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Heat stress has a detrimental effect on the physiological and production performance of
buffaloes. Elucidating the underlying mechanisms of heat stress is challenging, therefore
identifying candidate genes is urgent and necessary. We evaluated the response of
buffaloes (n = 30) to heat stress using the physiological parameters, ELISA indexes,
and hematological parameters. We then performed mRNA and microRNA (miRNA)
expression profiles analysis between heat tolerant (HT, n = 4) and non-heat tolerant
(NHT, n = 4) buffaloes, as well as the specific modules, significant genes, and miRNAs
related to the heat tolerance identified using the weighted gene co-expression network
analysis (WGCNA). The results indicated that the buffaloes in HT had a significantly
lower rectal temperature (RT) and respiratory rate (RR) and displayed a higher plasma
heat shock protein (HSP70 and HSP90) and cortisol (COR) levels than those of
NHT buffaloes. Differentially expressed analysis revealed a total of 753 differentially
expressed genes (DEGs) and 16 differentially expressed miRNAs (DEmiRNAs) were
identified between HT and NHT. Using the WGCNA analysis, these DEGs assigned
into 5 modules, 4 of which were significantly correlation with the heat stress indexes.
Interestingly, 158 DEGs associated with heat tolerance in the turquoise module were
identified, 35 of which were found within the protein-protein interaction network.
Several hub genes (IL18RAP, IL6R, CCR1, PPBP, IL1B, and IL1R1) were identified that
significantly enriched in the Cytokine-cytokine receptor interaction. The findings may
help further elucidate the underlying mechanisms of heat tolerance in buffaloes.

Keywords: buffalo, heat tolerant, hub gene, miRNA analysis, transcriptome analysis, WGCNA

INTRODUCTION

Heat stress is a multi-factorial problem that results in the huge economic losses for many livestock
enterprises across the world (Ferreira et al., 2016), particularly in the dairy industry with an
estimated 897–1500 million dollars in annual economic losses (St-Pierre et al., 2003). Water
buffalo (Bubalus bubalis) serve as the important dairy livestock that provides more than 5% of
the world’s milk supply (Jun Jing et al., 2013). These animals are generally healthy animals that
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govern the agricultural economy of several countries and are
typically adjusted to the hot/humid climates compared to other
dairy animals. However, they still feel great distress if exposed
to direct solar radiation or working in the sunlight during
hot weather, thereby affecting their production performance.
For example, increased rectal temperature (RT) and respiratory
rate (RR) result in a reduction of milk production and poor
fertility in buffaloes (Vale, 2010; Maf, 2017; Shenhe et al., 2018).
Three mitigation strategies can be recently used for combating
the adverse effects of summer heat stress in animals, such
as physical modification of the environment (Fournel et al.,
2017), development of genetically heat tolerant breeds (Breede
and Collier, 1986), and nutritional modification (West, 1999).
Notably, breeding for heat tolerance was the most cost-effective
measure for mitigating heat stress (Renaudeau et al., 2012).
A useful measure to genetically dissect the traits associated with
heat stress in livestock can be utilized for cultivating breeds.
However, little information on the identification of candidate
genes related to heat stress in buffaloes has been reported.
Therefore, identifying the candidate genes for the traits of
interest is a feasible strategy that helps in the understanding
of biological function of these genes affecting productive
performance in livestock.

Transcriptome sequencing is a vital platform that encom-
passes a wide variety of applications from simple mRNA
profiling to the identification of non-coding RNA (ncRNA). RNA
Sequencing (RNA-Seq) was initially developed the approach to
transcriptome profiling that can generate lists of expressed genes
in specific tissues to ultimately detect differentially expressed
genes (DEGs) (Wang et al., 2009). It has been widely used for
exploring DEGs associated with complex traits, such as milk
production (Seo et al., 2016), reproduction (Han Ying et al.,
2015), meat quality (Jung et al., 2012), and coat color (Li et al.,
2012). Transcriptome data has also been utilized for constructing
the gene co-expression network (GCN), aiming to identify the
associated genes. GCN is an undirected graph that consists of
genes (nodes) connected to other genes by edges. GCN analysis
can improve the power of gene detection and provide new
insights into the complex traits and diseases by grouping genes
into modules that are enriched for particular biological processes
(Chen et al., 2016). Interestingly, Weighted Gene Co-expression
Network Analysis (WGCNA) method as a network approach, was
widely used for detecting highly co-expressed gene set (Zhang
and Horvath, 2005). Also WGCNA method can group genes into
the specified modules based on the high correlations between co-
expression genes across the samples, resulting in a cluster of genes
that share a similar function (Langfelder and Horvath, 2008; Atila
et al., 2009). Cumulative studies on the transcriptome data using
the WGCNA method to investigate complex traits or disease in
animals, such as obesity (Kogelman et al., 2014), residual feed
intake (Kong et al., 2016), and fat deposition (Oliveira et al.,
2018), and in human, including brain evolution (Oldham et al.,
2006), schizophrenia (Chang et al., 2017), autism (Gupta et al.,
2014), neuroblastoma (Yang et al., 2018b), and eating disorders
(Yang et al., 2018a) has been reported. However, RNA-Seq has
not been used to identify the candidate genes related to heat
tolerance in buffaloes.

Another advantage of transcriptome data is the use for
discovery of ncRNA, including MicroRNAs (miRNAs), Long
non-coding RNAs (LncRNA), and Circular RNA (circRNA). The
miRNAs are ∼22nt small ncRNAs that play critical roles in
various biological processes via regulation of gene expression
and can adversely affect the post-transcriptional mRNA stability
or translation (Bushati and Cohen, 2007). Several studies
have revealed that some miRNAs involved in complex post-
transcriptional regulatory mechanisms response to heat stress in
different animals, such as rodents (Islam et al., 2013), fish (Zhang
et al., 2017), and cattle (Zheng et al., 2014; Sengar et al., 2017).
For instance, let-7d miRNA is involved in response to heat stress
in rat small intestine (Yu et al., 2011) and fish (Zhang et al., 2017).
MiR-145 and miR-125 have also been reported to be involved in
cell responses to heat stress (Leung and Sharp, 2010; Zhang et al.,
2017). However, little information was available about miRNA
expression patterns of heat tolerant in buffaloes.

In this study, we performed the transcriptome analysis of
buffalo blood samples in response to heat stress, aiming to
identify the DEGs between heat tolerant (HT) and non-heat
tolerant (NHT) buffaloes. The miRNA-Seq analysis was also
used for discovery and analysis of miRNA in response to heat
stress between HT and NHT buffaloes. Further, WGCNA was
conducted to investigate the DEGs associated with heat tolerance.
Finally, we identified the hub gene related to heat tolerance
and constructed the mRNA-miRNA interaction network. These
genes and their interaction network will contribute to a better
understanding of the genetic mechanisms underlying the heat
tolerance in buffaloes.

MATERIALS AND METHODS

Experiment Design and Sample
Collection
A total of 30 healthy crossbred female buffaloes (Nili-Ravi ×
Murrah) between 3rd and 4th parity, weighing approximately
562± 16.2 kg, were selected for this study. Roughage, concentrate
supplements, and clean water was fed at libitum.

We used heat stress indexes to evaluate the response of
buffaloes (n = 30) to heat stress, including physiological
parameters, ELISA indexes, and hematological parameters. First,
two physiological indicators, including RT and RR were taken
at 1:00–3:00 pm for 5 consecutive days in August. RT and
RR were measured according to the methods (Shenhe et al.,
2018). Next, a single blood sample in duplicate for each buffalo
was taken at 2:00 p.m. within a 5 days window for plasma
separation and hematological examination. Blood samples were
centrifuged (3000 g for 15 min) to separate the plasma samples,
and used to measure HSP70 (Mlbio, Shanghai, China), HSP90
(Mlbio, Shanghai, China), and cortisol (COR) levels (Mlbio,
Shanghai, China) following the ELISA guidelines. All assays
had intra- and inter-assay coefficients of variation of less
than 10 and 15%, respectively. Moreover, the whole blood
samples were used for testing hematological parameters such as
hemoglobin (Hb), hematocrit (Hct) and red blood cells (RBCs)
using Blood Routine Apparatus (Sysmex Shanghai Ltd., China).
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Temperature and humidity index (THI) was also calculated by
the formula (Kendall and Webster, 2009): THI = (1.8 × AT
+ 32) − (0.55–0.0055 × RH) × (1.8 × AT - 26), where the
ambient temperature (AT) and relative humidity (RH) were
recorded from 7:00 a.m. to 7:00 p.m., once every 2 h, for
5 consecutive days in August.

To better ascertain NH and NHT individuals by using
heat stress indexes, a total of 30 buffaloes was carried out to
perform principal component analysis (PCA) and their result was
displayed in Supplementary Figure S1. According to the PC1,
these animals can be grouped into two groups (HT, n = 7; NHT,
n = 8). Next, we selected a total of 8 buffaloes in the present
study that were used for the mRNA and miRNA sequencing. For
them, 4 buffaloes were the HT group because they had a closer
distance among them; another 4 buffaloes were selected for NHT
group using the similar principle. A blood sample for each buffalo
(n = 8) was collected from the external jugular vein at 2:30 p.m.
in another day of August (THI = 87), and immediately placed in
a non-RNA-enzyme tube containing Trizol reagent (Invitrogen,
United States). Studies have reported heat stress in buffaloes
begin at THI 75 (Dash et al., 2015); thus, our targeted THI of 87
in August, for this study is well within the range for identifying
heat stressed animals.

Transcriptome Profiling and
Small RNA Analysis
For the RNA-Seq, total RNA from each sample was isolated
using an RNA isolation kit (Tiangen, Beijing, China) and purified
using a TruSeq RNA Sample Prep Kit V2 (Illumina Inc., San
Diego, CA, United States) following the manufacturer’s protocols.
Total RNA quality and quantity were determined by Agilent
Bioanalyzer 2100 system (Agilent, Santa Clara, CA, United States)
and SDS-PAGE, respectively. The cDNA library for each sample
was constructed using the Illumina TruSeqTM RNA Sample
Preparation Kit (Illumina, San Diego, CA, United States).
Overall, the poly (A) mRNAs were isolated from the 5 µg
of total RNA using Oligo (dT) magnetic beads (Invitrogen,
United States). The cDNAs were purified and amplified by PCR,
followed by chemically fragmenting to ∼ 200 nt fragments and
enriching with PCR to create the final cDNA libraries. The
sequencing of eight cDNA libraries was performed by Illumina
HiSeqTM 2500 platform (Illumina, United States).

For the small RNA sequencing, small RNA Sample Prep Kit
(Illumina, United States) was used to construct the library from
10 µg of total RNA. Briefly, small RNA fragments with the length
of 18–30 nt were isolated and purified from total RNA for each
sample by 15% denaturing polyacrylamide gel electrophoresis.
Next, 3′ and 5′ RNA adaptors were ligated from the RNA pool
using T4 RNA ligase, followed by the adaptor-ligated small RNAs
subjected to RT-PCR amplification, cDNA synthesis, and PCR
products purified using 10% PAGE to construct a small RNA
library. Eight small RNA libraries were sequenced using Illumina
HiSeqTM 2500 sequencing platform (Illumina, United States).
The raw data of mRNA and miRNA sequencing were deposited
in the NCBI SRA database (BioProject ID: PRJNA517372).

TABLE 1 | Evaluation of physiological and blood parameters in HT and NHT
buffaloes (mean ± SEM).

Parameters HT NHT

HSP70 (pg/mL) 454.26 ± 91.15a 142.86 ± 41.35b

HSP90 (pg/mL) 3972.53 ± 668.49a 845.42 ± 236.96b

Cortisol (ng/mL) 251.64 ± 10.68a 121.46 ± 24.20b

RT (◦C) 38.72 ± 0.10a 39.67 ± 0.06b

RR (breaths/min) 41.67 ± 4.43a 100.12 ± 3.48b

RBCs (106/µL) 5.59 ± 0.19 5.29 ± 0.21

Hb (g/dL) 114.25 ± 4.52 104.75 ± 3.01

Hct (%) 32.28 ± 1.19 29.75 ± 1.06

a,bThe different superscripts between two groups show significant differences
(p < 0.05).

Analysis of Sequencing Data
The main steps and bioinformatics used for data analysis is
shown in Supplementary Figure S2. For RNA-Seq data, the read
quality of raw data was evaluated using the FastQC software
(version 0.11.8)1 with the default settings, and clean reads
were mapped against the reference genome (buffalo genome:
UOA_WB_1) using HISAT2 ver. 2.1.0 (Kim et al., 2015). The
StringTie ver. 1.3.5 (Pertea et al., 2016) software was used
to detect the gene expression levels and normalize by library
and gene length by calculating the Fragments Per Kilobase of
Exon Per Million Fragments Mapped (FPKM) using the buffalo
annotated file as a reference. The differential expression analysis
between HT and NHT was performed using the DESeq2 (Love
et al., 2014) and edgeR (Robinson et al., 2010) R-packages. The
P-value ≤ 0.05 and Fold Change > 1.5 were defined as the cutoff
criteria for the DEGs.

For the small RNA data, clean reads were generated by
removing reads containing any of the following criteria: reads
with 5′ adaptor contaminants, reads without 3′ adaptor, low-
quality reads, reads without the insert tag, reads with poly-A, and
reads shorter than 18 nt. After filtering, clean reads were aligned
to the buffalo genome using the Bowtie ver. 1.1.2 (Langmead
et al., 2009) with the defaults. The identification of mature and
novel miRNAs was performed using the miRDeep2 (Friedländer
et al., 2011). The mature sequences were downloaded from
miRbase ver. 22.12. The transcripts per million (TPM) values
(miRNA total reads/total clean reads × 106) were calculated by
the normalized raw counts of miRNA reads using DESeq2. The
differential analysis between HT and NHT was performed using
the DESeq2 and edgeR. Only the miRNAs with Fold Change > 1.5
and P-value ≤ 0.05 were considered as differentially expressed
miRNAs (DEmiNRAs). The 3′-UTR sequences of buffalo genes
were obtained using the GenomicFeatures (Lawrence et al.,
2013) R-package and TBtools ver. 0.665 (Chen et al., 2018). The
miRanda ver.3.3a (Betel et al., 2008) was further used to predict
the DEmiRNAs targets.

1http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
2http://www.mirbase.org/
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FIGURE 1 | The RT and RR changes in HT and NHT buffaloes with the increase of THI. (A) The RT changes with the increase of THI. (B) The RR changes with the
increase of THI.

Construction of Co-expression Modules
WGCNA (Langfelder and Horvath, 2008) R-package was used
for the network construction of DEGs. First, we calculated
the soft-thresholding power β using the pickSoftThreshold
function of WGCNA. According to the scale-free topology
criterion described by Zhang and Horvath (2005), β = 20 was
chosen in this study because it results in a scale-free topology
index (R2) of 0.90. Subsequently, the co-expression modules
were constructed with the one-step network construction
method using the blockwiseModules function of WGCNA. The
dynamic hierarchical tree-cut algorithm was conducted with
the following parameters: minModuleSize = 30, deepSplit = 3,
mergeCutHeight = 0.25, and networkType = “signed hybrid.”
Finally, the co-expression module structure was visualized using
the plotDendroAndColors function of WGCNA.

Identification of Modules-Heat
Tolerance Relationships
The module-trait relationships were assessed by calculating
the Pearson’s correlations between module eigengenes (MEs)
and the heat stress indexes. ME was calculated by the first
principal component, thereby obtaining the maximal amount of
variation of the module.

Hub Gene Analysis and mRNA-miRNA
Network Construction
Hub genes, a few highly interconnected genes in a co-expression
module, are thought to be biologically important. Module
membership (MM) was defined as the correlation of the gene
expression profile and MEs; Gene significance (GS) was defined
as the absolute value of the correlation between the gene and
traits of interest. Genes with high GS as well as high MM were
chosen for downstream analysis. In the present study, the cutoff
criteria of hub genes related to heat tolerance for DEGs modules
were the following: MM > 0.8, GS > 0.2 and P ≤ 0.05 (Wang
et al., 2017). For these selected hub genes, the protein-protein
interaction (PPI) relationships were analyzed using STRING

database3, with a confidence score > 0.4 and P-value ≤ 0.05
set as the cut-off threshold. Moreover, the relationship between
hub genes and DEmiRNA targets was analyzed, and then their
interaction network was visualized using the Cytoscape ver. 3.6
(Shannon et al., 2003).

Functional Annotation
Potential function of DEGs, miRNA targets, module genes, and
hub genes were annotated by the Gene Ontology (GO) functional
analysis and the Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment using the KEGG Orthology-Based
Annotation System (KOBAS) 3.0 with cutoff criteria of P ≤ 0.05,
aiming to identify their biological significance. The plot results
were visualized using the ggplot2 (Wickham, 2016) R-package.

Quantitative Real-Time PCR
Confirmation of Hub Genes
and DEmiRNAs
For validation of mRNA and miRNA sequencing expression
results, 11 DEGs (including 6 hub genes) and 7 DEmiRNAs
were randomly selected and analyzed by RT-qPCR. Primers
were designed using Primer 5.0 software (Supplementary
Table S1) and synthesized by Sangon Biotech (Shanghai) Co.
Ltd. RevertAid First Strand cDNA Synthesis Kit (Thermo
Fisher Scientific, United States) was used to reverse transcribe
the total RNAs into cDNA following the manufacturer’s
protocols for mRNA. Then qPCR was conducted using
QuantiNova SYBR Green PCR Kit (QIAGEN, Shanghai,
China). For miRNA, specific reverse transcription primers with
step loop were synthesized and reverse transcription were
performed using the RevertAid First Strand cDNA Synthesis
Kit (Thermo Fisher Scientific, United States). The qPCR
was completed using QuantiNova SYBER Green PCR Kit
(QIAGEN, Shanghai, China). GAPDH gene and U6 were used
for normalizing the relative abundance of genes and miRNAs,

3https://string-db.org/
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FIGURE 2 | Expression profiles of buffaloes’ blood samples between HT and NHT. (A) Venn analysis of the identified DEGs from DEGSeq2 and edgeR. (B) Bar plots
are showing the up- and down-regulated DEGs. (C) Venn analysis of the identified DEmiRNAs from DEGSeq2 and edgeR. (D) Bar plots are showing the up- and
down-regulated DEmiRNAs.

respectively. The 2−11Ct method (Livak and Schmittgen, 2001)
was used to analyze the data for all samples in triplicate
technical replicates.

Statistical Analysis
The physiological data, ELISA, hematological parameters
and quantitative real-time PCR assay are expressed as
mean± standard error of the mean (SEM). Significant differences
between samples were determined by Student’s t-test. Principal
component analysis method (PRINCOMP Procedure) in SAS 9.4
was used to screen HT and NHT individuals. Differences were
accepted as significant when adjusted P ≤ 0.05 (Bonferroni).

RESULTS

Animal Source Description
To better ascertain NH and NHT individuals by using heat
stress indexes, the PCA method was conducted to determine the

sample’s exposure to heat stress, and their results were listed in
Table 1. The results indicate that two physiological indicators
including RT and RR in the HT group were significantly lower
(P < 0.05) than those of NHT group, whereas the expression
levels of plasma HSP70, HSP90, and COR were significantly
higher (P < 0.05) compared to NHT group. However, there
was no significant difference in hematological parameters (RBCs,
Hb, and Hct) between the two groups. Moreover, higher THI
was associated with the increase in RT and RR of both HT and
NHT buffaloes (Figure 1). Finally, four buffaloes for each group
(HT group: HT039, HT059, HT773, and HT825; NHT group:
NH043, NH076, NH161, and NH164) were selected and used for
further analysis.

mRNA and miRNA Expression Profiles
Between HT and NHT
To examine and characterize mRNA and miRNA expression
profiles that are related to heat stress, we performed RNA-Seq
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TABLE 2 | List of 16 DEmiRNAs between HT and NHT.

Log2FC

miRNA (HT/NHT) P-value Mature sequence Precursor sequence

Bta-miR-1246 2.42 0.0053 aauggauuuuuggagcagg caacauauuaaauggauuuuuggagcaggaaguuggaauagaggcuuucucagacaaaua

Bta-miR-1260b 2.02 0.0260 aucccaccacugccacca aucccaccacugccaccacugcugcuacugcuccgcaggugcugcugguggugaugaug

auaguccg

Bta-miR-2285az 4.29 0.0347 aaaauccgagugaacuuuuugg aaaaguuugcuuggguuucccuguaagauguuauaggaaaauccgagugaacuuuuugg

Bta-miR-432 1.39 0.0437 ucuuggaguaggucauugggu ucuuggaguaggucauuggguggauccuuuauuucccuaugugggccacuggauggcuccucca

ugucu

Bta-miR-485 1.90 0.0384 gaggcuggccgugaugaauucg agaggcuggccgugaugaauucgauucaucaaagcgagucauacacggcucu

ccucucu

Novel-miR129 6.19 0.0113 gaaaagcucauucggguuuuu gaaaagcucauucggguuuuuccaccugauguuacagaaaacccgauagaacuuuuugg

Novel-miR206 −8.70 2.29E-05 aaaaucugagugaaccuuuuga aaaauguucauucaggguuuucugcaagacguuacaaaaaaucugagugaaccuuuuga

Novel-miR221 −10.96 5.33E-06 agaaagaggcacacccugguc ccagggugugccuguuucuuucgugaccuugcuuuucuggugaagaaagaggcacacccugguc

Novel-miR231 5.67 0.0170 accacaguggcuaaguucu accacaguggcuaaguucuauggcugauaugaccuucaucuugucuaucucucaacuuggucag

uuauuggugg

Novel-miR246 −4.51 0.0306 auaaaguucguucggguuuu auaaaguucguucggguuuucuuguaugacaucacagaaaaacuggaacaaacuuuuugg

Novel-miR353 −4.64 0.0183 agccuccucccggccccga agccuccucccggccccgacuagaccaggcacucaccaaccaggccucugcuagagcugcccgg

aggcaggggcuuc

Novel-miR357 4.29 0.0081 aggacccaggggcaagcagcuu aucugcuuucuucuggaacugcaagaacccaggcaggacccaggggcaagcagcuu

Novel-miR359 5.27 0.0154 accucuucccugcucccccaga aagggagguaggaggggcugggcggagcaugggggccaagcucaccgcccugaccucuucc

cugcucccccaga

Novel-miR474 −5.61 0.0137 ucaaaaauucguucggguuuu ucaaaaauucguucggguuuuuccacaacaucuuacagacaaacccaaaugaacuuuu

Novel-miR536 3.71 0.0284 uaccccugccuggacaccuggu uaccccugccuggacaccugguagagcgugucucuucccgaggcagauggaccaaguuuccagg

cagggggacc

Novel-miR669 1.91 0.0261 uuggcuuccccccuccccaga caggggugggcagggaugcuaaggcuccguuuccccuuggcuuccccccuccccaga

and miRNA-Seq analysis using blood samples from HT and
NHT animals. For RNA-Seq data, a total of approximately 52.29
million raw reads were obtained from each sample. After quality
control, we obtained an average of approximately 53.19 million
and 50.86 million clean reads from HT and NHT, respectively,
for further analysis (Supplementary Table S2). For the miRNA-
Seq data, an approximate average of 149.40 million raw reads
were generated from each sample, and an approximate total of
131.43 million and 147.58 million clean reads from HT and NHT
groups were used for further analysis (Supplementary Table S3).
Moreover, the sequence length distribution of each clean read
ranged from 20 to 24 nt (Supplementary Figure S3).

Herein, a total of 33,696 mRNAs and 418 miRNAs in response
to heat stress were detected between HT and NHT using RNA-
Seq and miRNA-Seq data, of which 753 genes and 16 miRNAs
were differentially expressed. Venn analysis of RNA-Seq data
showed that 576 DEGs was shared between DESeq2 and edgeR
method, 141 DEGs was the specific-DESeq2, and 36 DEGs was
unique for the edgeR (Figure 2A). Compared with those in NHT,
a total of 412 and 341 DEGs in HT were up-regulated and down-
regulated, respectively (Figure 2B). The results of GO and KEGG
analysis for the DEGs are listed in Supplementary Table S4. For
miRNA-Seq data, a total of 16 DEmiRNAs were identified using
the DESeq2 and edgeR, 9 of which were shared between two
methods (Figure 2C). Among them, 11 up-regulated and 5 down-
regulated DEmiRNAs were discovered in HT group compared to
NHT group (Figure 2D). The characteristics of 16 DEmiRNAs
between HT and NHT are displayed in Table 2.

Co-expression Network Analysis and
Modules Identification
In order to identify heat tolerance-associated modules and genes,
WGCNA was performed on the identified DEGs. A total of
6 co-expression modules was identified (Figure 3A), with 69
DEGs clustered into the gray module. The turquoise module
has the largest number of DEGs (220), while the green
module has the smallest number of DEGs (68). The heat
map for each module gene was showed in Supplementary
Figure S4. All the modules were significantly enriched in the
biological process term, displaying the strongest correlation with
categories of cell communication (blue module), proteinaceous
extracellular matrix (brown module), single organism signaling
(green module), biological regulation (turquoise module), and
cellular process (yellow module) (Figure 3B). KEGG enrichment
analysis revealed that the modules with the largest gene number
were the yellow, turquoise, and blue modules, which corresponds
to the MAPK signaling pathway, Cytokine-cytokine receptor
interaction, and B cell receptor signaling pathway (Figure 3C).

To better explore the module-trait significance, we performed
association analysis between heat stress indexes and modules. As
shown in Figure 3D, turquoise and yellow modules both showed
significantly positive correlation with RT (r = 0.79, P = 0.02;
r = 0.74, P = 0.03) and RR (r = 0.91, P = 0.002; r = 0.87,
P = 0.006), and displayed significantly negative correlation with
the plasma HSP70 (r =−0.77, P = 0.02; r =−0.72, P = 0.05), COR
(r = −0.81, P = 0.02; r = −0.81, P = 0.01), and HSP90 (r = −0.7,
P = 0.05; r = −0.8, P = 0.02) levels. The green module genes
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FIGURE 3 | Identification of modules and functional annotation analysis for the module genes. (A) Module detection for DEGs. (B) GO analysis for the module
genes. (C) KEGG enrichment analysis for module genes. (D) Module-trait relationships in DEGs.

were found to be significantly positively correlated with plasma
HSP70 (r = 0.89, P = 0.003), HSP90 (r = 0.89, P = 0.003) and
COR (r = 0.86, P = 0.006) levels, and negatively correlated with
RT (r = −0.71, P = 0.05) and RR (r = −0.83, P = 0.01). The blue
module had a positive correlation with plasma HSP70 (r = 0.70,
P = 0.05) levels and negative correlation with RR (r = −0.81,
P = 0.02), respectively.

Hub Genes Analysis
To further identify hub genes in the modules related to heat
tolerance, we firstly qualified the relevance between eigenvalue
of network modules and heat stress indexes. As shown in
Supplementary Figure S5, the green module had highest gene

significance for plasma HSP70, COR, and HSP90 levels than
other modules (P < 0.05). For the RT and RR, the turquoise
module exhibited a higher ability to indicate external traits
accurately compared to other modules (Figures 4A,C). Our
GO and KEGG analysis also showed that the turquoise module
genes were significantly enriched in the Cytokine-cytokine
receptor interaction, suggesting that these genes might be
related to heat stress.

In the next step, we calculated correlation between GS and
MM values of the turquoise module genes, aiming to identify
hub genes in the interesting module. The scatter plots of GS
related to RR and RT versus MM in the turquoise module
are shown in Figures 4B,D. A total of 158 genes, as hub
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FIGURE 4 | Hub genes detection in the turquoise module for RT and RR. (A) Histogram of correlation between module genes and RR. (B) Scatter plot of module
eigengenes in the turquoise module for RR. (C) Histogram of correlation between module genes and RT. (D) Scatter plot of module eigengenes in the turquoise
module for RT.

genes, highly associated with RR and RT traits in the turquoise
module were identified, 35 of which were found within the
PPI network using STRING analysis. The 35 DEGs can be
treated as “real” hub genes (Table 3), and their PPI within
dotted box can be visualized in Figure 5. Moreover, we found
that bta-miR-1246 was targeted to the ABCC4 genes that can
form an mRNA-miRNA network with the selected hub genes.
Interestingly, a total of 6 hub genes were significantly enriched
in the Cytokine-cytokine receptor interaction. Our finding
suggests that the identified hub genes may be invovled in the
biological process of RT and RR. Moreover, the results of qPCR
showed that the expression level of the 6 hub genes displayed
a similar tendency with that of the RNA-Seq (Figure 6). The

expression levels of DEGs and DEmiRNAs were validated by
qPCR (Supplementary Figure S6).

DISCUSSION

Heat stress has a detrimental effect on animal growth and
development, particularly the reduction of productive perfor-
mance of these species (Aggarwal and Upadhyay, 2012;
Wolfenson and Roth, 2018). Reducing the harm caused by heat
stress has always been one of the biggest objectives of farmers
and researchers. Measuring the heat stress index should be
prioritized to provide some insights into the effect of heat stress

Frontiers in Genetics | www.frontiersin.org 8 March 2019 | Volume 10 | Article 209

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-10-00209 March 12, 2019 Time: 10:1 # 9

Liu et al. Hub Genes for Heat Tolerance

TABLE 3 | Description of 6 hub gene in the Cytokine-cytokine receptor
interaction pathway.

Gene Full name P-value MM GS for RT GS for RR

IL18RAP Interleukin 18 receptor
accessory protein

0.0490 0.9102 0.6012 0.6075

IL6R Interleukin 6 receptor 0.0222 0.9754 0.7540 0.7739

CCR1 C-C Motif chemokine
receptor 1

0.0218 0.9136 0.7065 0.6424

PPBP Pro-platelet basic
protein

0.0163 0.9010 0.6308 0.7932

IL1B Interleukin 1 beta 0.0467 0.9573 0.6690 0.7102

IL1R1 Interleukin 1 receptor
type 1

0.0119 0.8833 0.6744 0.6471

on the productive performance of livestock. The RT and RR,
for example, can serve as the physiological indicators of heat
tolerance in cattle, which can quantify the changes in homeostasis
by heat stress (Bianca, 1963). In the present study, our data
showed that the physiological indicators including RT and RR
in the HT group were significantly lower (P < 0.05) than that
of the NHT group, which is similar to the results described by

Garner et al. (2017). Subsequently, several studies reported that
high temperature increase the expression levels of plasma HSP90
and HSP70 more markedly in HT than in NHT animals, such
as cattle (Deb et al., 2014) and rodents (Jain et al., 2014). This
is also supported by our findings. Moreover, our results showed
that plasma COR levels in the HT buffalo group were higher
than that of the NHT group, similar to previous studies of cattle
(Hammond et al., 1996) and buffaloes (Shenhe et al., 2018). These
findings also showed that the selection of buffalo samples in the
present study is feasible and can be used for further analysis.

Transcriptome sequencing has become a powerful tool for
identifying the candidate genes related to the complex traits
or disease. Some candidate genes related to heat stress were
identified in animals such as cattle (Srikanth et al., 2017),
poultry (Coble et al., 2014), and swine (Yue et al., 2016).
However, the changes of molecular mechanisms in animals under
heat stress were complex, especially because information on
the identification of candidate genes related to heat stress in
buffaloes is limited. Therefore, to our knowledge, this is the
first study to identify the candidate genes associated with heat
tolerance in buffaloes using the transcriptome data. A total of
341 down-regulated and 412 up-regulated genes were identified

FIGURE 5 | mRNA-miRNA network construction analysis. The genes in the dotted box were found within the PPI network; The circle represents genes; The
rhombus represents miRNAs; The depth of gene’s color represents the its expression difference in RNA-Seq.
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FIGURE 6 | Validation of 6 hub genes by quantitative RT-PCR.

between HT and NHT. The GO analysis showed that most
DEGs were significantly enriched in the top 5 categories
of cellular process, single-organism process, single-organism
cellular process, biological regulation, and cytoplasm. Kapila et al.
(2016) found that most heat responsive genes in buffaloes were
significantly enriched in several biological processed including
the cellular process, metabolic process, response to stimulus, and
biological regulation, indicating that the identified DEGs in the
present study were available. Of note, most of the DEGs were
strongest enriched in the MAPK signaling pathway, suggesting
that these DEGs may be involved in the regulation of heat
tolerance in buffaloes. Moreover, a total of 16 DEmiRNAs
was identified, 5 of which were the mature miRNAs and the
remaining were the novel miRNAs. For them, a total of 11 and
5 DEmiRNAs were up-regulated and down-regulated between
HT and NHT groups, respectively. A total of 87 target genes
were predicted from the identified DEmiRNAs. The GO and
KEGG analysis showed that most of the DEmiRNA target
genes were significantly enriched in the negative regulation
of cell migration and Natural killer cell mediated cytotoxicity,
respectively. Notably, Jiang et al. (2004) reported that suppression
of Natural killer cell mediated cytotoxicity was induced by cold
stress, suggesting that the pathway might be related to heat stress.

To further explore the co-expression trend of DEGs, we
performed the WGCNA analysis. They can be grouped into
5 modules, with the size ranging from 68 (green module)
to 220 (turquoise module). Interestingly, four module genes
(turquoise, yellow, blue, and green) were significantly correlated
with physiological parameters (RT and RR) or ELSIA indexes
(HSP70, HSP90, and COR). For the plasma HSP70, HSP90 and
COR levels, the green module had the highest gene significance
compare to other modules. Most genes of the green module
were significantly enriched in the single organism signaling and
cell communication. Notably, cell communication has also been
reported to be involved in stress response (Lee et al., 2013).
For the RT and RR, the turquoise module showed the highest

gene significance, followed by the yellow module, and other
modules. KEGG analysis revealed that most of the genes in
the turquoise and yellow modules were significantly enriched in
the Cytokine-cytokine receptor interaction and MAPK signaling
pathway, respectively. Remarkably, Cytokine-cytokine receptor
interaction pathway has also been demonstrated to be involved in
stress response in humans (Schwaiger et al., 2016), renal MDCK
I cells (Rasmussen et al., 2018), chicken thymus (Zhou et al.,
2018), and rats (Li et al., 2013). This finding suggested that
the turquoise module genes may be involved in the biological
process of heat stress in buffaloes as well. Moreover, a total
of 7 DEGs (including LOC102409533, JUN, GADD45G, CD14,
DUSP1, PLA2G4F, and HSPA1L) in the yellow module were
enriched in the MAPK signaling pathway. Previous studies have
demonstrated that the MAPK signaling pathway was activated in
response to many extra-cellular stimuli including UV radiation,
osmotic shock and heat shock (Deng et al., 2007; Muthusamy and
Piva, 2010; Srikanth et al., 2017). These results suggested that
these DEGs can be considered candidate genes related to heat
stress in buffaloes. Notably, some genes including HSPA1 (Ortega
et al., 2016), DUSP1 (Kapila et al., 2016), and CD14 (Selkirk
et al., 2009) and GADD45G (Ying et al., 2005) were reported
to be associated with heat stress. Meanwhile, blue module had
a positive correlation with plasma HSP70 levels and negative
correlation with RR, respectively. KEGG analysis revealed that
most blue module genes were significantly enriched in the B cell
receptor signaling pathway. Of note, Rothstein and Guo (2010)
reported that B cell receptor signaling pathway was related to
immune response, suggesting that the pathway might mediate the
immune response induced by heat stress.

Identification of hub genes is critical for exploring heat-
resistant mechanisms. Verma et al. (2000) highlighted RR and
RT were the most sensitive indices of heat tolerance among all
the physiological reactions studied. Consequently, in the present
study, we focused on the identification of hub genes related
to RR and RT. A total of 3 modules (turquoise, yellow, and
green) were found to have the strongest correlations with RR
and RT, while the turquoise module had the most significantly
positive correlation with RR and RT. Our findings indicate that
a total of 158 genes in the turquoise module can be considered
as hub genes based on the selection criteria reported by Wang
et al. (2017). Using this criterion, 35 genes were found within
the PPI network using STRING analysis. Notably, most of
these genes (IL18RAP, IL6R, CCR1, PPBP, IL1B, and IL1R1)
were significantly enriched in the Cytokine-cytokine receptor
interaction, suggesting that the 6 genes were treated as “real” hub
genes. It should noted that IL1B and IL1R1 were reported to be
involved in heat stress and immune response (Slawinska et al.,
2016; Rowland et al., 2018). Collier et al. (2008) reported that heat
stress first activated HSF1, followed by increased the expression
of heat shock proteins, reduction in fatty acid metabolism
and endocrine system activation of the stress response, and
finally the immune response system activation. Moreover, we
found that bta-miR-1246 was targeted to the ABCC4 gene that
can form an mRNA-miRNA network with the selected hub
genes. Interestingly, bta-miR-1246 has been demonstrated to be
involved in heat stress response in cows (Zheng et al., 2014;
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Hu et al., 2018). The ABCC4 gene, known as MPR4, was
reported to be involved in cellular defense against oxidative stress
(Ronaldson and Bendayan, 2008). Accordingly, these hub genes
can serve as the candidate genes involved in heat stress and
immune response in buffaloes, but further research is needed.

CONCLUSION

We compared the heat stress indexes between HT and NHT
buffaloes, indicating that HT buffaloes had a significantly lower
RT and RR and displayed a higher plasma heat shock protein
(HSP70 and HSP90) and COR levels compared to NHT buffaloes.
A total of 753 DEGs and 16 DEmiRNAs were identified between
HT and NHT buffaloes. Using the WGCNA analysis, a total of
5 modules were found to be associated with heat stress indexes.
Importantly, six hub genes (IL18RAP, IL6R, CCR1, PPBP, IL1B,
and IL1R1) in the turquoise module related to heat tolerance were
identified, which is involved in the Cytokine-cytokine receptor
interaction pathway. Finally, we constructed the mRNA-miRNA
interaction network with the hub genes based on a combination
analysis of RNA-Seq and miRNA-Seq. These findings will help in
exploring underlying heat-resistant mechanisms in buffaloes.
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