key feature is its ability to predict genes for diseases using only their phenotypic

Fig 4. Performance of disease gene prediction for charted diseases. Percentage of disease genes found in the predictions vs. the number of predictions retrieved. (A)

Performance for predicting genes that charted diseases have acquired between 2013 and 2017. (B) Performances for a leave-one-out testing using 2017 data.

https://doi.org/10.1371/journal.pcbi.1007078.g004

Fig 5. Performance at reconstructing disease modules. Different percentages of disease modules from Ghiassian

et al. are removed and modules are then reconstructed. The y-axis shows the AUC of the ROC curve normalized for

the first 200 false positives predictions. Error bars were calculated using the results for all diseases, each one with 10

random selections of kept genes. The expected value for a random prediction is 0.007. All predictions were made using

DiamondNet.

https://doi.org/10.1371/journal.pcbi.1007078.g005
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description, which allows the method to predict genes for molecularly uncharacterized

diseases.

We have shown that Cardigan can handle both weighted and unweighted networks of dif-

ferent sizes by testing it on HPRD, DiamondNet, BioGRID, HIPPIE and FUNCOUP. Our

experiments show how Cardigan consistently outperforms by a significant margin state-of-

the-art methods and is stable on different types of networks. In particular, Cardigan’s perfor-

mance remains very high on BioGRID where other methods show significant drops in

performance.

The difference in performance between Cardigan and the other methods is larger in time-

lapse experiments than in leave-one-out tests, which are more commonly used in the litera-

ture. Here we suggest that time-lapse experiments provide a more realistic evaluation as they

mimic more closely the gene discovery process. In fact, looking at the evolution of the OMIM

database, we notice that genes for complex diseases are frequently discovered (and then

added) in groups. The case of adding just one gene at a time, that is portrayed by leave-one-

out tests, is much less frequent.

Combining the results over all PPI networks from our time-lapse experiments and consid-

ering results among the top 200 genes, Cardigan produces the best gene ranking for 80% of the

diseases. Table 1 compiles some interesting examples of Cardigan predictions diseases using

the 2013 OMIM database, which were later verified. It includes diseases which had been stud-

ied for long periods of time and yet, in 2013, were still missing associated genes–all these dis-

eases have papers in OMIM dated at least from the ‘70s.

An interesting question is whether a QWS (the initial seed set for the diffusion process) can

be thought of as an approximate disease module. To verify this, we checked whether its highest

ranking genes share functions and whether they tend to be located in the same neighborhood

in the interactome. Our analysis shows that genes with higher weights in the QWS for the dif-

ferent diseases are more likely to share function than expected by random, and that the top

genes tend to be located in the same neighborhood (detailed description of this analysis is pre-

sented in Section Analysis of modular properties of gene sets in S1 Text).

Our method differs from earlier kernel methods approaches for scoring disease genes such

as, for example, the Lippert et al. method [46] which requires a clear distinction between

known diseases genes, which are labeled, and other genes, which are unlabeled (more details

are provided in Section Relation between Cardigan and the Lippert method in S1 Text). In fact,

an important difference between Cardigan and other well-known kernelized scoring methods

lies in the use of initial labeling for genes other than the known disease genes. Finally, we point

out that by including the initial labels, our methodology can be incorporated in a generalized

framework, such as, for example, the RANKS tool from Valentini et al. [47] (a detailed expla-

nation for RANKS is provided in Section Generalization of Cardigan as a methodology to
include soft labels in S1 Text).

Table 1. Examples of Cardigan predictions using 2013 data.

Disease 2013 Status Gene Ranking Paper
Fetal Akinesia Deformation Sequence (MIM:208150) Charted MUSK 1 Tan-Sindhunata et al. (2015) [42]

Schimmelpenning-Feuerstein-Mims syndrome (MIM:163200) Charted NRAS 1 Lim et al. (2014) [43]

Familial Retinal Arteriolar Tortuosity (MIM:180000) Uncharted COL4A1 5 Zenteno et al. (2014) [44]

Ablepharon-macrostomia syndrome (MIM:200110) Uncharted TWIST2 10 Marchegiani et al. (2015) [45]

All the presented diseases appeared in the 2013 OMIM database and already had multiple papers associated with them, describing clinical features, inheritance or

molecular genetics. However, in 2013 OMIM did not include the associations with genes shown in the third column, as they first appeared in reference shown in the last

column. The position of the gene on the Cardigan predicted ranking is also shown.

https://doi.org/10.1371/journal.pcbi.1007078.t001
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Finally, the gene rankings obtained by running Cardigan on the entire OMIM diseases set

are provided in the S2 Dataset. We believe that this table constitutes an important starting

point for the experimental discovery of disease genes, particularly for uncharted diseases.

Methods

Disease data

Our experiments were carried out using disease data from the OMIM database [23] down-

loaded in April 2017. In time-lapse experiments, we also used OMIM data from April 2013 to

make predictions which were then verified using the OMIM data from April 2017. Table A in

S1 Text summarizes the differences between these two editions of the database.

We also used the Ghiassian et al. [34] diseases module dataset, which encompasses 70 diseases

and their modules. These are not necessarily OMIM diseases, and we manually mapped them to

OMIM diseases by matching OMIM disease names and taking into account their description.

Our mapping from Ghiassian to OMIM diseases is available as a TSV file (S1 Dataset).

Protein-protein interaction networks

Protein interaction networks come in two flavours, weighted and binary. In weighted net-

works, links between two proteins are labelled with a weight whose value is related to the prob-

ability of the interaction. In binary networks, links are not labelled and a link is either present

or missing (denoting the existence or the lack of interaction). Moreover, interaction data can

be experimental or predicted. In order to show the general applicability of our methodology,

we performed our tests using different types of protein interaction networks including

weighted and binary networks with both experimental and predicted data: HPRD [48], Dia-

mondNet [34] and BioGRID [39] are binary experimental networks; HIPPIE [49] is a weighted

experimental network; FUNCOUP is a large weighted network including both experimental

and predicted data. Table B in S1 Text summarizes some of the relevant characteristics of these

networks.

Other prediction methods

We compared Cardigan to four methods: ProDiGe1, ProDiGe4[20], PRINCE [19] and DIA-

MOnD [34]. These were chosen because they are state-of-the-art representatives of the disease

gene prediction methods and of the disease module prediction methods described earlier.

ProDiGe [20] is a family of kernel-based disease gene prediction methods which rank all

genes within the protein-protein interaction network for a given disease. The main idea is to

learn missing disease-gene associations through a one-class SVM, where known associations

are established as positive labels and the other associations are unlabelled. ProDiGe allows

gene associations to be shared among separate diseases. Positive labels are produced by multi-

plying the known disease-gene association matrix and a disease sharing kernel, and the SVM

learns using a graph diffusion kernel created from the PPI network. The four methods in the

family (ProDiGe1 to 4) differ in the disease sharing kernel: ProDiGe1 does not share genes

(the disease sharing kernel is the identity matrix); ProDiGe2 establishes a uniform low proba-

bility to genes from other diseases (the disease sharing kernel is the identity plus a small con-

stant); ProDiGe3 allows genes to be shared by using a phenotype similarity kernel (the disease

sharing kernel is the van Driel similarity matrix [21]); and ProDiGe4 adds the kernels from

ProDiGe1 and ProDiGe3 to give more importance to the genes of the disease of interest. We

chose ProDiGe1 and ProDiGe4 as representatives of the disease gene prediction methods as

they have been shown to outperform other well-known methods, such as Endeavour [6], and a
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multiple kernel learning approach (MKL1class) [20] in the top 200 predictions, and they are

comparable in performance to newer methods such as BiRW [22], HSSVM [24] and HSMP

[24] when predicting a single disease gene at a time.

PRINCE [19, 50] is a diffusion-based method that uses the Zhou et al. iterative propagation

[37] to prioritize genes. It makes use of the disease phenotype information provided by the van

Driel similarity matrix [21] to gather additional seeds for the query disease. The phenotype

information allows genes from highly similar diseases to be effectively regarded as if they were

known genes of the query disease (in contrast, our method uses a dampening factor to differ-

entiate the weights assigned to genes from diseases other than the query).

DIAMOnD [34] is a recent disease module prediction method based on direct neighbor

analysis which starts from a set of initial seeds and iteratively increases the module by adding

new genes. At each iteration, the algorithm evaluates which genes have more connections to the

existing disease module than expected by random chance, using the hypergeometric distribu-

tion as the null model. The most connected gene according to this model is then added and the

authors consider the first 200 to 500 genes as the recovered disease module. Although DIA-

MOnD is not intended to be a fully-fledged disease gene prediction method, the order in which

the genes are added to the module naturally produces a ranking that prioritizes disease genes.

In our experiments, we used the implementations of ProDiGe1, ProDiGe4 and DIAMOnD

which were provided in their respective publications. Additionally, we developed our own imple-

mentation of PRINCE which uses all the recommended parameters specified in the publication.

The Caniza similarity

Caniza et al. [36] recently proposed a measure to quantify the phenotypical similarity between

hereditary diseases. Their method begins by collecting, for each disease, the set of MeSH terms

assigned to the scientific publications relevant for that disease. The phenotype similarity for a

pair of diseases is then quantified by the information content of the term on the MeSH ontol-

ogy that is the lowest common ancestor between the sets of terms for the two diseases. In prac-

tice, the similarity is calculated for the diseases found in OMIM, using the publications that

OMIM associates to the diseases. The authors have shown that the similarity between two dis-

eases is correlated with the closeness of their respective disease modules on the interactome.

Implementation

Our method is available as a fast, industrial strength library for Python 2.7 which implements

sparse matrices and lazy loading for disease similarities to reduce the memory footprint. The

code is publicly available from the paper website at http://www.paccanarolab.org/cardigan.

Although the execution times of the methods are not the main interest of this work, we

point out that our method is very fast–a table comparing the execution times of Cardigan with

those of DIAMOnD and ProDiGe for the different types of networks can be found in Section

Execution times in S1 Text.

Supporting information

S1 Dataset. Ghiassian disease dataset to OMIM identifier mapping. The diseases used in the

DIAMOnD paper are not necessarily OMIM diseases, so we manually mapped them to

OMIM diseases by matching OMIM disease names and taking into account their description.

(ZIP)

S2 Dataset. Cardigan prediction on the entire 2017 OMIM dataset. This is a tab separated

file containing disease gene predictions for all the diseases with at least one associated paper in
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the OMIM database.

(ZIP)

S1 Text. Supplementary material. This file compiles supplementary definitions and mathe-

matical formulations, model training, description of input data, additional experiments, and a

short user manual for our software.

(DOCX)
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