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Osteoarthritis (OA) is a chronic degenerative joint disease characterized by

progressive cartilage loss, subchondral bone remodeling, and synovial

inflammation. Given that the current therapies for advanced OA patients are

limited, the understanding of mechanisms and novel therapies are urgently

needed. In this study, we employed the weighted gene co-expression network

(WGCNA) method and the connectivity map (CMap) database to identify the

candidate target genes and potential compounds. Four groups of co-

expressing genes were identified as the OA-related modules. The biological

annotations of these modules indicated some critical hallmarks of OA and

aging, such as mitochondrial dysfunctions and abnormal energy metabolism,

and the signaling pathways, such as MAPK, TNF, and PI3K/Akt signaling

pathways. Some genes, such as RELA and GADD45B, were predicted to

extensively involve these critical pathways, indicating their potential

functions in OA mechanisms. Moreover, we constructed the co-expressing

networks of modules and identified the hub genes based on network topology.

GADD45B, MAFF, and MYC were identified and validated as the hub genes.

Finally, anisomycin and MG-262 were predicted to target these OA-related

modules, which may be the potential drugs for OA therapy. In conclusion, this

study identified the significant modules, signaling pathways, and hub genes

relevant to OA and highlighted the potential clinical value of anisomycin and

MG-262 as novel therapies in OA management.
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Introduction

As one of the leading causes of disability in the adult population (Altman et al., 2015),

osteoarthritis (OA) is a chronic degenerative joint disease, which features a progressive

deterioration of cartilage degradation, subchondral bone sclerosis, and synovial

inflammation (Kraus et al., 2015). It was estimated in 2019 that ~ 7% of the global

population, more than 500 million people worldwide, are subjected to OA (Mahmoudian

et al., 2021). In the southwest region of China, OA affected 13.7% of people in 2012 (Tang
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et al., 2016). The number of people suffering from OA increases

possibly owing to population aging and obesity (Zhang and

Jordan, 2010). It was estimated in 1996 that 40% of people

aged 70 or older suffer from OA (Valdes and Spector, 2011).

A batch of therapies has been applied in the clinical treatments

for OA, which can be classified into three main categories: non-

pharmacological methods, pharmacological methods, and surgery

(Liu et al., 2018). In the non-pharmacological methods, changing

lifestyle and reducing loading on the damaged joint are

recommended (Zhang et al., 2008). There are two main options

for medication therapies, which are the drugs for treating

symptomatic pain and intra-articular (IA) injection. Analgesics

(i.e., paracetamol), nonsteroidal anti-inflammatory drugs

(NSAIDs) (i.e., meloxicam, diclofenac, and naproxen), specific

cyclooxygenase (COX)-2 inhibitors (i.e., celecoxib), and opioids

are utilized for systemic drug therapy (Maudens et al., 2018).

Patients with hip or knee OA can be treated by IA injections of

corticosteroids (i.e., dexamethasone) (Douglas, 2012). However, the

efficacy of non-pharmacological therapies is moderated (Siebelt

et al., 2014), and the pharmacological treatments are

FIGURE 1
Overview of this study.
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accompanied by several side effects and frequent administration

(Maudens et al., 2018). If these treatments fail to relieve pain and

improve joint function, joint replacement surgery should be

considered (Zhang et al., 2008), while the expenses of surgeries

bring a large economic burden for patients. In this context, the

understanding of OA initiation and progress as well as the novel

targeted therapy are urgently needed. Although emerging studies are

focused on the cell and tissue of OA joints (Siebelt et al., 2014), the

mechanisms lack cognition. In particular, the lucid molecular

mechanisms are still under elucidation (Yang et al., 2018).

Weighted gene co-expression network analysis (WGCNA) can

assess the connection of different genes and the potential interactions

between them (Langfelder andHorvath, 2008). The highly associated

genes are classified as a module. The co-expressing genes assigned to

a module tend to have high connectivity. WGCNA can be applied to

calculate the correlation of genes across microarray samples, to

summarize modules of highly associated genes and key hub genes

in the modules, and to relate gene modules to sample traits or other

modules. Compared with the other bioinformatics analysis methods,

WGCNA preponderates in data processing and gene clustering by a

weighted correlation network (Li et al., 2020; Yin et al., 2021).

The connectivity map (CMap) utilizes gene expression profiles

to build the association among genes, diseases, and drugs by

comparing the gene expression profiles of the human cell lines

intervened by more than 1,300 smaller molecules and drugs to the

gene signature of the phenotype using a simple yet efficient pattern-

matching algorithm (Lamb et al., 2006; Qu and Rajpal, 2012).

Potential drugs for diseases were screened by the “connectivity

scores” that reflect the connection between the expression

profiles or between the drugs and disease (Qu and Rajpal, 2012).

Based on a gene microarray dataset, this study analyzed

34,756 genes from 38 samples by WGNCA, aiming to forecast

the significant modules and potential hub genes involved in OA

pathogenesis. Since these genes and modules are likely to be

biomarkers of OA, these findings might provide some clues to

illuminate the molecular mechanisms of OA and develop an

improved treatment for OA patients.

Materials and methods

Microarray data and preprocessing

The analysis flow chart is summarized in Figure 1. The raw data

of microarray-based gene expression with the accession number of

GEO: GSE55235, GEO: GSE55457, and GEO: GSE55584 were

downloaded from NCBI Gene Expression Omnibus (GEO) on

the platform of GPL96 ([HG-U133A] Affymetrix Human

Genome U133A Array) (Woetzel et al., 2014). These genome-

wide transcriptomic data sets contain the synovial tissues from

FIGURE 2
Sample clustering and soft-thresholding power determination. (A)Heatmap of the genes involved inWGCNA. (B)Clustering dendrogram of the
gene expression of the synovial tissue from 26 OA patients and 12 healthy donors after excluding the outliers. Clustering was based on Euclidean
distance calculated with variance stabilized expression level. (C) Analysis of scale independence and mean connectivity of the gene network at
various soft-thresholding powers to determine the scale-free fit index.
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20 healthy individuals and 26 patients with osteoarthritis in total.

The features of the datasets involved in this study are summarized in

Supplementary Table S1. Given that these three microarray datasets

derived from the same platform, gene expression datasets were

merged into one expression matrix. R package sva was employed to

eliminate the potential batch effect (Leek et al., 2012). Raw data was

preprocessed identically with the R package affy by using the Robust

Multichip Average (RMA) function for background correction and

quantile normalization (Irizarry et al., 2003). Moreover, disease

states and sample traits were merged and transformed into

binary variables. Probes and samples were checked to remove

missing values. Sample clustering was based on the Euclidean

distance calculated with variance stabilized expression levels.

Construction of WGCNA network

In order to ensure a reliable WGCNA network, the gene

expression profiles of samples were clustered, and the outliers

were identified and removed. The functions softConnectivity

and pickSoftThreshold from the R package WGCNA

(Langfelder and Horvath, 2008) were utilized to analyze the

influence of power value on the scale independence and mean

connectivity and build up a scale-free network. By calculating

the scale-free topology fit index, the function pickSoftThreshold

provided an appropriate soft-thresholding power for network

construction. Meanwhile, the function softConnectivity

calculated different mean connectivity of different soft

thresholds. If the scale-free topology fit index values reached

0.9 for low powers (<30), it indicated that the topology of the

network was scale-free (Liu et al., 2017; Li et al., 2020). With an

appropriate soft threshold, an adjacency matrix was calculated,

which was transformed into a topological overlap matrix

(TOM) (Dong and Horvath, 2007). Subsequently, the

corresponding dissimilarity (1-TOM) was calculated, which

was beneficial to accomplishing a hierarchical clustering

dendrogram. Then, a hierarchical clustering tree of genes

was calculated by TOM. According to a parameter set up as

minModuleSize (n = 30), modules were identified by the

Dynamic Tree Cut algorithm.

To identify the OA-related modules, the next step was to

integrate highly related modules. Module eigengene, the first

principal component of a given module, was calculated for each

module, which was considered as the representative of this

module in a one-dimensional vector. Hierarchical cluster

analysis was performed on all modules, and highly associated

modules were merged by the Merged Dynamic algorithm.

Module-trait associations were calculated by module

eigengenes. The module-trait associations revealed the

relationships between OA and modules by calculating the

correlation coefficient and one-way ANOVA (Li et al., 2020;

Cheng et al., 2021). Significant modules were identified according

FIGURE 3
Topological overlap calculation andmodule identification. (A)Heatmap plot of topological overlap in the gene network. Red squares along the
diagonal correspond to modules. (B) Gene dendrogram calculated by average linkage hierarchical clustering. The color row underneath the
dendrogram shows the assigned original module and themergedmodule. (C)Hierarchical clustering ofmodule eigengenes. (D)Heatmap plot of the
eigengene adjacencies. Each row and column in the heatmap correspond to one module eigengene.
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to the correlation coefficient and p-value. p-value < 0.05 was

considered statistically significant.

Function enrichment analysis and hub
gene identification

ClusterProfiler was engaged for the Gene Ontology (GO) and

Kyoto Encyclopedia of Genes and Genomes (KEGG) (Tang et al.,

2018). GO consists of three aspects: biological process, molecular

function, and cellular component. KEGG includes four databases:

pathway, genes, compound, and enzyme. The GO terms and KEGG

pathway with p-value adjusted by Benjamini and Hochberg method

less than 0.05 (p.adjust < 0.05) were considered significant. The

results of enrichments were visualized by bubble plot via the

function dotplot in ClusterProfiler. The relationship between

genes and pathways was visualized by heatmap plot via the

function heatplot in ClusterProfiler. Hub genes were defined as

the genes with high connectivity in the co-expressing network,

potentially playing a critical role in the module. The hub genes

were identified by the Cytoscape plugin cytoHubba (Chin et al.,

2014). Two independent datasets GSE143514 (Zhao et al., 2021) and

GSE12021 (Huber et al., 2008) were used to validate the expression

of hub genes. The feature of the independent datasets is summarized

in Supplementary Table S1.

Prediction of the potential drug targeting
modules

Hub genes derived from the significant modules were input into

the CMap database (Lamb et al., 2006). Subsequently, the

enrichment score that represents the similarities between the

expression profiles of cells cultured with compounds and hub

genes was estimated, and the compounds listed by enrichment

score were revealed. Using the criteria of p-value < 0.01 and

enrichment score <0, we identified the compounds that were

significantly negatively correlated with hub genes.

Result

Data preprocessing, gene expression
matrix, and weighted gene co-expression
network

After preprocessing, the gene expression matrix of the top 50%

probes in the rank of variance was obtained. According to the result

of sample hierarchical clustering, potential outliers were detected

and removed from the analysis, which involve a total of eight normal

samples (GSM1337304, GSM 1337309, GSM133706, GSM1337310,

GSM1337305, GSM1337313, GSM1337311, and GSM1337312)

FIGURE 4
Identification of modules associated with rheumatoid arthritis. (A)Heatmap of the correlations betweenmodule eigengenes and OA. The value
in each square and the p-value in parentheses reflect the correlation coefficient between the module eigengene and disease. (B) Scatter plot of the
correlation between gene significance (GS) and gene module membership (MM) in OA-related modules, including the darkturquoise, the brown4,
the bisque4, and the brown module.
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(Supplementary Figure S1). The gene expression of the remaining

samples was visualized by a heatmap (Figure 2A). The sample

dendrogram and trait heatmapwere demonstrated in Figure 2B. The

sample cluster revealed a high correlation between clinical traits (OA

in red color and normal in white color) and gene expression profiles

after excluding the outliers. We calculated the absolute value of the

correlation coefficient of the top 50% probes in the rank of variance.

Based on the correlation coefficient, the functions softConnectivity

and pickSoftThreshold provided respective scale-free network

module index and mean connectivity of different soft thresholds.

As shown in Figure 2C, the soft-threshold power of 9 was the lowest

power that met the requirements of the value of scale-free network

module index >0.9 and sufficient mean connectivity. Based on this

soft threshold, a scale-free network was built up and an adjacency

matrix was computed and converted into a topological overlap

matrix (TOM) (Figure 3A).We constructed a hierarchical clustering

dendrogram of genes and identified 54 modules by the Dynamic

Tree Cut algorithm (Figure 3B) that were further merged into

23 modules to reduce the module number (Figure 3C). These

23 modules were aggregated into two clusters that include five

modules and 18 modules, respectively. The adjacency matrix of

modules is visualized as a heatmap plot (Figure 3D).

Critical modules, pathways, and hub
genes of OA

To identify the biologically meaningful modules, the module-

trait relationships were obtained by calculating the correlation

coefficient and p-value between each module eigengene and

sample traits. The modules with the absolute value of

correlation coefficient >0.7 and p-value <0.05 were selected as

FIGURE 5
Functional annotation of the darkturquoisemodule. (A)GO term enrichment and (B) KEGGpathway analysis of the darkturquoisemodule. Gene
ratio indicates the ratio of the enriched genes in each GO function and KEGG pathway. The color and size of the dot represent p-value adjusted by
Benjamini and Hochberg method and the gene number assigned to the corresponding GO term and KEGG pathway, respectively. Functional
annotation reveals critical signaling pathways in OA, such as MAPK, TNF, PI3K/Akt, NF-kB, and IL-17 signaling. (C) Heatmap plot of the
connectivity of the enriched genes and KEGG pathways.
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significant modules. As shown in Figure 4A, the darkturquoise

module (cor = -0.97, p-value = 1e-23) had the highest correlation

with OA. Moreover, the brown4 module (cor = 0.76, p-value =

3e-08), the bisque4 module (cor = 0.75, p-value = 5e-08), and the

brown module (cor = 0.71, p-value = 8e-07) were also highly

related to OA. The genes in these modules also exhibited a good

correlation between gene significance (GS) and gene module

membership (MM), indicating that they were highly correlated to

the corresponding module as well as OA (Figure 4B). To

understand the biological relevance of these four modules to

OA, GO term enrichment and KEGG pathway enrichment

analyses were utilized to annotate the functions of 670 genes

in the darkturquoise module, the 237 genes in the

brown4 module, the 2,120 genes in the bisque4 module, and

the 561 genes in the brown module.

The biological processes of the darkturquoise module were

relevant to positive regulation of cell migration (p.adjust = 6.61E-

10), respond to regulation of apoptotic signaling pathway

(p.adjust = 1.32E-10), respond to intrinsic apoptotic signaling

pathway (p.adjust = 1.09E-10), respond to cellular response to

inorganic substance (p.adjust = 1.60E-10), and respond to

myeloid leukocyte migration (p.adjust = 6.48E-10)

(Figure 5A). The KEGG pathway enrichment of the

darkturquoise module was found to include mainly MAPK

signaling pathway (p.adjust = 1.26E-07), PI3K-Akt signaling

pathway (p.adjust = 1.14E-04), TNF signaling pathway

(p.adjust = 6.92E-09), and transcriptional misregulation in

cancer (p.adjust = 2.70E-05) (Figure 5B). The RELA gene is

mostly involved in the KEGG enrichment pathway with high fold

change values in the darkturquoise module (Figure 5C).

The genes of the brown4 module were enriched in the

extracellular matrix-related biological processes of extracellular

structure organization (p.adjust = 2.06E-34), extracellular matrix

organization (p.adjust = 6.23E-36), collagen metabolic

FIGURE 6
Functional annotation of the brown4 module. (A) GO term enrichment and (B) KEGG pathway analysis of the brown4 module. Gene ratio
indicates the ratio of the enriched genes in each GO function and KEGG pathway. The color and size of the dot represent p-value adjusted by
Benjamini and Hochberg method and the gene number assigned to the corresponding GO term and KEGG pathway, respectively. Functional
annotation indicates themechanism of ECM remodeling inOA. (C)Heatmap plot of the connectivity of the enriched genes and KEGGpathways.
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(p.adjust = 6.53E-22), collagen catabolic (p.adjust = 3.90E-23),

and collagen fibril organization (p.adjust = 4.08E-16)

(Figure 6A). The genes were also enriched in several signaling

pathway including protein digestion and absorption (p.adjust =

2.10E-14), focal adhesion (p.adjust = 1.76E-07), ECM-receptor

interaction (p.adjust = 5.14E-11), and the PI3K-Akt signaling

pathway (p.adjust = 3.91E-04) (Figure 6B). Collagen genes, such

as COL1A1, COL1A2, COL4A1, and COL4A2, showed a good

involvement to the KEGG enrichment pathway (Figure 6C).

In the bisque4 module, the biological processes involved

mainly electron transport chain (p.adjust = 5.25E-21),

oxidative phosphorylation (p.adjust = 2.65E-25), respiratory

electron transport chain (p.adjust = 1.49E-19), mitochondrial

ATP synthesis coupled electron transport (p.adjust = 1.02E-19),

and ATP synthesis coupled electron transport (p.adjust = 1.68E-

19) (Figure 7A). In KEGG analysis, these genes were relevant to

the disease or pathway relating to aging, involving Alzheimer’s

disease (p.adjust = 4.16E-21), Huntington’s disease (p.adjust =

8.23E-18), thermogenesis (p.adjust = 1.31E-13), oxidative

phosphorylation (p.adjust = 2.46E-20), and Parkinson’s

disease (p.adjust = 5.77E-18) (Figure 7B). The genes encoding

ATP synthase subunits, such as ATP5F1A, ATP5F1D, ATP5F1E,

ATP5MC3, ATP5PF, and ATP5PO, and cytochrome c oxidases,

including COX5A, COX4I1, and COX7C, had high connectivity

with pathway related to the bisque4 module, especially oxidative

phosphorylation (Figure 7C).

The brown module was mainly involved in immune-related

biological processes including neutrophil activation involved in

immune respond, neutrophil activation (p.adjust = 8.14E-28),

neutrophil degranulation (p.adjust = 1.20E-27), neutrophil

mediated immunity (p.adjust = 6.73E-27), and phagocytosis

(p.adjust = 4.74E-13) (Figure 8A). In KEGG pathway analysis,

the brown module showed strong relevance to lysosome

(p.adjust = 4.09E-24), osteoclast differentiation (p.adjust =

9.80E-12), tuberculosis (p.adjust = 1.23E-08), phagosome

(p.adjust = 1.23E-08), and Fc gamma R-mediated

FIGURE 7
Functional annotation of the bisque4 module. (A) GO term enrichment and (B) KEGG pathway analysis of the bisque4 module. Gene ratio
indicates the ratio of the enriched genes in each GO function and KEGG pathway. The color and size of the dot represent p-value adjusted by
Benjamini and Hochberg method and the gene number assigned to the corresponding GO term and KEGG pathway, respectively. Functional
annotation indicates the hallmarks of OA, such as mitochondrial dysfunction and altered energy metabolism. (C) Heatmap plot of the
connectivity of the enriched genes and KEGG pathways.
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phagocytosis (p.adjust = 1.23E-08) (Figure 8B). ATPase H+

transporters, including ATP6AP1, ATP6V0B, and ATP6V0D1,

were identified in the other module-related pathways such as

lysosome, tuberculosis, and phagosome (Figure 8C). Fc

fragments of IgG receptors, such as FCGR3A, FCGR2A, and

FCGR2B, were involved in osteoclast differentiation.

To identify the critical hub genes in the module, we

constructed the co-expressing network of gene expression by

WGCNA and visualized it by Cytoscape software (Figure 9A).

Then, the genes with the top five connectivity, which was

calculated by the cytoHubba plugin of Cytoscape, were

defined as the hub genes in the module. As shown in

Figure 9A, GADD45B, MAFF, MYC, HSPA1A, and FOSB

were the hub genes in the darkturquoise module. For the

brown4 module, SPARCL1, COL5A1, NID2, THY1, and

MXRA5 were identified as the hub genes. Moreover, these

genes were partially validated by an independent dataset

(Figures 9B, C). Among the identified hub genes, GADD45B,

MAFF, and MYC were validated as the downregulated genes.

Potential drug targeting the significant
module

To identify the potential drugs targeting the darkturquoise

and the brown4 modules, the upregulated and downregulated

genes were input into the CMap database. As shown in Table 1

and Table 2 the top 10 potential drugs based on the enrichment

score were identified, respectively. Interestingly, anisomycin and

MG-262 were identified as two common compounds targeting

these modules, suggesting that they might be the promising drugs

for OA.

FIGURE 8
Functional annotation of the brownmodule. (A)GO term enrichment and (B) KEGG pathway analysis of the brownmodule. Gene ratio indicates
the ratio of the enriched genes in each GO function and KEGG pathway. The color and size of the dot represent p-value adjusted by Benjamini and
Hochberg method and the gene number assigned to the corresponding GO term and KEGG pathway, respectively. Functional annotation indicates
the immune involvement in the OA mechanism. (C) Heatmap plot of the connectivity of the enriched genes and KEGG pathways.
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Discussion

In this study, we employed integrated bioinformatics

methods to identify the significant OA-related modules,

signaling pathways, and critical hub genes. Among these

modules, the darkturquoise module and the brown4 module

should be highlighted based on their strong biological relevance

to OA.

The pathway analysis of the darkturquoise module indicates the

contributions of some important signaling pathways to OA, such as

theMAPK signaling pathway, TNF signaling pathway, and PI3K/Akt

signaling pathway. The roles of these pathways have been well

characterized in OA (Grunke and Schulze-Koops, 2006; Loeser

et al., 2008; Sun et al., 2020), including promoting chondrocyte

apoptosis, inducing pro-inflammatory factors, increasing catabolic

metabolism, or/and reducing anabolicmetabolism individually or in a

FIGURE 9
Topological analysis of the gene network and hub gene identification. (A) Gene network is based on WGCNA of the darkturquoise module and
the brown4 module. Nodes and edges represent the genes and the connection between them. The hub genes (red) with the top five connectivity in
the network are highlighted. The first neighbor genes are the genes co-expressed with the hub genes. Two independent datasets were employed to
validate the hub genes (B, C). GADD45B, MAFF, andMYCwere validated as the downregulated genes in both datasets. OA versus normal; ns, not
significant; *, p < 0.05; **, p < 0.01; all p-value estimated by unpaired Student’s t-test.
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complicated crosstalk between these pathways. The most important

finding should be addressed to the identification of RELA as a

broadly-involved gene among the pathway relevant to this

module. RELA encodes the subunit of NF-kB, namely, RelA or

P65. RELA can be triggered by a host of stress-related stimuli

including pro-inflammatory cytokines, activating NF-kB signaling,

and promoting catabolism (Marcu et al., 2010).Moreover, GADD45B

was identified as a critical hub gene in the darkturquoise module.

GADD45B is characterized as a regulator implicated in a variety of

responses to cell injury including cell cycle checkpoints, apoptosis, and

DNA repair (Salvador et al., 2013). Decreased GADD45B was found

in the cartilage of patients with late-stage OA (Ijiri et al., 2008).

Silencing GADD45B decreased chondrocyte survival and enhanced

apoptosis induced by TNF-alpha (Ijiri et al., 2008). These lines of

evidence indicate a protective effect of GADD45B in chondrocytes.

Moreover, GADD45B deficiency can contribute to the activation of

JNK and elevated MMP3 and MMP13 gene expression in fibroblast-

like synoviocytes (FLS) (Svensson et al., 2009). Since GADD45B was

identified as a hub gene in our study, it may be an important gene in

the mechanisms of OA development and a promising target for OA.

Moreover, MAFF and MYC are the other two hub genes in this

module. MAFF, one of the basic region leucine zipper (bZIP)-type

transcription factors, participates in transcriptional activation or

repression (Katsuoka and Yamamoto, 2016). MAFF is identified

as an oncogene that regulates IL11/STAT3 signaling (Moon et al.,

2021). Moreover, MAFF is a link between inflammation, lipid, and

lipoprotein metabolism (von Scheidt et al., 2021). These lines of

evidence suggest that MAFF may be a regulator of inflammation in

OA. Indeed, although the roles of MAFF have not been documented

in OA, Garcia et al. found that MAFF is hypermethylated and

downregulated in OA cartilage (Alvarez-Garcia et al., 2016). MYC

is a well-documented transcription factor that is extensively involved

TABLE 1 Potential drugs targeting the darkturquoise module.

Compound Enrichment scorea Specificityb Cell linec

Anisomycin −0.99 0 MCF7, PC3, and HL60

MG-262 −0.98 0 MCF7 and PC3

Cicloheximide −0.93 0.0148 MCF7, PC3, and HL60

Ikarugamycin −0.906 0.0076 MCF7

5279552 −0.872 0.0238 MCF7

Isoflupredone −0.864 0.125 MCF7, PC3, and HL60

Fasudil −0.854 0.0056 MCF7 and PC3

Lomustine −0.831 0.0141 MCF7 and PC3

Sulmazole −0.823 0.0396 MCF7, PC3, and HL60

Lycorine −0.808 0.0267 MCF7, PC3, and HL60

aEnrichment scores indicate the similarity of the gene expression of OA, module, and the gene signature of the compounds. Negative scores represent the opposite relationships between

them.
bSpecificity measures the uniqueness of the connection between a perturbagen and the signature of interest. Small values of specificity indicate high uniqueness between signatures and gene

modules.
cCell lines involved in the assessments.

TABLE 2 Potential drugs targeting the brown4 module.

Compound Enrichment score a Specificity b Cell line c

Anisomycin −0.99 0 MCF7, PC3, and HL60

MG-262 −0.98 0 MCF7 and PC3

Cicloheximide −0.93 0.0148 MCF7, PC3, and HL60

Ikarugamycin −0.906 0.0076 MCF7

5279552 −0.872 0.0238 MCF7

Isoflupredone −0.864 0.125 MCF7, PC3, and HL60

Fasudil −0.854 0.0056 MCF7 and PC3

Lomustine −0.831 0.0141 MCF7 and PC3

Sulmazole −0.823 0.0396 MCF7, PC3, and HL60

Lycorine −0.808 0.0267 MCF7, PC3, and HL60

aEnrichment scores indicate the similarity of the gene expression of OA, module, and the gene signature of the compounds. Negative scores represent the opposite relationships between

them.
bSpecificity measures the uniqueness of the connection between a perturbagen and the signature of interest. Small values of specificity indicate high uniqueness between signatures and gene

modules.
cCell lines involved in the assessments.

Frontiers in Pharmacology frontiersin.org11

Cao et al. 10.3389/fphar.2022.888533

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.888533


in stem cell biology cancer (Dang et al., 2006; Yoshida, 2018). Fisch

et al. (2018) found that JUN, EGR1, JUND, FOSL2, MYC, KLF4,

RELA, and FOS both target large numbers of dysregulated genes in

OA and are themselves suppressed in OA.

The other module also revealed some critical pathways and

genes relevant to OA. In the brown4 module, GO and KEGG

functional analysis indicated the involvement of the alteration of the

extracellular matrix (ECM). The inflammatory factors, including IL-

1β, TNF-α, IL-12, and IL-15, increased the expression of matrix-

degrading proteins such as matrix metalloproteinases (MMPs)

(Maldonado and Nam, 2013). During OA, the content of

aggrecan, a negatively charged proteoglycan that attracts water

molecules, decreased in patients’ tissue. Collagen type II,

distributed in the normal healthy cartilage matrix and providing

tensile support for the tissue, is transformed into collagen type I

(Goldring and Goldring, 2010; Lahm et al., 2010; Zhu et al., 2013).

Reduced collagen type II decreased stored elastic energy and gave

rise to fibrillation and fissure formation (Silver et al., 2002). The

alteration of ECM is tightly associated with ECM–receptor

interaction and focal adhesion. Some studies reported that the

expression of collagen V (COL5A1) was increased in OA

cartilage (Wei et al., 2010), however, the detailed function of

COL5A1 remains to be demonstrated. The pathway analysis of

the bisque4module revealed the hallmarks of OA and aging, such as

mitochondrial dysfunctions and abnormal energy metabolism (Wei

et al., 2010). In the brown module, the immune-relevant pathways

and genes were indicated. The roles of complement activation and

pro-inflammatory cytokines in cartilage destruction and synovitis

were well documented (Kalaitzoglou et al., 2017; Lopes et al., 2017).

Also, the infiltration of immune cells, such as T cells and activated

macrophages in the OA synovial tissue, may be an important event

relevant to low-grade inflammation and pain.

Except for the exploration of the OA-relevant genes and

signaling to advance the understanding of the OA mechanism,

some potential compounds targeting these genes were also

identified based on the CMap database. The most interesting

finding is that two compounds, anisomycin and MG-262, were

predicted to target both the darkturquoise and the brown4 module.

Anisomycin, as a P38 agonist, increased the gene expression of

COL2A1 and decreased the gene expression of COL10A1, resulting

in the inhibition of chondrocyte hypertrophy (Li et al., 2010).

Moreover, p38 activation stabilized SOX9 mRNA (Tew and

Hardingham, 2006), suggesting that anisomycin might be able to

increase SOX9 expression by activating P38 to promote anabolic

metabolism. MG-262, as a proteasome inhibitor, was shown to

inhibit IL-1β/TNF-α-induced activation of NF-κB, indicating the

potential of MG-262 in attenuating OA by the inhibition of the NF-

κB signaling pathway (Pujols et al., 2012). Still, the effects of

anisomycin and MG-262 on OA remain elusive because they are

likely to be toxic and aggravate OA progression at high

concentrations.

The limitations of this study should be discussed. First, we

identified key OA-related hub genes and only validated a few of

them by an independent dataset. Second, no experimental

exploration was included to reveal the role of these key genes.

Finally, the compounds we identified targeting to OA-related gene

module were based on estimation of the other cell lines. Further

experiential studies are needed to verify our findings in the future.

Conclusion

The significant modules, signaling pathways, and potential hub

genes relevant to OA were identified in this study. Anisomycin and

MG-262 might be the potential drugs for OA therapy.
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