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Background: High-grade serous ovarian cancer (HGSOC) is the predominant and
deadliest form of ovarian cancer. Some of its histological subtypes can be distinguished
by frequent occurrence of cancer-associated myofibroblasts (CAFs) and desmoplastic
stroma reaction (DSR). In this study, we want to explore the relationship between therapy
outcome and the activity of CAF-associated signaling pathways in a homogeneous
HGSOC patient collective. Furthermore, we want to validate these findings in a general
Epithelial ovarian cancer (EOC) cohort.

Methods: The investigation cohort consists of 24 HGSOC patients. All of them were
treated with platinum-based components and clinical follow-up was available. The
validation cohort was comprised of 303 patients. Sequencing data (whole
transcriptome) and clinical data were extracted from The Cancer Genome Atlas
(TCGA). RNA of HGSOC patients was isolated using a Maxwell RSC instrument and
the appropriate RNA isolation kit. For digital expression analysis a custom-designed gene
panel was employed. All genes were linked to various DSR- and CAF- associated
pathways. Expression analysis was performed on the NanoString nCounter platform.
Finally, data were explored using the R programming environment (v. 4.0.3).

Result: In total, 15 CAF-associated genes were associated with patients’ survival. More
specifically, 6 genes (MMP13, CGA, EPHA3, PSMD9, PITX2, PHLPP1) were linked to
poor therapy outcome. Though a variety of different pathways appeared to be associated
with therapy failure, many were related to CAF paracrine signaling, including MAPK, Ras
and TGF-b pathways. Similar results were obtained from the validation cohort.

Discussion: In this study, we could successfully link CAF-associated pathways, as
shown by increased Ras, MAPK and PI3K-Akt signaling to therapy failure (chemotherapy)
in HGSOC and EOCs in general. As platinum-based chemotherapy has been the state-of-
the-art therapy to treat HGSOC for decades, it is necessary to unveil the reasons behind
resistance developments and poor outcome. In this work, CAF-associated signaling is
shown to compromise therapy response. In the validation cohort, CAF-associated
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signaling is also associated with therapy failure in general EOC, possibly hinting towards a
conserved mechanism. Therefore, it may be helpful to stratify HGSOC patients for CAF
activity and consider alternative treatment options.
Keywords: tumor microenvironment, epithelial ovarian cancer, high-grade serous ovarian cancer, cancer-
associated fibroblasts, chemoresistance
1 INTRODUCTION
According to the Global Cancer Statistics 2020 (GLOBOCAN),
ovarian cancer ranks high as the deadliest tumor originating from
gynecological sites, especially when comparing new cases (313.959)
and disease-related deaths (207.252) (1). The staggering amount of
patient deaths from this tumor type make it a serious health
concern. Due to the lack of early symptoms, the disease is mostly
discovered in advanced tumor stages with an extensive spread inside
the peritoneal cavity (2). Epithelial ovarian cancer (EOC) is a
heterogeneous disease, comprised of various subtypes. The four
most prominent subtypes of EOC are clear cell, endometrioid,
mucinous and serous ovarian cancer. The latter can be further
subdivided into low-and high-grade serous ovarian cancer (3–5). In
order to rate EOC subtypes regarding their proliferative and
metastatic potential they can be differentiated as type I and type
II EOC (6). Type 1 EOCs, encompassing endometrioid, clear cell
and low-grade serous ovarian cancer, are characterized by slow
progression and can often be discovered in early disease stages.
Comparatively they have a better prognosis than type 2 EOCs (3, 5).
High-grade serous ovarian cancer (HGSOC) is a type II EOC and
the most prevalent EOC subtype, while also displaying a high
proliferation rate and metastatic potential. Furthermore, HGSOC
is mostly diagnosed at an advanced disease stage (3, 5). On a
molecular level, DNA repair defects and p53 mutations are
frequently encountered in HGSOC (4). Taken together, HGSOC
is considered to have the poorest prognosis among the listed tumors
and accounts for up to 80% of all deaths from EOCs (4, 7).

The two pillars of HGSOC therapy are cytoreductive surgery and
adjuvantchemotherapy.Theoutcome isdirectlydependedondisease
stage (8). Since the 1980s platinum agents in combination with first
cyclophosphamide and then paclitaxel are applied. The standard
treatment consists of six cycles of carboplatinum and paclitaxel every
three weeks (9, 10). In advanced stages, the anti-angiogenic agent
bevacizumab may be added in addition to combined chemotherapy
(10, 11).Whilemost tumors regress initially after treatment, patients
eventually face disease relapse, leading to the presumption that
chemoresistance will develop eventually in the majority of cases
(10, 12). From this point, patients are either defined as carrying a
platinum-resistant or platinum-sensitive disease. Platinum-resistant
patients present either with rapid progression after initial
chemotherapy or a complete remission of the tumor mass,
followed by a sudden relapse within six months after primary
therapy has been completed. Similary, platinum-sensitive patients
also display a complete remission after chemotherapy. However,
disease relapse occurs later than in platinum-resistant patients
(longer than six months after completing chemotherapy) (13–15).

In recurrent cases, platinum-based chemotherapy is also the
treatment of choice for patients deemed platinum-sensitive.
2

Moreover, platinum-sensitive tumors are especially vulnerable
for treatment with Poly-ADP-Ribose-polymerase (PARP)-
inhibitors in the first-line as well as the recurrent situation (16,
17). Platinum-resistant recurrent patients may also receive an
alternative chemotherapeutic agent (cyclophophamide,
doxorubicin, Pacitaxel or Topotecan) in combination with
bevacizumab (18, 19).

One particular molecular subtype of HGSOC, the
mesenchymal subtype is characterized by frequent generation
of desmoplastic stroma. Mixed subtypes containing both
epithelial and mesenchymal structures are also known. The
occurrence of desmoplastic stroma in HGSOC is linked to
decreased overall survival and resistance to platinum-based
chemotherapy (20–22). This cancer-associated stroma is an
important part of the tumor microenvironment. It may
strongly influence tumor progression, invasion, metastasis, and
angiogenesis (23, 24). A study by Zhang et al. (25) found
increased expression of collagens (COL5A1, COL11A1), FAP,
ACTA2 and p-SMAD2 within the stroma. FAP and ACTA2 (26,
27) are distinctive markers of a myofibroblast subtype, Cancer-
associated fibroblasts (CAFs), which can reorganize the
extracellular matrix to the tumors benefit or promote tumor-
supportive inflammation (28, 29). Additionally, they secrete
angiogenic factors (30). The constant reshuffling within the
extracellular matrix triggers integrin-mediated activation of
MAPK and PI3K-Akt signaling pathways, thereby enhancing
cell proliferation and migration (31, 32).

Considering the abundance of CAFs in certain HGSOC subtypes
and the link to dismal outcome, it seems very plausible that CAFs
and associated stroma support tumor cells by paracrine signaling
and providing a physical barrier, which facilitates the often-
occurring platinum-resistance in HGSOC and decreased survival
(33–35). We established a gene panel, encompassing various factors
involved in prominent signaling pathways (TGF-b-, PI3K-Akt-,
MAPK signaling) linked to desmoplastic stroma reaction (DSR). By
analyzing the effects of paracrine CAF-signaling in a clinically well-
defined and homogeneous collective of HGSOC patients, we intend
to link it to impaired therapy outcome. Thereby, we also provide an
mRNA-based expression signature, which may be helpful to stratify
patients for application of platinum-based chemotherapy in
the future.
2 MATERIAL AND METHODS

It should be noted that the following methods were applied as it
was described in (36). However, in this study the gene panel is
custom-designed in order to fit genes associated with DSR. This
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gene list derived from both previous research and current
literature (37–40) includes key members of the canonical and
non-canonical TGF-b signaling pathway, the PI3K pathway,
WNT signaling, MAPK pathway, cell cycle progression,
important growth factors and their respective receptors and
well as main markers for activated myofibroblasts within the
tumor (FAP, FN1, ACTA2/a-SMA).

2.1 Study and Cohort Design
2.1.1 Investigation Cohort
The retrospective investigation cohort encompassed 24 patients
(Figure 1). They were diagnosed with high-grade serous ovarian
cancer (HGSOC). The diagnosis was confirmed by an
experienced pathologist according to the International Union
Against Cancer (UICC), more specifically the 8th edition of TNM
guidelines (41). Patients were included into the study based on
the following criteria: confirmed HGSOC with the ovaries as
primary site, treatment with platinum-based chemotherapy
(adjuvant) only, and sufficient follow-up data. Tumor tissue
from the omentum was excluded. Clinical data include
patients’ age, survival data (overall survival and recurrence-free
survival) as well as tumor grading. DSR was identified in all 24
cases via staining of FAP, FN1 and ACTA2. Additionally, 7/24
patients had shown strong FAP positivity and extensive stroma
remodeling. Based on recurrence-free survival (RFS), a binary
outcome variable was defined that correlates to resistance against
cisplatin. Patients displaying poor therapy outcome or therapy
resistance were characterized by an RFS below 6 months after
therapy completion, which conforms to the sources mentioned
above (13–15). Median overall and recurrence-free survival for
the investigation cohort were 35 and 9 months, respectively. All
important clinical data from the investigation cohort are
summarized in Supplemental Table 1.

2.1.2 Validation Cohort
A cohort (n=303) of epithelial ovarian cancers (EOC) served as a
validation cohort for this study. Gene expression data (RNA Seq)
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and clinical data were obtained from The Cancer Genome Atlas
(TCGA) database (National Cancer Institute, National Human
Genome Research institute, Bethesda, MD, US). The primary site
of tumors within the validation cohort were the ovaries, though
three tumor samples were derived from the omentum. A key
selection criterion was sufficient follow-up that allowed for
calculation of therapy outcome after platinum treatment. Poor
therapy outcome or therapy resistance was defined as it was
described in 2.1.1 (RFS below 6 months after therapy
completion) (13–15). Median overall and recurrence-free
survival for the validation cohort were 44 and 18 months,
respectively. All important clinical data from the validation
cohort are summarized in Supplemental Table 2.

2.2 RNA Extraction and Quantity
Measurement
2.2.1 Preparing Tissue Sections for RNA Isolation
Tumor tissue used for the study was formalin-fixed and paraffin-
embedded (FFPE). All samples have been collected between 2005
and 2010. Only one tumor per patient was selected for further
analysis. Each sample analyzed contained at least 85% tumor
cells. All specimens have been stored at room temperature in the
archives of the Institute of Pathology, University Hospital Essen.
Tissue sections (thickness: 10 microns) were made using a
“Microm HM340E” microtome (Thermo Fisher Scientific,
Massachusetts, USA). The amount of sections was dependent
on available tumor tissue (at least two sections per sample). The
first tissue section from the surface layer has been discarded due
to possible oxidation processes. In order to avoid loss of RNA
yield, slides were stored by freezing (-20°C) until the RNA
isolation procedure commenced.

2.2.2 RNA Isolation
RNA was isolated in a semi-automatic workflow with the help of
the Maxwell® RSC Instrument (Promega, Wisconsin, USA)
using a Maxwell® RSC RNA FFPE kit (AS1440, Promega,
Wisconsin, USA). The process was conducted according to the
FIGURE 1 | General methodical workflow of the study.
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manufacturer’s instructions. In the final step, RNA was eluted in
50 µL RNase-free water.
2.2.3 RNA Quantification
After the isolation process, RNA yield was quantified using a
Qubit 2.0 fluorometer (Life Technologies, California, USA).
Samples were prepared for Qubit measurement by utilizing an
RNA broad-range assay kit (Invitrogen, Thermo Fisher
Scientific, California, USA) according to the manufacturer’s
instructions. In short, the fluorometric quantification is based
on linear regression using predefined standards provided within
the kit.
2.3 Digital Gene Expression Analysis
Samples harboring sufficient RNA yield were analyzed on the
NanoString nCounter MAX/FLEX platform. 100 ng total RNA
were used for each reaction. Digital expression analysis of 221
genes associated with DSR, TGF-b-, PI3K-Akt and MAPK
signaling was performed utilizing a customized panel
encompassing key genes of those pathways (Supplemental
Table 3). Hybridization of capture- and reporter probes,
carrying the biotin-tag and the 6-digits fluorescence barcode,
respectively, with sample RNA was carried out using a
thermocycler (Eppendorf, Germany) at 65°C (72°C lid
temperature) for 21h as mentioned in the manufacturer’s
protocol. After this stringent hybridization, post-hybridization
processes including immobilization to the cartridge surface as
well as clean-up of the hybridization products were conducted
automatically on the NanoString nCounter Prep-Station
according to the high sensitivity protocol. The cartridge was
scanned directly after preparation on the NanoString
nCounter Digital Analyzer with maximum sensitivity (555
fields of view).
2.4 NanoString Data Processing
Count data acquired by NanoString analysis were normalized and
analyzed using the R statistical programming environment (The R
Foundation for Statistical Computing, Institute for Statistics and
Mathematics, Vienna, Austria; v. 4.0.3). Beside probes covering the
target genes, a variety of technical and biological controls are
included in the panel. First, eight different negative controls
comprising probes with sequences not complimentary to the
human transcriptome are included to estimate unspecific
binding capability and identify potential alterations in the
hybridization process. Second, six artificial RNA sequences with
predefined concentration are included in the panel (technical
positive controls). Those serve for detection of technical issues
as well as to define the dynamic range of the assay and for
calibration of linear regression, as those controls are diluted in a
predefined manner and can be used as a standard curve. Samples
without linear growth of those inherent positive controls
indicating incomplete hybridization or elevated negative controls
leading to decreased signal to noise ratio have been re-run. Third,
nine reference genes for biological normalization purposes have
Frontiers in Oncology | www.frontiersin.org 4
been included in the panel, covering three high, three medium and
three low expressed targets.

Technical normalization was performed by subtracting the
mean counts from inherent negative controls plus two-times
standard deviation from all target specific counts of each sample,
while biological normalization was carried out using the
geometric mean of included reference genes. In detail, a
normalization factor has been calculated by dividing the
geometric mean of all geometric means of the reference genes
through the sample specific geometric mean of the reference
genes. Afterwards, all target counts get multiplied by this
normalization factor and afterwards mathematically rounded
to integers. In addition to background subtraction, background
noise was excluded by utilization of one-side Wilks t-test of
negative controls and target specific counts in all samples to
identify genes not relevantly expressed (p < 0.05) (36).
2.5 Statistical Analysis
Statistical and graphical analyses were also performed within the
R statistical programming environment (v. 4.0.3)

First, the Shapiro–Wilks test was applied to test for normal
distribution of data (42). For ordinal variables containing two
groups, either the non-parametric Wilcoxon Mann-Whitney
rank sum test or the parametric Student’s t-test was utilized
(43). If ordinal variables contained more than two groups, the
ANOVA (Analysis of variance, parametric) or the Kruskal–
Wallis test (non-parametric) was used instead (44). Double
dichotomous contingency tables were analyzed using Fisher’s
exact test. To test dependency of ranked parameters with more
than two groups the Pearson’s Chi-squared test was used. Group
differences between metric variables were either detected by
Pearson product moment correlation or Spearman’s rank
correlation test (45). Quality control of run data was first
performed by mean-vs-variance plotting to find outliers on
target or sample level. True differences and clusters on both
target and sample level were calculated by correlation matrices.
To further specify the different candidate patterns, both
unsupervised and supervised clustering, as well as principal
component ana lys i s were per formed to overcome
commonalities and differences. Sensitivity and specificity of
markers were determined from receiver operat ing
characteristic (ROC) curves illustrating their performance to
discriminate the studied groups (46, 47). The bootstrap
procedure (1000 iterations) was used for internal validation of
the estimates in the ROC analyses. Pathway analysis is based on
the KEGG database (Kyoto Encyclopaedia of Genes and
Genomes) and was performed using the “pathview” package in
R. Differences were specified by -log2 fold changes between
means (parametric) or medians (non-parametric) of compared
groups. Overall survival (OS) and RFS were calculated using
single-factorial and combined fitting models. Survival analysis
was done by Cox-regression (COXPH-model), and statistical
significance was determined using likelihood ratio test, Wald test
and Score (logrank) test. Kaplan-Meier curves and visualization
via forest plots with a confidence interval of 95% (95% CI) were
March 2022 | Volume 12 | Article 798680
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calculated based on existing survival data and combined survival
curves. Beside p-value, hazard ratio (HR), time-dependent
survival rate and median survival time have been calculated.
Gene set enrichment analysis (GSEA) was performed using the
WEB-based Gene SeT AnaLysis Toolkit (WebGestalt) website
(48). In order to investigate certain signaling pathways,
differential gene expression analysis was visualized on
molecular network maps. These maps were provided by
KEGG (49).

In order to overcome the problem of repeated statistical
testing, p-values were corrected by utilizing the false discovery
rate (FDR). Results were considered significant at p < 0.05 after
adjustment (50).
3 RESULTS

3.1 Gene Expression in CAF-Associated
Pathways Negatively Impact Patient’s
Overall Survival
Predictably, outcome after chemotherapy is linked to reduced
overall survival (p < 0.05). However, in multivariate analysis, it
turned out that this influence was independent of other clinical
covariates like age at time of diagnosis, tumor grading or tumor
stage (p < 0.05, Supplemental Table 4), thereby establishing therapy
outcome as a sole determining factor influencing OS. Additionally,
the influence of age, grading and stage on therapy outcome (RFS < 6
months after therapy completion) was also examined. None of those
influenced therapy outcome in a multifactorial analysis, proving it
an independent factor (Supplemental Table 5).

Genes associated with TGF-b or PI3K-Akt signaling were
subjected to a cox proportional hazard model in order to assert
their expressions’ influence on either OS or RFS (Figure 2A).
Overall, 13 genes were linked to reduced OS (n = 9) or RFS (n =
6). Of those genes only SMURF2 and RHOA overlapped between
both survival variables (Figure 2B).

3.2 High Expression of CAF-Associated
Genes Drives Therapy Failure, While Also
Impacting Patients’ Survival
While the expression of certain genes influences patients’
survival, it may also be possible that specific genes may
constitute a gene expression signature, which can be correlated
to therapy outcome. As such, all genes involved in TGF-b and
PI3K-Akt signaling were subjected to differential expression
analysis in dependance of this outcome. All in all, six genes are
linked to therapy failure (p < 0.05, Table 1). Furthermore,
differential expression of those genes was analyzed whether
they were not (Resistant, “R”) or still responding to
chemotherapy (ongoing response, “onR”). Strikingly, the
expression of all genes was increased in patients without long-
term response to chemotherapy (Figure 3).

Two genes were also linked to OS (CGA, p= 0.018) and RFS
(MMP13, p= 0.0074). Group-based survival differences were
asserted by cox proportional hazard models. The patient
groups were separated based on whether genes displayed high
Frontiers in Oncology | www.frontiersin.org 5
or low expression rates. In either case, high expression of both
MMP13 and CGA were detrimental to patients’ survival
(Supplemental Figure 1). Moreover, we validated the
correlation between gene expression levels and the occurrence
of desmoplastic tumor stroma. The presence of CAFs within the
tumor, quantitatively depicted as FAP positivity, was strongly
linked to the expression of MMP13, AKT1, TGFB3 and
TGFBR2, among other factors (Supplemental Table 6).
3.3 Increased Activity of Signaling
Pathways Involved in Growth Factor and
Fibroblast Signaling Is Associated With
Novel Cell Death Pathways and Cytokine-
Cytokine Receptor Interactions
In the next step, single gene associations with outcome needed to
be put into context with larger signaling pathways. For this
purpose, a gene set enrichment analysis (GSEA) was performed
(Figure 4A), followed by KEGG pathways analysis (Figures 4B, 5).
The latter allowed for accurate examination of differential
expression, depending on durable therapy responses, in
specific pathways.

According to GSEA, genes in association with worsen therapy
outcome were highly expressed in signaling pathways linked to
“Necroptosis”, “Cytokine-cytokine receptor interaction” and
“Alcoholism”. However, they were barely expressed in
signaling pathways linked to “Hypertrophic cardiomyopathy”,
“Malaria” and “Amoebiasis” (Figure 4A).

It is especially interesting that one of the top listed pathways
regarding overexpression of genes correlated to poor outcome is
“Cytokine-cytokine receptor interaction” (Figure 4A). This
necessitated a more precise look into the underlaying pathways
(Figure 4B). Apparently, ligands for alpha-and beta interferon
receptors are highly expressed. Furthermore, TGFB1 and
TGFBR2 were highly expressed as well, which indicates high
TGF-b activity. Other factors, which also showed high
expression were FASLG, IL-1A, CXCL-12, NODAL and GDF7.
TGF-b signaling may also hint towards fibroblast activity which
is underlined by looking at “Pathways in Cancer” (Supplemental
Figure 2). Two important factors, often linked to fibroblast
activity FGF and PDGF (and PDGFR) display strong
expression in association with poor therapy outcome. Their
downstream signaling via Ras finally leads to activation of
matrix-metalloproteinases (MMPs) like MMP13. Other
important signaling pathways, which are also linked to
fibroblast activity are the TGF-b- (Figure 5A), PI3K-Akt-
(Figure 5B), and MAPK (Figure 5C) signaling pathways. Most
genes within those pathways display strong expression in case of
therapy failure. It should be noted that TGF-b signaling is still
partially carried out by canonical SMAD signaling, with SMAD2/
SMAD3 still being active, while the inhibitory SMAD6/7 are
seemingly not expressed in the group responding poorly to
chemotherapy (Figure 5A). However, in comparison, genes
linked to non-canonical TGF-b signaling (MAPK and PI3K-
Akt signaling) are more strongly expressed as indicated by
intensive red coloring (Figures 5B, C)
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3.4 Pronounced Non-Canonical TGF-ẞ
Signaling Can Be Found in Patients
Responding Poorly to Chemotherapy
Across Various Epithelial Ovarian
Cancer Subtypes
Similar observations regarding those specific pathways have been
made in the validation cohort. In contrast to the actual
investigation cohort, the validation cohort was heterogenous
TABLE 1 | Genes associated with poor therapy outcome after chemotherapy
(p < 0.05).

Associated genes: P-value:

MMP13 0.007
EPHA3 0.044
PSMD9 0.023
PITX2 0.027
PHLIPP1 0.0086
CGA 0.049
A

B

FIGURE 2 | Genes in association with CAF-signaling impact patients’ survival. (A) For every gene that is hinted to impact patients’ overall survival (upper group) or
recurrence-free survival (lower group) hazard ratios were calculated. The span of these values, including a risk estimate was visualized via forest plot. Of the original
24 patients available, only 19 were used in the calculations. Five patients were excluded due to missing survival data. The p-value was calculated by Score-logrank
test. (B) Both groups of genes, either in association with overall survival (green) or recurrence-free survival (blue), were compared and overlaps between them were
also highlighted.
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(see Study and Cohort Design). Thus, it was composed of
different malignant entities, including HGSOC. Similarly, TGF-
b, MAPK-, PI3K-Akt activity was increased when correlated to
therapy outcome (Supplemental Figures 3–7), thereby verifying
the influence of CAF-associated signaling on outcome in EOC.
4 DISCUSSION

Among the four EOC subtypes mentioned in the introduction,
HGSOC is the most aggressive (4, 7). Fortunately, its high
proliferation makes HGSOC rather susceptible towards cytotoxic
chemotherapy (3–5, 7). For this reason, chemotherapy has been a
cornerstone in clinical HGSOC management for decades (8–10).
One of the biggest problems, however, is the disease relapse of
HGSOC after initial tumor regression upon receiving
chemotherapy (10, 12). This occurs in the majority of patients,
creating a crucial necessity to explore the mechanical background
behind those relapses and also to provide biomarkers that help
stratifying patients for chemotherapy (10, 12).

A detailed look into the activities of the tumor micro
environment (TME) may be helpful to unveil reasons for poor
therapy outcome in HGSOCs. As a key factor within TME, CAFs
employ miscellaneous functions. One of their best-known
functions is the generation of fibronectin and collagen, two
substantial components of stroma tissue and the extracellular
matrix. Simultaneously, they counterbalance this activity by
production of matrix-metalloproteases (25, 28, 33). The
amassment of stroma within tissue is also called desmoplasia
or DSR, a process often encountered in tumors (51, 52). Besides
organization of the extracellular matrix, CAFs employ humoral
functions as well by releasing various cytokines. TGF-b is
perhaps the most well-studied of them. It has a multitude of
different functions like protecting cells from apoptosis and
Frontiers in Oncology | www.frontiersin.org 7
enabling cell cycle arrest. Furthermore, it regulates the immune
system by inhibiting effector functions of CD8 positive
lymphocytes, NK cells and dendritic cells, while simultaneously
promoting regulatory T cells (53–55). All these effects can also
benefit the tumor, thereby explaining TGF-bs’ often perceived
dual role in cancer (56). While many effects of TGF-b are
mediated via the SMAD signaling cascade (56, 57), it may also
initiate factors related to MAPK and PI3K-Akt signaling
pathways (non-canonical TGF-b signaling) (58, 59). These
pathways are linked with cell proliferation as well as migration,
thereby also enhancing tumor progression (31, 32).

Based on histological and genetic subtyping, five variants of
HGSOC can be distinguished. One of them is the mesenchymal
subtype which is characterized by occurrence of DSR.
Furthermore, this subtype is also associated with a poor
survival prognosis (22, 25, 60). Therefore, we aimed to identify
DSR in HGSOC patients and link it to poor outcome after
platinum-based chemotherapy in patients, defined as having an
RFS shorter than 6 months after therapy completion. DSR was
supposed to be identified based on the expression of specific
genes and activity of specific signaling pathways like MAPK,
PI3K-Akt and TGF-b signaling.

Of the six genes associated with therapy failure, CGA and
MMP13 are certainly the most outstanding, since they were also
linked to reduced OS and RFS, respectively (Supplemental
Figure 1). MMP13 plays a crucial role for epithelial-
mesenchymal transition (EMT) and therefore for cancer
progression (61). Furthermore, HIF-1a induced MMP13
expression appears to promote invasion and metastasis in
ovarian cancer as well (62). CAFs can also induce EMT via
secretion of TGF-b1, which then leads to invasion and metastasis
(40). The secretion of TGF-b by CAFs additionally promote
MMP13 activity (63, 64). CGA encodes for the conserved alpha
chain of human gonadotropins (LH, FSH, hCG). In ovarian
FIGURE 3 | Differential expression analysis of genes affecting therapy outcome. For each gene the number of measured counts were compared between patients
still responding to therapy (Ongoing Response, “onR”) or not (Resistant, “R”). Group-based expression differences were visualized by p-value, which was calculated
by Wilcoxon Mann-Whitney rank sum test.
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A

B

FIGURE 4 | (A) Gene set enrichment analysis of differentially expressed genes regarding therapy outcome in various signaling pathways. Blue: Genes in association
with therapy outcome are strongly expressed in those pathways. Yellow: Genes in association with therapy outcome are barely expressed in those pathways. FDR:
False Discovery rate. Due to testing the expression of certain genes in specific pathways multiple times, the p-values are adjusted for the naturally occurring variance
by the FDR method. (B) Genes expressed in association with “Cytokine-cytokine receptor interaction” and therapy failure in HGSOC. The color code indicates at
differential gene expression whether the patients did not (red) or did respond well to chemotherapy (green). This molecular network map stems from the Kyoto
Encyclopedia of Genes and Genomes (KEGG) database.
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cancer, the levels of gonadotropins (LH/FSH) are increased.
Additionally, it seems they are able to facilitate invasion and
metastasis by overexpression of cyclooxygenase-2 (65).
Chorionic gonadotropin levels are significantly increased when
comparing benign and malignant tumors. Also, gonadotropin
levels moderately correlate with tumor staging and grading (66).
Taken together, both MMP13 and CGA are known to facilitate
invasion and metastasis, which does explain their well-founded
impact on patients’ outcome (Supplemental Figure 1). MMP13
is also strongly linked to CAFs and TGF-b signaling (40, 63, 64).

EPHA3 is a receptor tyrosine-kinase that is involved in various
cell-cell interactions. It is implicated to influence angiogenesis and
metastasis among other factors in various malignancies (67),
especially gastric cancer (68, 69). PSMD9 is a subunit of the 26s
proteasome and is mainly known for regulatory functions. Low
expression of PSMD9 was discussed as a biomarker to assess
patients’ suitability for radiation therapy in breast cancer, since
cells with low expression were more vulnerable for radiation
treatment (70). The transcription factor PITX2 has already been
investigated in ovarian cancer (71, 72). This factor promotes tumor
invasion and is activated by TGF-b and Activin-A (72). Apparently
PITX2 is also an important instigator of epithelial-to-mesenchymal
transition in ovarian cancer (72). PITX2 and EPH3, especially, are
both linked to cancer progression and metastasis, thereby
correlating with patients displaying poor therapy outcome.
Frontiers in Oncology | www.frontiersin.org 9
Additionally, PITX2 expression induced by CAFs can initiate
EMT (40, 72). It is indicated, that PITX2 activity is enhanced by
TGF-b via SMAD signaling in patients displaying poor therapy
outcome within our cohort (Figure 5A).

Though TGF-b signaling, more specifically SMAD-mediated
TGF-b signaling, may be considered to be strongly activated
according to our results, it should be noted that all downstream
components appear weakly expressed, when compared to Cytokine-
Cytokine signaling, MAPK signaling or PI3K-Akt signaling
(Figures 4B, 5B, C). This led us to the conclusion that TGF-b
could function by non-canonical signaling via Ras, MAPK and
PI3K-Akt. Facilitated by TGF-b, they also promote CAF activity
(31, 32, 39, 40, 58, 59). Supplemental Figure 2 displays a strong
expression of FGF, PDGF and HGF in patients with poor therapy
outcome. All three factors are strongly linked to CAF activity and
DSR (39, 73). An enhanced DSR is also associated with resistance to
chemotherapy as drug delivery is compromised by the physical
barrier provided by the stroma (40, 74). Summing up, the
correlation of MMP13 and PITX2 with poor therapy outcome
(Table 1) as well the strong gene expression in CAF-associated
pathways (Supplemental Figure 2 and Figures 4, 5) suggest an
important role of DSR in patients responding poorly to
chemotherapy. CAFs and associated processes have been studied
extensively in EOCs (75–77) and even HGSOCs (78). Our study
contributes to present knowledge by adding a direct comparison of
A

B

C

FIGURE 5 | Genes expressed in association with the TGF-b (A), PI3K-Akt (B) and MAPK (C) signaling pathways and therapy outcome in HGSOC. The color code
indicates at differential gene expression whether the patients did not (red) or did respond well to chemotherapy (green). This molecular network map stems from the
Kyoto Encyclopedia of Genes and Genomes (KEGG) database.
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CAF-associated signaling pathways in both HGSOC and EOC in
general. Taken together, our study underlines the prognostic value
of CAFs and its importance for clinical decisions. As to this day
poor response to platinum-based chemotherapy is a common
problem in HGSOC, predictive biomarkers are urgently needed
for the development of individualized treatment regimens. Patient
stratification for occurrence of DSR or CAFs before platinum-based
may be promising for development of models to predict patients’
therapy response in the future.
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