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PIC micro‑controller based 
synchronization of two fractional 
order jerk systems
Samuel Tagne1*, Bertrand Bodo1,2, Guy François V. Ayissi Eyebe1,2 & 
Jean Sire A. Eyebe Fouda1,2

The paper studies a 3D Chaotic Jerk oscillator with fractional derivatives. An approach is proposed 
to implement it on a PIC16F877A microcontroller in order to reduce the requirements for multiple 
analogue electronic components such as resistors, capacitors, coils, multipliers, operational 
amplifiers, which are very bulky and consume a lot of power. The behaviours of the underlying 
system are analysed analytically, numerically and experimentally. It comes from this analysis that 
the fractional model exhibits chaotic dynamics when for parameters for which the equivalent integer 
derivative system exhibits limit‑cycles. The synchronization under two closed initial conditions is also 
studied, highlighting one of the most common applications of the chaos concept.

Concept of fractional calculus has become undoubtdly a subjet of active research field in nonliear science, due 
to its potential applications in  electronics1,  mechanics2, nuclear  physics3,  medicine4, financial  systems5. Like-
wise, chaos has been also widely reported over the past century  years6–13. It is well-known that chaotic systems 
have a very high degree of sensitivity to initial conditions and their evolution through phase space that appears 
unpredictable.

In fact, in 1963, Lorenz emphasized that a chaotic system solved with two very close initial conditions could 
have two completely different  dynamics14. More recently, some electronic circuits exhibiting chaotic behavior are 
proposed in  literature15–17. Furthermore, those implementing fractional order circuit have been also reported. 
For example, the fractional Chen  circuit18,19, the fractional Chua  circuit20 and the fractional Rössler  circuit21. 
For a better review one can  read22–24.

In truth, fractional dynamical systems are developed with the main idea of introducing the memory effect 
in the dynamics of the system. It is then observed that these systems present hidden attractors that the conven-
tional approach does not  exhibit25. Considering this particular advantage, it is therefore imperative to design 
fractional electronic circuits able to reproduce the desired behavior. To do this, an ordinary capacitor is replaced 
by a fractional capacitor whose impedance value must be determined. In this case, the Laplace transform of the 
differential operator 1s is replaced by 1sm , where 0 < m < 1 is the derivative  order26–31.

However, to the best of our knowledge, it is arduous to determine the exact value of a fractional capacitor 
which corresponds exactly to his fractional derivative operator. Several techniques have been suggested to address 
this problem such as the Regular Newton’s  Process32 and the Halley’s Iterative  Method33. These methods were 
used to design the fractional circuits mentioned above using analogue component. From these circuits it can be 
seen that the analogue component approach requires very large capacitors and resistors which are difficult to find 
on the market. Furthermore, using large capacitors and large resistors means operating at high  frequency34. We 
propose a numerical approach for the real implementation of a fractional system on a micro-controller based 
on Euler’s resolution method and applied to the synchronization of a Jerk system, which has never been done 
to our knowledge.

Jerk systems have important considerations for many applications in science and mechanical engineering. 
 In35, it is noted that Jerk systems could exhibit several physical phenomena such as multi-stability, chaos or 
hyperchaos. They could be used for  synchronization36 and  encryption37 of chaotic systems.

In this paper, we propose an optimised algorithm to implement the fractional chaotic system in the numerical 
domain that is easy to prototype. The Jerk equation given in Refs.38–40,42 allow to achieve this. It will be useful to 
study the contribution of the fractional derivative on the dynamics of the system particularly if the implementa-
tion of the fractional system on a PIC-microcontroller allows to obtain hidden attractors contrary to the classical 
model considering the same parameters.
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The paper is organised as follows: In the following section, we propose the description of the Jerk system 
followed by an analytical study. We explain the numerical methods dedicated to the computation of fractional 
integrals, we also present the method used for the implementation of the system on a micro-controller; “Results 
and discussions” is dedicated to the results and discussion; the paper ends with a conclusion and announces 
some perspectives for our future work.

Mathematical models
Background. In mechanics, a shake is a random change in the vector of acceleration without shock. In phys-
ics, the shock vector, more commonly called the jerk, is the acceleration vector’s derivative over time. Jerk sys-
tems are then the third-order differential equations of the form d

3x
dt3

= F(x) , which translates the variation of the 
acceleration in the system. It is the simplest of three-dimensional chaotic systems, where F(x) is the nonlinear 
function that describes the third-time derivative of displacement variable x. In this work, the Jerk system used 
will be the one presented in the Eq. (1)40.

α and β could be subsequently defined as control parameters. This equation (1) can be transformed into the 
following system.

To solve it numerically, one use the Euler algorithm. In fact, the Euler algorithm has only one step, and it is easy 
to implement because it requires fewer mathematical  operations41. The Euler algorithm is described for Eq. (1) by:

Physically, (x, y, z) respectively represents the position, the velocity and the acceleration (Eq. 1) could be dissipa-
tive if β > 0 . On can therefore highlight three equilibrium points, so E1(0, 0, 0)T , E2(0, 0,− 1√

α
)T  , and 

E2(0, 0,
1√
α
)T . The Jacobian matrix of (Eq. 1) is given by

We come out two characteristics equations relating to J0, J1 and J2

The literature shows that the Routh–Hurwitz criterion contains the necessary and sufficient conditions for the 
system stability. Thus, without even solving the characteristic equation, one finds that the system is stable for 
β > 0 whatever the chosen equation.

Route to chaos. It is shown in Refs.42–47 that the nature of the chaotic dynamic system, in addition to being 
sensitive to initial conditions, is closely linked to another parameter which is called the control parameter. In our 
case, this is the β parameter. Thus, the system will behave chaotic depending on this parameter.

We report in Fig. 1a the bifurcation diagram of the system. The diagram shows a high concentration of points 
corresponding to the system dynamics change for 0.33 < β < 0.363 and 0.371 < β < 0.378 . Over these intervals, 
the system changes periodically and it is therefore difficult to observe chaotic dynamics. In Fig. 1b, the lyapunov 
exponents are plotted against β . Indeed, Lyapunov exponents obtained using Wolf ’s algorithm are another tool 
used to decipher the nature of a dynamical  system48–53. Therefore, presence of positive Lyapunov exponents ( �1 ) 
is sufficient to establish that the considered system is able to exhibit chaotic dynamics. Moreover, the Lyapunov 
Exponents considered against the variation of the system’s control parameter show a large superposition with the 
bifurcation diagram as illustrated in the Fig. 1b. When β = 0.35 , one obtain after 1000 iteration by step of 0.01, 
�1 = 0.089577, �2 = 0.001118 and �3 = −0.447794 . The Kaplan–Yorke dimension of the system is DL = 2.2025 . 
Thus according to Ref.57, this Jerk system generates chaotic behaviours.

Fractional model. There are several definitions of the fractional order derivative in the literature, but the 
fractional Caputo and Riemann–Liouville (R–L) operators are the most commonly used in different areas of 
fractional dynamical systems. The main advantage of the fractional Caputo derivative over the fractional R–L 
derivative is that the initial conditions of fractional differential equations with Caputo derivatives are the same 
as those of the integer order for differential  equations53. Therefore, in this paper we will use the initial condi-
tions (x0, y0, z0) = (0, 1, 0) to solve the integer derivative and fractional derivative system. Fractional calculus is 
a generalization of integration and differentiation to noninteger-order fundamental operator aDq

t f (t)
53, where a 

(1)d3x

dt3
= −β

d2x

dt2
−

dx

dt
+ αx3 − x.

(2)







ẋ = y
ẏ = z
ż = αx3 − x − y − βz.

(3)







xn+1 = xn + hyn
yn+1 = yn + hzn
zn+1 = zn + h(αx3n − xn − yn − βzn)

(4)J =





0 1 0

0 0 1

3αx2 − 1 − 1 − β .





(5)�
3 + β�2 + �+ 1 = 0 and �

3 + β�2 + �− 2 = 0.
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and t are the bounds of the operation. The definition of the fractional derivative under Caputo for a function f(t) 
of q order is defined as  follows54

for n− 1 < q < n , Ŵ(.) is Euler’s Gamma function.

Thus, system (Eq. 1) can be rewritten as (Eq. 8) to obtain the fractional Jerk system.

Numerical methods for calculation of fractional integrals. Hoda et al. have shown that by using 
Euler’s method, it is possible to find numerical solutions of linear and nonlinear systems of fractional differential 
equations. To prove this, they consider fractional derivatives as defined by Caputo. Furthermore, they show that 
Euler’s algorithm is very simple to implement and provides directly the solutions without linearization. Some 
examples illustrating numerical comparisons between the Euler algorithm and the classical algorithm are pre-
sented in Ref.41 to find the solution to a given dynamical system.

Let us consider the following problem: Dqy(t) = f (t, y(t)), y(0) = y0 , 0 < q < 1, t > 0 . To solve it in the 
interval [0, a], it is necessary to construct a set of points (tj , y(t)), y(0) = y0 which are considered as approximate 
values of the solution. In order to perform this approximation, the interval [0, a] is divided into n sub-intervals 
[tj , tj+1] , each having an equal width. So, the general formula of the fractional Euler method is the following.

Observe that y(t) is an implicit system variable, the trapezoidal method is used to find  it55,56. This method which 
consists in solving the system in two steps is called the prediction–correction approach that we use for and we 
obtain the following systems.

Applying this algorithm (Eq. 11) to the system (8), the solution is found in two steps as follows

(6)aD
q
t f (t) = 1

Ŵ(k−q)

∫ t
a

f k(τ )

(t−τ)q−k+1 dτ

(7)Ŵ(q) =
∫ ∞

0

e−t tq−1dt.

(8)







0D
q1
t x(t) = y(t)

0D
q2
t y(t) = z(t)

0D
q3
t z(t) = αx3(t)− x(t)− y(t)− βz(t).

(9)y(tj+1) = y(tj)+
hq

Ŵ(q+ 1)
f (tj , y(tj)),

(10)tj+1 = tj + h, j = 0, 1, . . . , n− 1.

(11)

{

yp(tk) = y(tk−1)+ hq

Ŵ(q+1)
f (tk−1, y(tk−1)) =⇒ Prediction

y(tk) = qhq

Ŵ(q+2)
f (tk−1, y(tk−1))+ hq

Ŵ(q+2)
f (tk , yp(tk))+ y(tk) =⇒ Correction

Figure 1.  Bifurcation diagram and Lyapunov exponents for β ∈ [0.328, 0.43] , α = 1
10

 , under initial conditions: 
(x0, y0, z0) = (0, 1, 0).



4

Vol:.(1234567890)

Scientific Reports |        (2022) 12:14281  | https://doi.org/10.1038/s41598-022-17029-x

www.nature.com/scientificreports/

Results and discussions
In this section, the methodology developed in the previous section is applied on the Jerk system to observe the 
impact of the fractional order on the resolution result. Although the implementation is independent of the discus-
sion, we visualise here at the same time the theoretical synchronisation analyse under Matlab and experimental 
under micro-controller in order to compare them.

Numerical analysis. We implemented Eqs. (12) and (13) under the Matlab software, and one observed the 
attractors that we present in Fig. 2. On this figure, we have several main remarks to draw. From first view, the 
bifurcation diagram presented in the Fig. 1 shows that the system presents a periodic dynamics for β = 0.4 and 
a chaotic dynamics for β = 0.35 . Under the assumption q1 = q2 = q3 = 1 , we observe for the two values of β 
mentioned, a figure of periodic dynamics, Fig. 3a and a figure of chaotic dynamics, Fig. 2b respectively. This set-
ting ( q1 = q2 = q3 = 1 ) is the equivalent of the classical resolute system. To prove the impact of the fractional 
order on the problem solution, let us consider the value of β for which periodic dynamics are observed ( β = 0.4 ) 
and let us varies the fractional orders. In this way, taking (q1, q2, q3) = (0.94, 0.98, 0.95) , Fig. 2c shows a double 
periodic dynamics. Still with ( β = 0.40 ) and considering (q1, q2, q3) = (0.98, 1, 1) , one observes chaotic dynam-
ics now (Fig. 2d), which was not observed for the classical case by considering ( q1 = q2 = q3 = 1 ), hence the 
interest of the fractional approach.

Largest lyapunov exponent in the fractional model. Attractor presented in Fig. 2b is a distinctive 
sign that the fractional system has a chaotic behaviour, but it would be interesting to carry out investigations to 
quantify this chaotic behaviour. To do this, we use the Lyapunov exponent applied to time  series60. Indeed, the 
fraction system does not return the easy task to calculate the system’s Jacobian matrix. Thus, we consider a state 
vector of the system and we reconstruct the phase space. This method allows us to calculate the largest Lyapu-
nov exponent, which gives us LLE = 1.43 > 0, and shows that the system is also chaotic in fractional model. 
The influence of the fractional order on the system can thus be represented in a general way. For this purpose, 
we present in Fig. 3a the bifurcation diagram and in Fig. 3b the spectrum showing the evolution of the largest 
lyapunov exponent according to the fractional order q. The superposition observed between these two figures 
shows that the system dynamics is indeed influenced by the fractional order q.

Micro‑controller implementation. The Jerk system generates real continuous values, which are not 
understandable by the micro-controller. In order to solve this problem, we proposed here a shift of reference 
frame, which allows to switch from the analogue to the digital domain. Therefore, to digitise the analogue vec-
tor x, it is necessary to know the minimum and maximum values of x, the minimum and maximum reference 
values of the micro-controller. This implies knowledge of the precise number of bits on which to encode the con-
verted values. Subsequently, a linear approximation line X(x) = ax + b is defined, allowing to leave the interval 
[xmin, xmax] to [Xmin, Xmax] . Here, Xmin = 0 , Xmax = (2n − 1) and the number of bits is n = 8 . So a = (2n−1)

xmax−xmin
 

and b = (2n − 1)xmin . In PICF877A micro-controller, system (3) is implemented via the Microchip XC8 com-
piler, the x(k) and y(k) variables was directed to the PORTB and PORTD and converted to an analogue voltage 
by the R-2R DAC as depicted on Fig. 4.

Why a micro‑controller implementation? A Fractional Capacitor is a combination of several classi-
cal capacitors and resistors. Depending on the design method chosen, the number of resistors and capacitors 
used is  large58. As a result, a large amount of energy is consumed. We avoid the space requirement of the device 
because, for an analog implementation of a third order system, three fractional capacitors need to be designed. 
To confirm the simplicity of a PIC implementation, observe (Fig. 5b). One notices that the experimental device 
contains only four main elements. There are two digital-to-analog converters (A and B), a micro-controller (C) 

(12)



































Predictionsystem

xp = x(k − 1)+ hq1

Ŵ(q1+1)
y(k − 1)

yp = y(k − 1)+ hq2
Ŵ(q2+1)

z(k − 1)

zp = z(k − 1)+ hq3
Ŵ(q3+1)

�

αx(k − 1)3 − x(k − 1)− y(k − 1)− βz(k − 1)
�

(13)























































Correctionsystem

x(k) = x(k − 1)+ q1
hq1

Ŵ(q1+2)
y(k − 1)+ q1

hq1
Ŵ(q1+2)

yp

y(k) = y(k − 1)+ q2h
q2

Ŵ(q2+2)
z(k − 1)+ q2h

q2

Ŵ(q2+2)
zp

z(k) = z(k − 1)+ q3h
q3

Ŵ(q3+2)

�

αx(k − 1)3 − x(k − 1)− y(k − 1)− βz(k − 1)
�

+ hq3
Ŵ(q3+2)

�

αx3p − xp − ypβzp

�
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Figure 2.  Phase portrait of the Fractional Jerk system showing route to chaos attractor when varied 
parameter β (I): in (a) period-1 limit cycle for β = 0.4 , (b) a chaotic attractor for β = 0.35 . a and b are 
obtained with (q1, q2, q3) = (1, 1, 1) . (II): in (c) a period-2 limit cycle attractor for β = 0.4 obtained with 
(q1, q2, q3) = (0.96, 0.97, 0.97) . (d) A chaotic attractor for β = 0.40 , obtained with (q1, q2, q3) = (0.98, 1, 1) 
under the initial condition (x, y, z) = (0, 1, 0).

Figure 3.  (a) Bifurcation diagram, (b) the largest Lyapunov exponents for q = q1 = q2 = q3 , 0.3 < q < 1 , 
β = 0.40 , α = 1

10
 under initial conditions: (x0, y0, z0) = (0, 1, 0).
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and an oscillator of 20MHz (D). When the assembly is supplied with a 5 V voltage, oscillations are observed on 
the oscilloscope as shown in the Fig. 5a.

Fractional order influences. As the numerical values, we assume the same control parameter values in 
agreement with the bifurcation diagram. By considering the classical case ( q1 = q2 = q3 = 1 ) with β = 0.35 , 
one observes a periodic dynamics, see Fig. 6a and a chaotic dynamics, see Fig. 6b respectively which are the 
similar attractors to those obtained under Matlab, see Fig. 3a,b ) . To prove the impact of the fractional order 
on the experimental solution of the problem, we proceed as in numerical simulation, i.e. by considering the 
value of β for which a periodic dynamics is observed ( β = 0.4 ) and we vary the fractional orders. Thus, taking 
(q1, q2, q3) = (0.94, 0.98, 0.95) , the Fig. 6c shows a double periodic dynamics. Still with ( β = 0.40 ) and consider-
ing (q1, q2, q3) = (0.98, 1, 1) , one observes a chaotic dynamics (Fig. 6d), which was not observed for the classical 
case considering ( q1 = q2 = q3 = 1 ). The same behaviour was observed in numerical simulation under Matlab 
(see Fig. 6c,d), which shows that the system implemented under micro-controller is successful.

Synchronization results. Chaos synchronization consists of oscillating two chaotic systems in a synchro-
nized manner. So, one recognize weaker forms of synchronization, when some key characteristics of the dynami-
cal behavior are identical, such as frequencies or amplitude. Hence, in this section, we discuss the synchroni-
zation of two fractional chaotic systems. To do this, we consider here two chaotic systems called respectively 
master (m) and slave (s). According to the Adaptive control  method59, we derive the following equations:

PIC16F877A

R2R-DAC

R2R-DAC

8
( )

( )

PORTB

PORTD
8

Figure 4.  Schematic bloc for x(t)− y(t) variable.

Figure 5.  The digital circuit hardware platform implemented for the fractional Jerk system (b) and the induced 
time evolution acquired by the digital oscilloscope (a).
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wherein u1 , u2 and u3 are active non-linear controls that have been added to the chaotic cha-
otic system (Eq.  14) to implement the synchronisation. Considering the synchronization errors as 
e1 = xs − xm, e2 = ys − ym, e3 = zs − zm, we derive (Eq. 16).

Equations (14) and (15) are solved using the predictor-corrector method described in “Results and discussions”. 
It appears that, master and slave systems trajectories converge after few milliseconds as depicted on Fig. 7 where 
e1 and e2 are synchronisation error, xm is synchronized with xs . Figure 7a,b are the results obtained under Matlab, 
Fig. 7c,d are the synchronization results obtained experimentally.

(14)

Master






0D
q1
t xm = ym

0D
q2
t ym = zm

0D
q3
t zm = αx3m − xm − ym − βzm

(15)

Slave






0D
q1
t xs = ys + u1

0D
q2
t ys = zs + u2

0D
q3
t zs = αx3s − xs − ys − βzs + u3

(16)
u1 = − e1k1 − e1
u2 = − e2k2 − e3
u3 = βe31 + 3βe21xm + 3βe1x

2
m + βx3m − αe3 − αzm − e3k3 − e1 − e2 − xm − ym

Figure 6.  Phase portrait of x versus y obtained experimentally of the Fractional Jerk system showing route 
to chaos attractor when varied parameter β (A) in (a) period-1 limit cycle for β = 0.4 , (b) a chaotic attractor 
for β = 0.35 . a and b are obtained with (q1, q2, q3) = (1, 1, 1) . (B) in (c) a period-2 limit cycle attractor for 
β = 0.4 obtained with (q1, q2, q3) = (0.96, 0.97, 0.97) . (d) a chaotic attractor for β = 0.40 , obtained with 
(q1, q2, q3) = (0.98, 1, 1).



8

Vol:.(1234567890)

Scientific Reports |        (2022) 12:14281  | https://doi.org/10.1038/s41598-022-17029-x

www.nature.com/scientificreports/

Conclusion
In this paper, we have proposed Pic micro-controller modelling a Jerk equation in integer and fractional order 
domains and phase portraits were investigated numerically and experimentally. Analytic studies, Lyapunov 
exponents and bifurcation analysis showed that the system has three determined equilibrium points and also 
displays complex self-excited non-linear dynamics. It appeared from simulations and experimentations that, 
the fractional model of the designed circuit allows to obtain masked attractors contrarily to the classical model 
considering the same parameters. A study case of synchronization to overcome the extreme sensitivity of the 
initial conditions was investigated. As a future outcome will be the exploration under a digital development 
board such as the FPGA.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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