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Context: Hypothalamic proopiomelanocortin (POMC) is processed to a-melanocyte-stimulating hor-
mone, which interacts with the melanocortin antagonist agouti-related protein (AgRP), to regulate
energy balance. The POMC-derived opioid peptide B-endorphin (8-EP) also affects feeding behavior via
interactions with brain u-opioid receptors (MORs), including autoinhibitory interactions with MOR
expressed by POMC neurons. The opioid antagonist naltrexone (NTX) stimulates POMC neurons in
rodents and decreases food intake.

Objective and Design: The effect of NTX on brain POMC in humans was assessed by measuring
POMC peptide concentrations in lumbar cerebrospinal fluid (CSF). AgRP and cortisol levels were also
measured because both are inhibited by opioids. In a double-blinded crossover study, 14 healthy subjects
were given NTX (50 mg daily) or placebo for either 2 or 7 days.

Results: CSF B-EP levels increased after 2 and 7 days of NTX treatment; CSF POMC levels did not
change, but the 8-EP-to-POMC ratio increased. CSF AgRP levels did not change, but plasma AgRP
levels tended to increase after NTX (P = 0.06). Cortisol increased in plasma and CSF after NTX
treatment; these changes correlated positively with changes in AgRP levels.

Conclusion: Opioid antagonism stimulates POMC peptide release into CSF in humans. The increase in
the CSF B-EP-to-POMC ratio could indicate selective release of processed peptides or an effect on POMC
processing. Furthermore, AgRP and cortisol stimulation by NTX may mitigate POMC-induced decrease
in food intake. It remains to be determined if biomarkers in CSF and plasma could be used to predict
responses to pharmacotherapy targeting the melanocortin system.
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Endogenous opioid peptides, including B-endorphin (8-EP), dynorphins, and enkephalins,
exert multiple effects on feeding behavior that are mediated by brain w-, k-, 8-opioid receptors,
respectively [1-3]. These three classes of endogenous opioid peptides have distinct effects on
food intake, nutrient selection, and reward. The role of 8-EP, which interacts with u-opioid
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fluid; ELISA, enzyme-linked immunosorbent assay; HPA, hypothalamic-pituitary-adrenal; LP, lumbar puncture; MC4-R, mela-
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receptors (MORSs), in the regulation of energy balance has been extensively studied but is still
not entirely understood.

When injected into the brain, 8-EP has short-term stimulatory effects on food intake [4, 5].
B-EP can also interact with MORs expressed by hypothalamic proopiomelanocortin (POMC) and
agouti-related protein (AgRP) neurons [6, 7] that play a key role in regulating energy balance
[8-10]. POMC is a prohormone that is processed into several active peptides, including the
melanocortin receptor (MC4-R) agonist a-melanocyte-stimulating hormone (a-MSH), which
inhibits food intake and increases energy expenditure. AgRP is a MC4-R antagonist that in-
creases food intake and inhibits energy expenditure. Deficiencies in POMC synthesis, peptide
processing, or MC4-R signaling cause obesity in rodents and humans [11-13]. POMC is also
processed to B-EP, which can antagonize the effects of a«-MSH on food intake [4]. Electro-
physiological studies show that MORs on POMC neurons function as autoinhibitory receptors in
response to the release of B-EP [14]. B—EP has also been shown to inhibit AgRP neurons [15].

The opioid receptor antagonist naltrexone (NTX) has high affinity for MORs and can inhibit
food intake. NTX has well-established stimulatory effects on POMC neurons, and it has been
postulated that NTX decreases food intake in part by stimulating POMC-derived a-MSH
release. In rodents, NTX acutely stimulates POMC peptide release and POMC mRNA levels
subsequently increase [16—18]. This is accompanied by an increase in POMC prohormone
levels in the hypothalamus and a decrease in hypothalamic «-MSH and B-EP content,
resulting in a marked decline in the ratio of «-MSH and 8-EP to POMC [18].

NTX has also been shown to decrease food intake in humans on a short-term basis, but
when it is used alone, it has not been highly effective in producing weight loss [19]. However,
effectiveness increases when NTX is used in combination with bupropion, a dopamine and
norepinephrine reuptake inhibitor, and this is the basis for the new US Food and Drug
Administration-approved weight loss combination drug Contrave (NTX/bupropion; Orexigen
Therapeutics, La Jolla, CA) [20]. It has been postulated that stimulation of POMC by
bupropion can be enhanced by combination therapy with NTX. This has been confirmed by
electrophysiological studies showing that bupropion stimulates POMC neurons and that NTX
potentiates this stimulation by blocking B-EP—-mediated POMC autoinhibition [21].

Little is known about the effects of NTX on brain POMC in humans or why NTX alone does not
have more robust effects on energy balance. In this study, we tested the hypothesis that the effects
of NTX on brain POMC in human subjects could be assessed by measuring changes in cere-
brospinal fluid (CSF) neuropeptide concentrations. Prior rodent studies have shown that CSF
levels of POMC correlate with hypothalamic POMC mRNA levels, and we have shown that high
levels of POMC are present in human CSF and may be a biomarker for hypothalamic POMC
activity [22, 23]. We also hypothesized that NTX could induce changes in other neuropeptide and
hormone systems that could attenuate the effects of POMC stimulation on energy balance, thus
providing an explanation for the relatively mild effect of NTX on energy balance. Therefore, we
measured AgRP levels in CSF and plasma, because NTX can stimulate AgRP mRNA levels in the
rodent hypothalamus [18] and there is evidence that plasma AgRP may be a biomarker of brain
AgRP activity [24]. Effects of NTX on cortisol were also studied, because endogenous opioids
inhibit the hypothalamic-pituitary-adrenal (HPA) axis and stimulation of the HPA axis by NTX
could attenuate effects of POMC stimulation on food intake [25, 26]. Accordingly, we have ex-
amined the effects of 2 and 7 days of NTX vs placebo treatment on POMC, B8-EP, AgRP, and
cortisol levels in CSF and on AgRP and cortisol levels in plasma in 14 healthy subjects. Effects of
NTX on leptin, soluble leptin receptor (SOB-R), and insulin concentrations and on measures of
hunger or satiety as assessed by the visual analog scale (VAS) were also studied.

1. Materials and Methods
A. Study Participants and Protocol

Fourteen healthy subjects, 10 men and four women, ranging from 19 to 47 years of age,
completed the study. Women were studied in the early follicular phase of their menstrual
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cycle. There were eight lean, three overweight, and three obese participants (body mass index
range, 18 to 36 kg/m?). An additional subject developed a mild headache after the first lumbar
puncture (LP) and, per study protocol, did not undergo a second LP. All participants were
nonsmokers, had no history of substance abuse, and were not taking medications. Subjects
were excluded if they had any clinically significant medical condition or history of eating
disorder or recent weight change =5% over the previous 6 months. All participants had a
screening visit to confirm their eligibility, which included a physical examination, screening
blood work (i.e., complete blood cell count and metabolic panel), electrocardiogram, and urine
toxicology to screen for opiate use. Pregnancy was ruled out by B8-human chorionic gonad-
otropin test.

The study was a double-blinded, crossover study with seven subjects per group. The first
group received 2 days of NTX or placebo in random order and the second group received 7 days
of NTX or placebo in random order. The dosage of NTX was 50 mg daily at 9:00 pPm. An LP was
performed in the morning between 8:00 AM and 10:00 aM after a 12-hour overnight fast on day
31in the first group and on day 8 in the second group. Then, 4 to 12 weeks later, subjects were
crossed over from their original random assignment to receive either NTX or placebo for 2 or
7 days and had a second LP on day 3 or 8.

A blood sample was obtained and participants completed a VAS questionnaire at the time
of the two LPs. All LPs were performed by one of the study authors (R.S.) using a 25-G
Whitcare needle; the first 0.5 mL of CSF was discarded before collection of the 10-mL study
sample. The procedure was well tolerated, as we have previously reported [27]. This study was
approved by the Columbia University Institutional Review Board and written informed
consent was obtained from all subjects before their participation.

B. Assays

POMC was measured by two-site enzyme-linked immunosorbent assay (ELISA) [22, 28];
there is no cross-reactivity with adrenocorticotropic hormone, a-MSH, or B-EP. Affinity-
purified human 31K POMC was used for standards; it has a sensitivity of 8 fmol/mL. 3-EP was
measured with a newly developed two-site ELISA that is specific for 3-EP and does not cross-
react with B-lipotropin or POMC. This assay uses the same antibody used in the radioim-
munoassay (RIA) for capture and a monoclonal antibody [MAB5276; Research Resource
Identifier (RRID): AB_95197; Millipore, Temecula, CA] to met-enkephalin (N-terminal of
B-EP) that was biotinylated for detection; it has a sensitivity of 2 pg/mL [24]. For comparison,
B-EP was also measured by RIA as previously described, and has 3% cross-reactivity with
POMC [29].

AgRP was measured by ELISA and RIA with relative specificities for full-length AgRP and
AgRPgs.139, respectively [22, 30]. The ELISA (R&D Systems, Minneapolis, MN) uses full-
length human AgRP standard, which has 17% cross-reactivity on a weight basis with AgRPg3 13.
The RIA uses an antibody (RRID: AB_2686900) provided by Dr. G. Barsh (Hudson Alpha In-
stitute for Biotechnology, Huntsville, AL) and human AgRPgs3.132 as the standard (Phoenix
Pharmaceuticals, Burlingame, CA); it has 20% cross-reactivity with full-length AgRP on a weight
basis.

Cortisol was measured in CSF by sensitive ELISA (Salimetrics, State College, PA) and in
serum by chemiluminescent immunometric assay (Siemens Healthcare Diagnostics, Tar-
rytown, NY). The sensitivity of the Salimetrics ELISA is to 0.007 pg/dL. Leptin and sOB-R
were measured in plasma and CSF by ELISA (R&D Systems) [22]. Insulin was measured by
Immulite1000 (Siemens Healthcare Diagnostics).

C. Statistical Analysis

Data are expressed as mean * standard error of the mean (SEM). CSF hormone and neu-
ropeptide levels after placebo and NTX treatment were analyzed by paired ¢ test or paired
Wilcoxon signed-rank test. Correlations were determined by linear regression analysis using
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the Pearson correlation unless indicated differently for nonparametric analysis. Percent
changes in hormone and neuropeptide levels after NTX vs placebo were compared in lean and
overweight or obese (OW/OB) subjects and analyzed by unpaired ¢ test. Analyses were
performed using Prism 6.0 (GraphPad Software, La Jolla, CA).

2. Results
A. Effects of NTX on Leptin and Insulin Levels, Body Weight, and VAS

Naltrexone was well tolerated. There were no significant changes in body weight, serum
insulin levels, plasma sOB-R levels, or in measures of hunger or satiety as assessed by the
VAS (Table 1). Concentrations of leptin in plasma and CSF did not change significantly in
the group as a whole (Table 1). However, plasma and CSF leptin levels decreased signif-
icantly in lean subjects after NTX treatment (P =0.04), but there was no significant change
in the OW/OB subjects (Fig. 1). When the percent changes in plasma and CSF leptin levels
were compared in the lean and OW/OB groups, there were significant differences in the
response of both plasma (P =0.03) and CSF (P = 0.004) leptin to NTX in the lean vs OW/OB
groups (Fig. 1).

B. Effects of NTX on POMC and B-EP Levels in CSF

The mean concentration of POMC in CSF did not change significantly in the group as a
whole (n=14) after receiving NTX (250 = 19.3 fmol/mL) compared with placebo (243 *
18 fmol/mL; Fig. 2). No differences in CSF POMC were noted at either the 2- or 7-day points
or when responses to NTX by lean vs OW/OB subjects were compared. In contrast, the
concentration of 8-EP in CSF increased almost twofold, from 1.15 * 0.10 fmol/mL to 2.03 =
0.18 fmol/mL, after NTX, and the 8-EP-to-POMC molar ratio increased by 80% (P < 0.001;
Fig. 2). Consistent increases in CSF B-EP levels were seen after both 2 and 7 days of NTX
treatment (Fig. 2). CSF B-EP levels increased after NTX treatment in both the lean and
OW/OB subjects, but the percent increase was significantly greater in the OW/OB group
(138% * 35%) compared with the lean subjects (562.1% *+14%; P = 0.02). A significant
increase in CSF B-EP levels after NTX treatment was also noted when B-EP level was
measured by the less-specific RIA; CSF levels increased from 22.6 *+ 2.1 fmol/mL to 27.6 +
2.8 fmol/mL (P = 0.005).

C. Effects of NTX on AgRP Levels in CSF and Plasma

Plasma AgRP levels (measured by ELISA, which is more specific for full-length AgRP)
tended to increase after NTX treatment but the change was not statistically significant (P =
0.06; Fig. 3). The percent change in plasma AgRP was not different in lean (7.4% * 5.4%) vs

Table 1. Effects of NTX vs Placebo on Body Mass Index, Hormone Levels, and Measures of Hunger
and Satiety

Placebo (n = 14) NTX (n = 14) P Value

Body mass index, kg/m? 25.8 £ 1.3 259 + 1.3 0.99
Serum insulin, pIU/mL 10.6 = 2.3 12.1 £ 2.5 0.68
Plasma leptin, ng/mL 10.6 = 4.4 9.5+ 3.5 0.66
Plasma sOB-R, ng/mL 23.0 1.5 24.6 = 1.7 0.06
CSF leptin, pg/mL 132 = 27 134 = 30 0.86
VAS

Hunger 5.51 = 0.78 4.65 + 0.79 0.44

Satiety 4.91 *+ 0.66 5.59 * 0.60 0.46

Data given as mean * standard error of the mean.
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Figure 1. Mean = SEM changes in (upper panels) plasma and (lower panels) CSF leptin
levels after placebo or NTX treatment in lean and OW/OB subjects. (right-side panels) The
percent changes in plasma and CSF leptin levels after NTX treatment vs placebo were
significantly different in the lean vs the OW/OB groups. *P < 0.05; **P < 0.01.

OW/OB (16.4% = 8.5%) subjects. There was no change in CSF AgRP levels measured
by ELISA after NTX treatment, and percent change was not different between lean and
OW/OB subjects. There was no change in CSF AgRP levels measured by RIA (which is more
specific for AgRPg5.139) in the group as a whole. However, a distinct difference was noted
when the percent change in CSF AgRP level was compared between lean and OW/OB
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Figure 2. Mean + SEM CSF POMC and B-EP levels and B-EP-to-POMC ratio after placebo
or NTX treatment (upper panels). Individual changes in CSF B-EP levels after placebo vs
NTX treatment for (lower left panel) 2 days or (lower middle panel) 7 days. (lower right

panel) The percent change in CSF B-EP levels after NTX treatment was greater in the OW/OB
than the lean subjects. *P < 0.05; ***P < 0.001.
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Figure 3. Individual changes in plasma AgRP levels after placebo and NTX treatments
(upper left panel). (upper right panel) Percent change in plasma AgRP levels after NTX vs
placebo treatment in lean vs OW/OB subjects. Mean = SEM CSF AgRP level after placebo or
NTX treatment measured by (lower left panel) ELISA or (lower middle panel) RIA. (lower
right panel) The percent change in CSF AgRP level measured by RIA was significantly
greater in the OW/OB than the lean subjects. **P < 0.01.

subjects (Fig. 3). CSF AgRP levels decreased by 21.6% = 14% after NTX treatment in the
lean subjects, whereas it increased by 27.5% + 14% in the OW/OB subjects (P=0.006). There
was a significant correlation between the percent change in CSF AgRP level (measured
by RIA) and the percent changes in CSF B-EP level (r=0.601; P=0.02) and leptin (r = 0.582;
P =10.03).

D. Effects of NTX on Plasma and CSF Cortisol Levels

Plasma cortisol levels increased from 12.4 = 0.85 pg/dL to 15.6 = 1.0 wg/dL after NTX
treatment (P = 0.006) and CSF cortisol increased from 0.479 *= 0.03 pg/dL to 0.564 +
0.03 wg/dL (P = 0.006; Fig. 4). Overall plasma cortisol and CSF cortisol concentrations in-
creased by 28% and 18%, respectively, after NTX treatment. Similar increases were detected
at the 2- and 7-day points, but, when analyzed separately, the increase in plasma cortisol level
was only significant at 7 days and the increase in CSF cortisol level was only significant at
2 days. Individual changes in CSF cortisol after 2 and 7 days of NTX treatment are depicted in
Figure 4.

The increases in plasma and CSF cortisol levels were similar when lean and OW/OB
subjects were compared. The correlation between the changes in plasma and CSF cortisol
levels was r = 0. 715 (P = 0.005 for Spearman correlation). There was a significant positive
correlation between the changes in plasma AgRP levels and changes in plasma cortisol levels
(r=0.655; P=0.008) and CSF cortisol levels (r =0.588; P=0.02) after NTX treatment (Fig. 5).
In contrast, there were no significant correlations between changes in CSF AgRP levels
measured by either ELISA (r = 0.310; P = 0.28) or RIA (r = 0.200; P = 0.49), and changes in
plasma or CSF cortisol levels.
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Figure 4. Mean = SEM (upper left panel) plasma cortisol level and (upper right panel) CSF
cortisol level after placebo or NTX treatment. Individual changes in CSF cortisol levels after
placebo vs NTX treatment for (lower left panel) 2 days or (lower right panel) 7 days. ***P = 0.006.

3. Discussion

Using CSF neuropeptide measurements as a surrogate for brain POMC activity, this study
examined the effects of NTX treatment in humans. Significant changes in POMC-derived
peptide levels were demonstrated that parallel some of the effects of NTX on brain POMC in
rodents. Furthermore, changes in AgRP and cortisol levels were also demonstrated after NTX
treatment that could mitigate the effects of POMC stimulation on energy balance. In addition,
there is some evidence that the neuropeptide and hormone responses to opioid antagonism
differs in lean vs OW/OB individuals.

CSF B-EP levels increased after both 2 and 7 days of NTX treatment, but CSF POMC
levels did not change. This is consistent with rodent studies that showed acute stimulatory
effects of NTX on B-EP release, whereas stimulation of POMC mRNA occurred after 7 days
[16, 17]. Thus, it may be that longer duration of treatment with NTX could lead to an
increase in CSF POMC levels. The ratio of B8-EP to POMC in CSF increased after NTX
treatment by 80% compared with placebo. This is the inverse of the changes noted in the
rodent hypothalamus, where levels of B-EP and the ratio of 8-EP to POMC fall after NTX
treatment [18]. This could indicate selective release of the processed peptide or an effect on
POMC processing. CSF B-EP levels increased in both lean and obese subjects, but the
percent increase was higher in the obese vs the lean group, consistent with increased
endogenous opioid inhibition of POMC neurons in obese subjects. Of note, there is evidence
that brain MOR availability is altered in obese subjects [31]. Although it is a-MSH that
interacts with brain MC4-Rs, we were unable to reliably detect a-MSH in CSF with a highly
specific assay, possibly due to a-MSH degradation or inactivation by the enzyme
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Figure 5. Correlations of the percent change in plasma AgRP levels with the percent change
in plasma and CSF cortisol levels.
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prolylcarboxypeptidase [32]. Our a-MSH assay is specific for the 13 amino-acid, amidated
peptide and does not detect the 12 amino-acid, inactivated peptide. However, prior rodent
studies have shown that hypothalamic 8-EP and a-MSH levels change in parallel in response
to NTX [18]. Thus, it is likely that the NTX-induced changes in CSF B-EP levels reflect
changes in both hypothalamic 8-EP and «-MSH levels. However, the inability to directly
assess a-MSH levels is a weakness of the study.

Despite the stimulatory effects of NTX on POMC in animals and on POMC peptide
release in humans, as documented by the current study, effects on feeding and body weight
are modest. Therefore, we examined other potential NTX-induced changes that could at-
tenuate the POMC-mediated effects on energy balance. Effects of NTX on AgRP levels in
CSF and plasma were examined because there is evidence that B—EP can also inhibit AgRP
neurons [15]. Plasma AgRP levels (measured by ELISA) tended to increase after NTX
treatment, but the change was not significant (P = 0.06). Changes were similar in lean and
obese subjects. There was no change in CSF AgRP levels measured by ELISA or RIA in the
group as a whole. However, a distinct difference was noted when the percent change in CSF
AgRP levels measured by RIA was compared in the lean vs OW/OB subjects. CSF AgRP
levels decreased by 21.6% after NTX treatment in the lean subjects compared with an
increase of 27.5% in the OW/OB subjects. Of note, AgRPg3.132 possesses more biological
activity than the full-length peptide [33]. We have confirmed by high-performance liquid
chromatography that both forms of AgRP are present in CSF [22, 30]. Thus, in the obese
subjects in the current study, there was a more robust increase in AgRP as well as in 8-EP
after NTX treatment.

Effects of NTX treatment on plasma and CSF cortisol levels were also studied because
endogenous opioids inhibit the HPA axis and stimulation of the HPA axis by NTX could also
limit the effects of NTX on food intake [25, 26]. Plasma and CSF cortisol levels increased after
2 and 7 days of NTX treatment. Endogenous opioids inhibit the HPA axis in rodents via
inhibition of hypothalamic corticotropin-releasing hormone [25], and opioid antagonism
results in stimulation of the HPA axis [26]. In humans, NTX and other opioid antagonists
have been shown to stimulate adrenocorticotropic hormone and cortisol release, but this has
only been studied acutely after a single dose [34]. We now report that this increase persisted at
7 days and was accompanied by a significant increase in CSF cortisol levels. The increases in
plasma and CSF cortisol levels were similar when lean and OW/OB subjects were compared.
This longer-term increase in plasma cortisol levels and the increase in CSF cortisol levels may
impact energy balance and could be another factor that mitigates the effects of POMC
stimulation by NTX on food intake. Of note, there was a significant positive correlation
between the changes in plasma AgRP levels with changes in both plasma cortisol and CSF
cortisol levels after NTX treatment. This positive correlation is consistent with prior animal
studies showing that corticosterone stimulates AgRP gene expression in the rodent hypo-
thalamus [35]. We have also observed that plasma AgRP levels correlate with hypothalamic
AgRP gene expression in rats (unpublished data) and increase in humans with elevated
cortisol levels and Cushing disease [36]. Although AgRP levels were measured in both CSF
and plasma, only changes in plasma AgRP levels correlated with changes in cortisol. The
explanation for this is unclear but may relate to anatomical differences in AgRP fiber tracks
that gain access to CSF and blood [37, 38]. Emerging evidence suggests there are distinct
populations of AgRP neurons within the arcuate and one of these populations is outside the
blood-brain barrier [39]. It is possible that the population that resides outside the blood-brain
barrier is the source of AgRP in blood.

There were no changes in plasma and CSF leptin levels in the study groups as a whole, but
both plasma and CSF leptin levels decreased significantly in the lean subjects. The percent
changes in leptin levels were significantly different when the lean and obese groups were
compared. The decreased leptin levels in the lean group may maintain energy balance in the
setting of POMC stimulation. Food intake was not documented in this study, but subjects
were instructed to maintain their current level of food intake and exercise. In addition, no
significant differences on VAS assessing hunger and satiety between NTX and placebo
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treatments were noted. No correlations between VAS ratings and neuropeptide levels were
noted.

In summary, opioid antagonism with NTX stimulates POMC peptide release into CSF in
humans, consistent with the effects on brain POMC peptide release in rodents. No effect on
POMC prohormone levels was seen after 1 week. The increase in the CSF S-EP-to-POMC
ratio is consistent with selective release of the processed peptide or an effect on POMC
processing. Furthermore, a potential stimulatory effect of NTX on AgRP levels and the
persistent increase in both plasma and CSF cortisol levels may mitigate the stimulatory
effects on POMC peptide release with respect to decreasing food intake. It remains to be
determined if biomarkers in CSF and plasma could be used to predict responses to obesity
pharmacotherapy targeting the melanocortin system.
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