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Abstract

Background: The Apicomplexa are a diverse group of obligate protozoan parasites infesting a
wide range of invertebrate and vertebrate hosts including humans. These parasites are notoriously
difficult to control and many species continue to evolve resistance to commerecial antibiotics. In this
study, we sought to find an effective chemotherapeutic treatment against arthropod gregarines
(Apicomplexa), and to identify candidate compounds for testing against other groups of protozoan
parasites.

Methods: We tested eleven commercial antibiotics against a gregarine parasite of Romalea
microptera grasshoppers. Infected insects were fed daily, lettuce containing known amounts of
specific antibiotics. On Days 15 or 20, we measured the number of gregarines remaining in the
digestive tract of each grasshopper.

Results: Treatment with metronidazole and griseofulvin in host insects significantly reduced
gregarine counts, whereas, gregarine counts of insects fed, albendazole, ampicillin,
chloramphenicol, fumagillin, quinine, streptomycin, sulfadimethoxine, thiabendazole or tetracycline,
were not significantly different from the controls. However, albendazole produced a strong, but
non-significant reduction in gregarine count, and streptomycin exhibited a non-significant
antagonistic trend.

Conclusion: Our results confirm that gregarine infections are difficult to control and suggest the
possibility that streptomycin might aggravate gregarine infection. In addition, the insect system
described here, provides a simple, inexpensive, and effective method for screening antibiotics.

Background and economic damage, and contribute to millions of

The phylum Apicomplexa consists of unicellular proto-
zoan parasites, infesting a wide range of Metazoa [1,2].
Included are numerous genera that attack humans or
domesticated animals (e.g., Plasmodium, Toxoplasma,
Cryptosporidium, Neospora, Theileria, Babesia, and Eimeria)
[3,4]. In aggregate, these parasites cause great suffering

human deaths each year [5]. Chemotherapeutic control
ranges from non-existent to fairly effective; however,
many species of Apicomplexa continue to evolve resist-
ance to commercial antibiotics. For example, although
most Plasmodium infections can still be cured by appropri-
ate antimalarial drugs if treatment is administered early
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enough, resistance is increasing rapidly to essentially all
compounds in use [5]. Clearly there is an urgent need to
develop novel chemotherapeutic approaches against
these diseases.

Gregarines (Apicomplexa of the subclass Gregarinia
Dufour, 1828) are perhaps the most ubiquitous and taxo-
nomically diverse of all parasites, infecting a wide range of
invertebrate hosts, including arthropod vectors of verte-
brate diseases [1,6-11]. Gregarines are considered to rep-
resent an early diverging apicomplexan lineage, thus
making them a key group for questions regarding apicom-
plexan evolution [12]. Phylogenetic analysis of the small
subunit (SSU) ribosomal RNA (rRNA) gene suggest that
the gregarines are a sister group to the Cryptosporidium, a
group parasitic on vertebrates [13-15]. Moreover, gre-
garines and Cryptosporidium share many life cycle features
[16,17], and both groups lack a plastid genome, which is
present in other apicomplexans [12,18]. Gregarines do
not appear to directly impact human health. However,
one gregarine species influences a human disease; the gre-
garine parasite Ascogregarina culicis apparently helps to
maintain Chikungunya virus in vector mosquitoes [19],
thereby fostering febrile epidemics in Southeast Asia and
Africa [20-22], and recently spreading over Europe [23-
25].

Although gregarines do not attack vertebrates, they have
harmed, and continue to harm, scientific research, includ-
ing research on arthropod vectors of human and animal
diseases. This is because gregarines are extremely common
in both field and laboratory arthropods [11,26,27] yet few
researchers are aware of their presence or how these para-
sites may influence their experiments [10,28-30]. Gre-
garines are often considered to be sub-lethal or even
harmless to their hosts, but in fact, they divert host nutri-
ents to their own use, occupy space, alter host immune
systems, and damage host cell walls when emerging, and
thus foster microbial attack. As such, they can reduce lon-
gevity, vitality, or fecundity, or cause rapid mortality
[27,31-38]. The effects of gregarines are seldom examined
by researchers who study arthropod vectors of vertebrate
diseases. Yet recent studies demonstrate that gregarine
infection significantly increases the effectiveness of both
chemical and microbial control measures against insect
pest [28]. Hence, controlling an arthropod vector may
hinge on the presence of gregarines.

Knowing the effects of gregarine parasites on their hosts
requires a comparison of gregarine-infested and gre-
garine-free hosts. However, there are few effective antibi-
otic treatments to eliminate gregarines; typically, parasite
numbers can be reduced, but seldom completely elimi-
nated [39-41]. Sanitation and sterilization are commonly
employed to combat gregarines, but these methods are
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sometimes laborious and ineffective [24,29]. The main
problem with sterilization of host eggs and subsequent
rearing is that it takes too long, especially for hosts that
undergo only a single generation per year. Hence, there is
a need to rapidly eliminate gregarines from hosts. Con-
trolling other Apicomplexa is important as well. We are
seeing increased levels of Apicomplexa infection in
immune-repressed, HIV-infected patients, in part because
of the evolution of drug resistance [5]. Numerous other
human apicomplexan diseases like cryptosporidiosis are
likewise difficult to treat [5,42]. Thus, there is a need to
identify new antimicrobials for use against this group.

In this paper, we test 11 different commercial antibiotics
for control of a gregarine (Gregarina sp.) in an insect, the
Eastern Lubber Grasshopper, Romalea microptera (Beau-
vois). Our primary goal is to find an effective chemother-
apeutic treatment against arthropod gregarines, and
identify candidate compounds for testing against other
related groups of apicomplexan parasites. Our secondary
goal is to develop an inexpensive and effective insect-
based system for rapidly testing large numbers of antibiot-
ics in vivo.

Methods

Insect host

All experiments were conducted on Eastern Lubber grass-
hoppers, Romalea microptera obtained from stock colonies
at Illinois State University [43]. The colony was estab-
lished in 1997 from wild animals collected from Cope-
land, Florida, USA. A survey of the colony in 2003
indicated ~96% prevalence of gregarine infection. The ori-
gin of this infection is unknown.

Gregarine parasite

We used an unknown species of Gregarina. Placement into
this genus was based on trophozoite with papillae shaped
epimerite, early association, and gametocysts dehiscing
through multiple sporoduct (Fig. 1A-D) [1,11] (Johny
and Whitman, unpubl.). The natural occurrence and host
range of this specific parasite is unknown. Indeed, proba-
bly more than 95% of the world's gregarine fauna awaits
identification [11]. Gregarine gametocysts were collected
from the faeces of captive male and female grasshoppers,
washed with sterile distilled water 3-5 times, and incu-
bated in air at 30°C under 90% RH [44], until dehiscence
occurred. The resulting oocyst coils were disrupted by cen-
trifugation in sterile distilled water at 1000 rpm for 5 min-
utes, resuspended, and then fed to grasshoppers. The
oocyst concentration was determined using a haemocy-
tometer, as per Undeen and Vavra [45].

Compounds tested
We tested the following 11 commercially available prod-
ucts: albendazole, powder, 100% methyl 5-(propylthio)-
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Life stages of Gregarina sp. infecting Romalea microptera grasshoppers. A. Fresh smear of trophozoite with epimerite; B.
Gamonts on conjugation-stained with Heidenhain's iron haemotoxylin ; C. Gametocyst on sporulation (vertical arrow —
unsporulated gametocyst, right arrow — coiled spores, inner picture — gametocyst showing sporoducts); D. Fresh spores

2-benzimidazole carbonate (Sigma-Aldrich Inc, St
Louis); ampicillin, sodium salt, 100% monosodium D-(-
)-6-(2-amino-2-phenylacetamido)-3,3-dimethyl-7-oxo-4-
thia-1-azabicyclo [3.2.0]heptane-2-carboxylate (Research
Products International, Mt. Prospect, IL); chlorampheni-
col, powder, 100%  2,2-dichloro-N-(2-hydroxy-1-
[hydroxymethyl]-2-[4-nitrophenyl]ethyl)-,  (R-[R* R*])
(Research Products International); fumagilin-B (fumagil-
lin), powder, 2.1% bicyclohexylammonium fumagillin
(Medivet Pharmaceuticals Ltd., High River, Alberta, Can-
ada); griseofulvin, powder, 95% (2S,6'R)-7-chloro-2',4,6-
trimethoxy-6'-methyl-3H,4'H-spiro [1 benzofuran-2,1'-
cyclohex|[2]ene]-3,4'-dione (Sigma-Aldrich); metronida-
zole, powder, 100% (1-(beta-hydroxyethyl)-2-methyl-5-
nitroimidazole (Sigma-Aldrich); quinine hemisulfate,

salt, 94% (9R)-6'-methoxycinchonan-9-ol (Sigma-
Aldrich); streptomycin sulfate, powder, 100% O-2-deoxy-
2-(methylamino)-alpha-L-glucopyranosyl-(1-2)-O-5-
deoxy-3-C-formyl-alpha-L-lyxofuranosyl-(1-4)-N,N'-bis-
(aminoiminomethyl)-D-streptamine (Research Products
International); sulfadimethoxine, powder, 100% 4-
amino-N-[2,6-dimethoxy-4-pyrimidinyl|-benzenesulfon-
amide, (sodium salt) (Sigma-Aldrich); tetracycline HCI,
powder, 100% 2-naphthacenecarboxamide, 4-(dimethyl-
amino)-1,4,4a,5,5a,6,11,12a-octahydro-3,6,10,12,12a-
pentahydroxy-6-methyl-1,11-dioxo-, (4S-
[4alpha,4aalpha,5aalpha,6beta, 12aalphal) (Research
Products International); and thiabendazole, powder, 99%
2-(4'-thiazolyl) benzimidazole (Sigma-Aldrich).
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Preparation of test compounds

We prepared oral doses of the various antibiotics by mix-
ing them with juice from fresh carrot (Daucus carota)
leaves. Carrot leaf juice is a strong phagostimulant for R.
microptera. Juice was prepared without adding water, using
a commercial juicer, and then filtered through cheese-
cloth. The water-soluble drugs were directly mixed with
the filtrate. The hydrophobic drugs (albendazole, griseof-
ulvin, metronidazole, and quinine) were first mixed with
dry powdered sucrose, then blended into the pure juice, to
produce suspensions. We then applied 20 pl of juice, con-
taining a known concentration of drug onto 2 cm? pieces
of fresh Romaine lettuce leaves, spreading the juice evenly
over the surface. We allowed the juice to dry at air temper-
ature (~10 min) and then fed one leaf to each grasshop-
per. All test compound mixtures were prepared
immediately prior to feeding.

Determination of proper doses for antibiotics

We prepared a wide range of concentrations of each anti-
biotic in carrot juice, as above, and then determined the
maximum concentrations acceptable to adult male grass-
hoppers (the highest dose that 90% of hungry grasshop-
pers would consume). Once the maximum accepted dose
was determined, we then selected our test doses as 50% of
the maximum accepted dose (Table 1). Note that our pur-
pose was not to compare identical doses of different anti-
biotics, but to identify a specific oral dose of antibiotic
that was both palatable to grasshoppers and effective in
eliminating gregarine infection in our test animal.

http://www.ann-clinmicrob.com/content/6/1/15

Treatment procedure

Ten male Romalea microptera (5- to 40-day-old adults)
were tested with each drug. Grasshoppers were numbered
individually with permanent markers and placed into
individual, ventilated, 500-ml transparent plastic contain-
ers. Each day, for the next 19 days, each grasshopper was
starved for12 hr, then fed a 2 cm? piece of Romaine lettuce
smeared with 20 pl of juice + antibiotic. Insects were
allowed to feed on the treated lettuce for 4 hr, and the
amount of chemical ingested was calculated based on the
amount of lettuce eaten by the insect. Note that not all
insects consumed a full dose of antibiotic each day; hence,
the dose consumed differs from the dose offered (Table
1). A control group of 40 insects received lettuce with pure
carrot juice. After each day's antibiotic feeding, grasshop-
pers were fed ad lib Romaine lettuce and oatmeal for 8 hr,
followed by the next 12 hr starvation period. Insects were
maintained at 26 + 2°C; 60-85% RH, and 14:10 (L:D)
photoperiod. On Day 10, the control and treatment
groups were inoculated with ~3000 gregarine oocysts/
grasshopper by feeding each 1 cm? of Romaine lettuce
contaminated with oocysts (collected as previously
described). On Days 5 and 10, one or two grasshoppers
from each treatment group and five from the control were
dissected and examined for gregarines. These examina-
tions looked for early and profound control; however, no
dramatic effects were found in these early inspections, and
therefore, these low-n results are not reported here. On
Day 15, we dissected one or two grasshoppers from each
treatment group, and on Day 20, all survivors were dis-
sected and examined for gregarines.

Table I: Dosage for eleven antibiotics tested against a gregarine pathogen infecting Romalea microptera grasshoppers.

Mean dose per individual grasshopper

Treatment group Dose offered Dose consumed

Cumulative dose consumed Mean dose

(mg/day) (mg/day) + SE* (mg/19 day) + SE (mgl/gram fresh mass/day)t
Control Nonet Nonet Nonet Nonet
Albendazole 1.00 0.84 £ 0.16 15.95 + 1.24 0.23
Ampicillin 5.00 3.77 £ 1.03 71.65+7.44 1.05
Chloramphenicol 5.52 4.19 £ 0.51 79.75 £ 496 1.17
Fumagilin-B 0.10 0.10 £ 0.00 1.94 £ 0.03 0.03
Griseofulvin 5.52 4,66 £ 1.01 88.66 £ 11.08 1.30
Metronidazole 0.10 0.06 £ 0.03 1.18 £ 0.25 0.02
Quinine 2.96 247 £ 0.34 47.02 £ 6.43 0.69
Streptomycin 5.00 4.59 £ 0.48 87.25 £ 3.50 1.28
Sulfadimethoxine 0.38 0.10 £ 0.03 1.88 £ 0.74 0.03
Tetracycline 5.26 4.73 £ 0.49 89.93 + 4.69 1.32
Thiabendazole 0.68 0.53+£0.16 10.15£ 1.18 0.15

*Not all individuals consumed a full dose each day.
T [Mean dose consumed/animal/day]/average mass of a typical male
¥The Control group was given carrot leaf juice only.
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Evaluation of drug effect

To quantify the gregarines in individual insects, we
removed and opened the host's digestive tract, under
Yeager's physiological saline [46]. We examined the gut
contents under a dissecting microscope, and counted the
number of trophozoites, gamonts, and gametocysts. In
this species, gamonts were always associated (conjuga-
tion), and such associated gamonts and gametocyst were
counted as two individuals. Thus the total number of gre-
garines per grasshopper = # trophozoites + 2 x (# associ-
ated gamonts + # gametocysts). Our gregarine parasite
requires more than 20 days to complete its life cycle at 26
+ 2°C. Hence, in our experiment, when we found individ-
uals to be gregarine-free on days 15 or 20, we assumed
that this had resulted from antibiotic treatment. We ana-
lyzed the combined data for Days 15 and 20 by one way
ANOVA weighted for unequal variances, and the differ-
ence among treatment groups were identified using
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Tukey's honesty significant difference test. The data were
normalized by log transformation before carrying out the
ANOVA. All analysis were completed using Statistica 5.5
(StatSoft, Inc. Tulsa, OK, U.S.A) with a = 0.05.

Results

The mean densities of gregarines (pooled data for Days 15
and 20) for the different treatment groups are presented in
Figure 2. Grasshoppers treated with metronidazole
(ANOVA followed by Tukey HSD test, P < 0.01) and grise-
ofulvin (ANOVA followed by Tukey HSD test, P < 0.05)
exhibited significantly lower gregarine counts than con-
trol insects (Fig. 2). No other treatments were significantly
different from the control; however, albendazole treat-
ment exhibited a strong, but non-significant trend for
reduced gregarine count (P > 0.05; Fig. 2). In contrast, a
non-significant antagonistic trend was observed in the
streptomycin treatment, which showed higher gregarine
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Figure 2

Mean £ SE number of gregarines in the guts of Romalea microptera grasshoppers (combination of animals dissected on Days 16
and 20) after treatment with different antimicrobials. Numbers above bar represents n. *Means significantly different from con-

trol group (ANOVA protected Tukey's HSD test, oo = 0.05).
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counts in comparison to the control (P> 0.05) (Fig. 2). Of
the 98 animals dissected in Fig. 2, 1 control, 1 fumagillin-
, 2 griseofulvin- and 4 metronidazole-treated animals
lacked gregarines in their guts.

Discussion

Of the 11 antimicrobials tested in this experiment, grise-
ofulvin was the most effective in reducing gregarine para-
sites in the gut lumina of grasshoppers, followed by
metronidazole. Griseofulvin, a chlorine-containing
metabolite of the fungus Penicillium griseofulvum Direck
[47], has been successfully used against onychomycosis
(fungus), and used for more than three decades to treat
dermatomycoses in humans and animals. It inhibits
nucleic acid synthesis and its main effect on mitosis is due
to disorganization of spindle microtubules in the M phase
[48,49]. To our knowledge, griseofulvin has never been
used to treat any apicomplexan parasite groups. Hence the
potential use of griseofulvin against gregarines and related
apicomplexan groups should be explored.

Metronidazole is a benzimidazole, known for its strong
antiprotozoan activity, first used to treat Trichomonas vag-
inalis (Phylum: Zoomastigina) and later Entamoeba histo-
lytica (Phylum: Sarcomastigophora), Giardia lamblia
(Sarcomastigophora) and Cryptosporidium sp. (Phylum:
Apicomplexa) [50-53]. It is administered in an inactive
form and enters cells by passive diffusion [54]. The drug is
then activated in cells via electron transfer from ferredoxin
to its nitro group, resulting in the therapeutically active
intermediate [55]. In the present study, metronidazole
reduced gregarine mean intensities by 90% over controls,
an effect comparable with the 71% reduction reported by
Smith and Clopton [40] for treatment with metronidazole
in their gregarine-cockroach model system. The dosage
used in the present study (20 mg/kg body weight/day) is
50-fold higher than the dosage (0.4 mg/kg body weight/
day) used by Smith and Clopton [40]. Moreover, their
treatment regime was only for 5 days, whereas we admin-
istered metronidazole up to 19 days. However, on Day 10,
we introduced a large dose of gregarine oocysts (~3000)
into our test animals. Overall, our study reaffirms that
metronidazole is a strong gregarinostat.

Albendazole, another benzimidazole with broad-spec-
trum antihelminthic and antifungal activity, is also effec-
tive against various protozoa [56]. It binds to tubulin and
affects cytoskeletal microtubules; this property makes it
potentially useful in the treatment of some protozoan
infections in addition to its more established roles in ther-
apy for helminthic infections. Albendazole is also strongly
active against Plasmodium berghei and P. falciparum [57-
59]. In our experiments, treatment with albendazole
resulted in a strong, but non-significant decrease in the
gregarine count. The lack of significance may be due to the
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poor absorption rate of albendazole across the gut. How-
ever, albendazole absorption is enhanced in mammals by
taking it with fatty meals [60].

Earlier reports suggested that sulfadimethoxine displays
some apicomplexan toxicity and this, and related com-
pounds, are commonly used for prophylactic control of
coccidians in livestock and poultry [1,61,62]. Recently
Clopton and Smith [41] evaluated the activity of sul-
fadimethoxine against Gregarina cubensis and Protomagal-
haensia  granulosae  (Apicomplexa:  Eugregarinida),
infecting the Death's Head cockroach, Blaberus discoidalis,
and found that sulfadimethoxine significantly reduced
the mean gregarine intensities, but did not eliminate the
gregarine infection completely. In our test, sulfadimethox-
ine did not significantly reduce the gregarine numbers
even after 19 days of treatment. One possible reason
might be due to the dosage: the 30 mg/kg body weight
used in our experiment is 5-6 times lower than the dosage
(170 mg/kg body weight) used by Clopton and Smith
[41] in their cockroach-gregarine model. Mourya et al.
[30] assessed the efficacy of sulfadimethoxine against
Ascogregarina culicis (Eugregarinida: Lecudinidae) infect-
ing larval Aedes aegypti mosquitoes. Though high concen-
tration of sulfadimethoxine (0.5 mg/ml culture water)
reduced the mean gregarine intensity, it also resulted in
host mortality of upto 52%.

In our study, streptomycin-treated animals had, on aver-
age, double the gregarine load of control animals.
Although the difference was not significant, it suggests the
possibility that streptomycin aggravated gregarine infec-
tion. In humans, gut microbiota effectively limit the
capacity of invading micro-organisms, including patho-
gens, to colonize the gut, giving rise to what has been
termed 'colonisation resistance' [63]. Streptomycin is a
strong bacterial antibiotic which inhibits protein synthe-
sis by binding to the 30S ribosomal subunit [64]. In the
present study, streptomycin may have reduced midgut
bacteria in grasshoppers, thereby increasing the survival of
gregarines. Toure et al. [65] reported that combination
antibiotics such as gentamicin, penicillin, and streptomy-
cin reduced the bacterial flora in the mosquito midgut,
which in turn increased the infectivity of Plasmodium falci-
parum in Anopheles mosquitoes. Likewise, Culex bitaenio-
rhynchus mosquitoes treated with tetracycline showed an
increased susceptibility to the Japanese encephalitis (JE)
virus [30].

Conclusion

The gregarines (Apicomplexa) appear to be highly resist-
ant to chemotherapy, although our results suggest that
metronidazole and griseofulvin have moderate antibiotic
effects. Streptomycin might aggravate gregarine infec-
tions. Apicomplexa parasites have a global impact on eco-
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nomic development and on the health and survival of
millions of people and domesticated animals worldwide.
New therapies for the diseases they cause are urgently
required, but many drugs have proven ineffective [42] or
are becoming increasingly ineffective because of increased
antibiotic resistance in pathogens [66]. The insect system
described here is a simple method for evaluation of drugs
against gregarines. It can also serve as a model system to
identify compounds with a potential broad activity
against other Apicomplexa. Insects can be cheaply mass-
reared, require less laboratory space and support facilities,
do not suffer from the ethical problems of using mam-
mals as experimental hosts, and share some common
immune-response features with vertebrates [67]. Insects
can be infected by virtually all pathogen and parasite taxa,
including viruses, rickettsiae, bacteria, fungi, protozoa,
and nematodes, etc. Therefore, insects can be exploited,
not only to examine pathogens of arthropods, but also to
screen new drugs for potential use against a wide range of
pathogens and parasites of vertebrates [40,41,68]. Finally,
the effects of gregarines on arthropod vectors of vertebrate
diseases have been largely ignored. Understanding such
effects will require the ability to culture gregarine-free
hosts. This research contributes to that goal.

Authors' contributions

SJ and AM performed experimental work. DWW and SJ
designed the study, collected and analyzed the data and
drafted the manuscript. All authors read and approved the
final manuscript.

Acknowledgements

We thank Carrie Booth for laboratory assistance. This study was sup-
ported by the Undergraduate Research Training Program/CRUI at lllinois
State University, and by NSF grants BIR 9510979A000 and DBI-0442412.

References

I.  Levine N: The Protozoan Phylum Apicomplexa. Volume I.
Chemical Rubber Company press, Inc., Boca Raton, Florida; 1988.

2. Ellis J, Morrison DA, Jeffries AC: The phylum Apicomplexa: an
update on the molecular phylogeny. In Evolutionary Relationships
Among Protozoa Edited by: Coombs G, Vickerman K, Sleigh M, Warren
A. Kluwer Academic Publishers, Boston; 1989:255-274.

3.  O'Donoghue PJ: Cryptosporidium and cryptosporidiosis in man
and animals. Int | Parasitol 1995, 25:139-195.

4. Kim K, Weiss LM: Toxoplasma gondii: the model apicomplexan.
Int J Parasitol 2004, 34:423-432.

5. Hammarton TC, Mottram JC, Doerig C: The cell cycle of parasitic
protozoa: potential for chemotherapeutic exploitation. Prog
Cell Cycle Res 2003, 5:91-101.

6. Levine ND: Revision and checklist of the species (other than
lecudina) of the aseptate gregarine family Lecudinidae. | Pro-
tozool 1977, 24:41-52.

7.  Warburg A, Ostrovska K: Host-parasite relationships of
Ascogregarina chagasi (Eugregarinorida, Aseptatorina,
Lecudinidae) in Lutzomyia longipalpis (Diptera: Psychodi-
dae). Int | Parasitol 1991, 21:91-98.

8.  Ostrovska K, Warburg A, Montoya-Lerma J: Ascogregarina saraviae
n. sp. (Apicomplexa: Lecudinidae) in Lutzomyia lichyi (Dip-
tera: Psychodidae). | Protozool 1990, 37:69-70.

9.  Beier |C: Effects of gregarine parasites on the development of
Dirofilaria immitis in Aedes triseriatus (Diptera: Culicidae). |
Med Entomol 1983, 20:70-75.

20.

21.

22.

23.

24.
25.

26.

27.

28.

29.

30.

31

http://www.ann-clinmicrob.com/content/6/1/15

Mourya DT, Soman RS: Effect of gregarine parasite, Ascogrega-
rina culicis & tetracycline on the susceptibility of Culex bitaen-
iorhynchus to JE virus. Indian | Med Res 1985, 81:247-250.
Clopton R: Phylum Apicomplexa Levine, 1970: Order Eugre-
garinorida Leeger, 1900. In lllustrated Guide to the Protozoa 2nd
edition. Edited by: Lee JJ, Leedale G, Patterson D, Bradbury PC. Soci-
ety of Protozoologists, Lawrence, Kansas; 2002:205-288.

Toso MA, Omoto CK: Gregarina niphandrodes may lack both a
plastid genome and organelle. | Eukaryot Microbiol 2007,
54:66-72.

Carreno RA, Martin DS, Barta JR: Cryptosporidium is more closely
related to the gregarines than to coccidia as shown by phyl-
ogenetic analysis of apicomplexan parasites inferred using
small-subunit ribosomal RNA gene sequences. Parasitol Res
1999, 85:899-904.

Leander B, Clopton RE, Keeling PJ: Phylogeny of gregarines (Api-
complexa) as inferred from small-subunit rDNA and -tubu-
lin. Int J Syst Evol Microbiol 2003, 53:345-354.

Xiao L, Fayer R, Ryan U, Upton SJ: Cryptosporidium taxonomy:
recent advances and implications for public health. Clin Micro-
biol Rev 2004, 17:72-97.

Hijjawi NS, Meloni BP, Ryan UM, Olson ME, Thompson RC: Success-
ful in vitro cultivation of Cryptosporidium andersoni: evidence
for the existence of novel extracellular stages in the life cycle
and implications for the classification of Cryptosporidium. Int
J Parasitol 2002, 32:1719-1726.

Rosales MJ, Cordon GP, Moreno MS, Sanchez CM: Extracellular
like-gregarine stages of Cryptosporidium parvum. Acta Trop
2005, 95:74-78.

Abrahamsen MS, Templeton TJ, Enomoto S, Abrahante JE, Zhu G,
Lancto CA, Deng M, Liu C, Widmer G, Tzipori S, et al.: Complete
genome sequence of the apicomplexan, Cryptosporidium par-
vum. Science 2004, 304:441-445.

Mourya DT, Singh DK, Yadav P, Gokhale MD, Barde PV, Narayan NB,
Thakare JP, Mishra AC, Shouche YS: Role of gregarine parasite
Ascogregarina culicis (Apicomplexa: Lecudinidae) in the
maintenance of Chikungunya virus in vector mosquito. |
Eukaryot Microbiol 2003, 50:379-382.

Rao T: Recent epidemics caused by Chikungunya virus in
India 1963-1965. Scientific Culture 1966, 32:215.

Powers A, Brault AC, Tesh RB, Weaver SC: Reemergence of
Chikunggunya and o'nyong-nyong viruses: evidence of dis-
tinct geographical lineages and distant evolutionary relation-
ships. | Gen Virol 2000, 81:471-479.

Jupp P, McIntosh BM: Chikungunya virus disease. In Arbovirus: Epi-
demiology and Ecology Volume Il. Edited by: Monath TP. CRC Press,
Boca Raton, Florida; 1988:137-157.

Savarino A, Cauda R, Cassone A: On the use of chloroquine for
chikungunya. Lancet Infect Dis 2007, 7:633.

Lines J: Chikungunya in Italy. BMJ 2007, 335:576.

Watson R: Europe witnesses first local transmission of chikun-
gunya fever in Italy. BMJ 2007, 335:532-533.

Johny S, Muthukumaravel K, Raghu S, Muralirangan MC, Sanjayan KP:
Geographical distribution of cephaline gregarines (Apicom-
plexa: Protozoa) in relation to grasshoppers (Orthoptera:
Acrididae) in Tamil Nadu, India. Int | Ecol Environ Sci 1999,
25:201-207.

Pushkala K, Muralirangan MC: Impact of Gregarina subramanii, a
new gregarine species on the biology of the grasshopper;
Eyprepocnemis alacris alacris (Serville). The Entomologist 1997,
116:130-141.

Lopes RB, Alves SB: Effect of Gregarina sp. parasitism on the
susceptibility of Blattella germanica to some control agents. |
Invertebr Pathol 2005, 88:261-264.

Dougherty M), Ward RD: Methods of reducing Ascogregarina
chagasi parasitaemia in laboratory colonies of Lutzomyia lon-
gipalpis. Parassitologia 1991, 33(Suppl):185-191.

Mourya D, Mahadev PVM, Dhanda V: Effect of antiamoebic drugs
on Ascogregarina culicis, gregarine parasite of Aedes aegypti.
Indian Journal of Parasitology 1985, 9:173-174.

Fukuda T, Willis OR, Barnard DR: Parasites of the Asian tiger
mosquito and other container-inhabiting mosquitoes (Dip-
tera:Culicidae) in northcentral Florida. | Med Entomol 1997,
34:226-233.

Ghose S, Sengupta T, Halder DP: Two new septate gregarine
(Apicomplexa: sporozoea), Gregarina basiconstrictonea n. sp.

Page 7 of 8

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7622324
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7622324
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15003501
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14593704
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14593704
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=405483
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=405483
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1904054
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1904054
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2108244
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2108244
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6402598
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3926641
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17300522
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17300522
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10540950
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10540950
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10540950
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12656194
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12656194
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12656194
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14726456
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14726456
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12464418
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15907779
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15044751
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14563178
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14563178
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10644846
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10644846
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10644846
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17897603
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17897603
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17878263
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17855300
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17855300
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15955347
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1841206
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9103767
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9103767
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9103767

Annals of Clinical Microbiology and Antimicrobials 2007, 6:15

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.
49.
50.
51,

52.
53.

54.

and Hirmocystis oxeata n. sp. from Tribolium castaneum. Acta
Protozool 1985, 25:93-108.

Janardanan K, Ramachandran P: Studies on a new cephaline gre-
garins, Stenoductus trigoniuli sp. n. with a note on its cytopa-
thology. Arch Protistenkd 1982, 125:249-256.

Abro A: The gregarine infection in different species of Odo-
nata from the same habitat. Zool Scripta 1974, 3:111-120.
Purrini K, Keil H: Ascogregarina bostrichidorum n. sp. (Lecudini-
dae, Eugregarinida), a new gregarine parasitizing the larger
grain borer, Prostephanus truncatus Horn (1878) (Bostrichi-
dae, Coleoptera). Arch Protistenkd 1989, 137:165-171.

Garcia JJ, Fukuda T, Becnel JJ: Seasonality, prevalence and path-
ogenicity of the gregarine Ascogregarina taiwanensis (Api-
complexa: Lecudinidae) in mosquitoes from Florida. | Am
Mosq Control Assoc 1994, 10:413-418.

Johny S, Muralirangan MC, Sanjayan KP: Parasitization potential of
two cephalogregarines, Leidyana subramanii Pushkala and
Muralirangan and Retractocephalus dhawanii sp. nov. on the
tobacco grasshopper Atractomorpha crenulata (Fab.). |
Orthopt Res 2000, 9:67-70.

Ball S, Cunningham AA, Clarke D, Daszak P: Septate gregarines
associated with a disease of the hissing cockroach Grom-
phadorhina portentosa. | Invertebr Pathol 1995, 65:311-312.
Fajer-Avila E, Covarrubias MSM, Abad-Rosales S, Roque A, Meza-
Bojorquez P, Meza-Bojorquez P, Hernandez-Gonzalez C: Effective-
ness of oral ElancobanTM and Avimix-STTM against Nemat-
opsis (Apicomplexa: Porosporidae) gametocysts infecting
the shrimp Litopenaeus vannamei. Aquaculture 2005, 244:11-18.
Smith A, Clopton RE: Efficiency of oral metronidazole and
potassium sorbate against two gregarine parasites, Pro-
tomagalhaensia granulose and Gregarina cubensis (Apicoml-
exa: Eugregarinida), infecting the death's head cockroach,
Blaberus discoidalis. Comp Parasitol 2003, 70:96-99.

Clopton RE, Smith A: Efficacy of oral sulfadimethoxine against
two gregarine parasites, Protomagalhaensia granulosae and
Gregarina cubensis (Apicomplexa: Eugregarinida), infecting
the Death's Head cockroach, Blaberus discoidalis. | Parasitol
2002, 88:786-789.

Roberts CW, McLeod R, Rice DW, Ginger M, Chance ML, Goad LJ:
Fatty acid and sterol metabolism: potential antimicrobial
targets in apicomplexan and trypanosomatid parasitic pro-
tozoa. Mol Biochem Parasitol 2003, 126:129-142.

Matuszek J, Whitman DW: Captive rearing of eastern lubber
grasshopper Romalea microptera. In Proceedings of the Inverte-
brates in Captivity Conference, 2001 Sonoran Arthropod Studies Insti-
tute, Ron Rico, Arizona, USA; 2001:56-65.

Winston P, Bates DH: Saturated solutions for the control of
humidity in biological research. Ecology 1960, 41:232-237.
Undeen A, Vavra J: Research methods for entomopathogenic
protozoa. In Manual of techniques in insect pathology Edited by: Lacey
LA. Academic Press, San Diego; 1997:117-151.

Yeager ): Electrical stimulation of isolated heart preparations
from Periplaneta americana. | Agric Research 1939, 59:121.
Oxford A, Raistruck H, Simonarat P: Studies in the biochemistry
of microorganisms IX. Griseofulvin CHOCI, a metabolic
product of Penicillium griseofulvin Direck. Biochem | 1939,
33:240-248.

DeCarli L, Larizza L: Griseofulvin. Mutat Res 1988, 195:91-126.
Finkelstein E, Amichai B, Grunwald MH: Griseofulvin and its uses.
Int | Antimicro Ag 1996, 6:189-194.

Conteas CN, Berlin OG, Ash LR, Pruthi JS: Therapy for human
gastrointestinal microsporidiosis. Am | Trop Med Hyg 2000,
63:121-127.

Savioli L, Smith H, Thompson A: Giardia and Cryptosporidium join
the 'Neglected Diseases Initiative'. Trends Parasitol 2006,
22:203-208.

Petri WA Jr: Therapy of intestinal protozoa. Trends Parasitol
2003, 19:523-526.

Xiao L, Herd RP, Rings DM: Concurrent infections of Giardia and
Cryptosporidium on two Ohio farms with calf diarrhea. Vet
Parasitol 1993, 51:41-48.

Boreham PF, Phillips RE, Shepherd RW: A comparison of the in-
vitro activity of some 5-nitroimidazoles and other com-
pounds against Giardia intestinalis. | Antimicrob Chemother 1985,
16:589-595.

55.

56.

57.

58.

59.

60.

6l.

62.

63.

64.

65.

66.

67.

68.

http://www.ann-clinmicrob.com/content/6/1/15

Johnson P: Metronidazole and drug resistance. Parasitol Today
1993, 9:183-186.

Liu L, Weller PF: Antiparasitic drugs.
334:1178-1184.

Dow GS, O'Hara AJ, Newton SC, Reynoldson JA, Thompson RC:
Plasmodium berghei: the antimalarial activity of albendazole
in rats is mediated via effects on the hematopoietic system.
Exp Parasitol 2000, 94:259-263.

Dow GS, Reynoldson JA, Thompson RC: Plasmodium berghei: in
vivo efficacy of albendazole in different rodent models. Exp
Parasitol 1998, 88:154-156.

Skinner-Adams TS, Davis TM, Manning LS, Johnston WA: The effi-
cacy of benzimidazole drugs against Plasmodium falciparum
in vitro. Trans R Soc Trop Med Hyg 1997, 91:580-584.

Awadzi K, Hero M, Opoku NO, Buttner DW, Coventry PA, Prime
MA, Orme ML, Edwards G: The chemotherapy of onchocercia-
sis XVII. A clinical evaluation of albendazole in patients with
onchocerciasis; effects of food and pretreatment with iver-
mectin on drug response and pharmacokinetics. Trop Med Par-
asitol 1994, 45:203-208.

Cates L: Sulfa drugs. In Handbook of chemotherapeutic agents Volume
I. Edited by: Verderame M. Chemical Rubber Company Press, Boca
Raton, Florida; 1986:1-29.

Chambers H, Jawetz E: Sulfonamides, trimethropin, and qui-
nolones. In Basic and clinical pharmacology Edited by: Katzung BG.
Appleton-Lange Publishers, Stamford, Connecticut; 1998:761-763.
Hentges D: Gut flora and disease resistance. In Probiotics: The Sci-
entific Basis Edited by: Fuller R. London: Chapman and Hall;
1992:87-110.

Sambrook J, Russel DW: Molecular cloning, a laboratory man-
ual. 3rd edition. Cold Spring Harbor Laboratory Press, Cold Spring
Harbor, New York; 2001.

Toure AM, Mackey AJ, Wang ZX, Beier |C: Bactericidal effects of
sugar-fed antibiotics on resident midgut bacteria of newly
emerged anopheline mosquitoes (Diptera: Culicidae). | Med
Entomol 2000, 37:246-249.

AKOVA M: Emerging problem pathogens: A review of resist-
ance patterns over time. International Journal of Infectious Diseases
2006, 10:53-S8.

Salzet M: Vertebrate innate immunity resembles a mosaic of
invertebrate immune responses. Trends Immunol 2001,
22:285-288.

Guhl W: The possibility of testing antiparasitical substances
using the cockroach as a model. Parasitol Res 1999, 85:945-947.

N Engl | Med 1996,

disseminating the results of biomedical research in our lifetime."

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for

Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and publishedimmediately upon acceptance
« cited in PubMed and archived on PubMed Central

O BioMedcentral

« yours — you keep the copyright

Page 8 of 8

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7807086
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7807086
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12197132
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12615312
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12615312
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12615312
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16746904
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3277037
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11388502
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11388502
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16545611
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16545611
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14580964
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8128586
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=4077772
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15463749
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8602186
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10831394
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10831394
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9538870
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9538870
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9463674
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9463674
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7899788
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7899788
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7899788
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10730495
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10730495
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10730495
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11377277
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11377277
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10540958
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10540958
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Methods
	Insect host
	Gregarine parasite
	Compounds tested
	Preparation of test compounds
	Determination of proper doses for antibiotics
	Treatment procedure
	Evaluation of drug effect

	Results
	Discussion
	Conclusion
	Authors' contributions
	Acknowledgements
	References

