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ABSTRACT

The relationship between gene-specific DNA methylation in peripheral blood 
leukocytes and colorectal cancer (CRC) susceptibility is unclear. In this case-control 
study, the methylation status of a panel of 10 CRC-related genes in 428 CRC cases and 
428 cancer-free controls were detected with methylation-sensitive high-resolution 
melting analysis. We calculated a weighted methylation risk score (MRS) that 
comprehensively combined the methylation status of the panel of 10 genes and found 
that the MRS_10 was significantly associated with CRC risk. Compared with MRS-
Low group, MRS-High group and MRS-Medium group exhibited a 6.51-fold (95% CI, 
3.77-11.27) and 3.85-fold (95% CI, 2.72-5.45) increased risk of CRC, respectively. 
Moreover, the CRC risk increased with increasing MRS_10 (Ptrend < 0.0001). Stratified 
analyses demonstrated that the significant association retained in both men and 
women, younger and older, and normal weight or underweight and overweight or 
obese subjects. The area under the receiver operating characteristic curves for the 
MRS_10 model was 69.04% (95% CI, 65.57-72.66%) and the combined EF and 
MRS_10 model yielded an AUC of 79.12% (95% CI, 76.22-82.15%). Together, the 
panel of 10 gene-specific DNA methylation in leukocytes was strongly associated with 
the risk of CRC and might be a useful marker of susceptibility for CRC.

INTRODUCTION

Colorectal cancer (CRC), with an estimated 
1,360,602 newly diagnosed cases and 693,933 deaths in 
2012, is the third-most common cancer in men and the 
second-most in women worldwide [1]. In China, CRC is 
the fifth-most common cancer in men and the fourth-most 
in women, with an estimated 376,300 newly diagnosed 
cases and 191,000 deaths in 2015 [2]. The cancerization 
of colon mucosal epithelial cells is a complex and 

multifactorial, gradual process, characterized by the 
accumulation of cancer-specific genetic and epigenetic 
alterations. Epigenetic DNA modifications, including 
aberrant DNA methylation, are recognized as major and 
causal epigenetic events that occur during CRC initiation 
[3]. Accumulating evidence suggests that the global 
hypomethylation of DNA might induce chromosomal 
instability and gene-specific hypermethylation can silence 
tumor suppressor genes, all of which might contribute to 
CRC formation.
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Until now, studies have mainly focused on tumor-
derived DNA methylation changes, and studied the 
relationship between DNA methylation status in tumor 
tissue and prognosis of various cancers including CRC. 
The aberrant methylated genes in tumor tissue are 
commonly involved in aspects of cell function such as cell 
cycle regulation (CDKN2A (also known as p16) and IGF2), 
DNA mismatch repair (MLH1 and MGMT), apoptosis 
(DAPK1), cell adhesion (CDH1) and signal transduction 
(APC and WIF1) in CRC [4–10]. It is clear that tumors 
do not develop as an isolated phenomenon in their 
target tissue, other organ systems including the immune 
system (such as peripheral blood leukocytes) are also 
involved in tumor initiation [11]. In addition, altered DNA 
methylation in peripheral blood leukocytes is associated 
with environmental exposures encountered throughout life 
[12, 13]. Meanwhile, several experiments in vitro showed 
that environmental factors may disrupt epigenetic balance 
and may cause methylation abnormalities, and these 
aberrations have been associated with cancer susceptibility 
[14, 15]. Therefore, DNA methylation alterations 
in leukocytes may reflect epigenetic modifications, 
environmental exposures, or interactions between these 
factors that increase disease susceptibility. However, 
only a few studies have assessed the association between 
DNA methylation in leukocytes and the risk of CRC or 
colorectal adenomas. Some studies focused on genomic 
methylation of leukocyte DNA in relation to the risk 
CRC [16–19] or colorectal adenomas [20, 21], and other 
studies have reported an association between gene-specific 
methylation in leukocytes and the risk of CRC [22–26] or 
colorectal adenomas [27–29]. In addition, recently, several 
studies have reported gene-specific methylation alterations 
in leukocytes from patients with various cancers, including 
bladder, breast, renal, and head and neck cancer [30–34]. 
The results of these studies did imply aberrant methylation 
of multiple genes in leukocytes might predispose toward 
susceptibility to CRC, like genetic variants of germline 
DNA. Therefore, we carried out this case-control study 
to investigate the associations between leukocyte-derived 
DNA methylation in a panel of 10 genes and the risk of 
CRC.

RESULTS

Main characteristics of the participants

Table 1 shows the basic characteristics of the cases 
and their matched controls. The CRC cases exhibited 
an overall lower body mass index than the controls. Of 
the 914 eligible DNA samples, methylation status of 
the 10 genes was successfully assessed in 856 samples 
(93.65%), which were included in the final analysis. 
The characteristics of demographic variables and 
questionnaire-derived variables before and after multiple 
imputations are listed in Supplementary Table 1.

DNA methylation and CRC risk

CRC risk was significantly associated with the 
methylation of DAPK1, IGF2, MINT31, NEUROG1 and 
WIF1 (Table 2). A marginally significant association 
was observed for MGMT. For the methylation of APC, 
CDH1, p16 and MLH1, there were no significant 
differences between the cases and the controls regardless 
of adjustment. For MRS_10, compared with the subjects 
in the MRS-Low group (57.36% of participants), the 
subjects in MRS-High (11.80% of participants) and MRS-
Medium groups (30.84% of participants) exhibited a 
6.51-fold (95% CI, 3.77 to 11.27, P<0.0001) and 3.85-
fold (95% CI, 2.72 to 5.45, P<0.0001) increased risk for 
CRC, respectively. Moreover, the CRC risk increased with 
increasing MRS_10 (Ptrend < 0.0001).

Subgroup analysis

For MRS_10, the MRS_High and the MRS-Medium 
groups conferred an increased risk of CRC among both 
men and women, although the effect was attenuated in 
women compared with men (Supplementary Table 2). 
Additionally, significant associations were observed 
between the methylation of DAPK1, IGF2, NEUROG1 
and WIF1 and CRC risk in both men and women. 
However, the methylation of MGMT and MINT31 only 
displayed statistically significant associations with CRC 
in men.

The methylation of DAPK1, IGF2, NEUROG1 and 
WIF1 was associated with CRC risk in both the younger 
(<60 years) and older groups (≥60 years) (Supplementary 
Table 3), whereas the associations between the methylation 
of MGMT and MINT31 and CRC risk were significant 
only in the younger participants. Clearly significant 
associations were observed between the MRS-High and 
the MRS_Medium groups and CRC risk among both the 
younger and the older participants.

According to body-mass index (BMI), the 
MRS_High and the MRS-Medium groups conferred a 
similarly increased risk of CRC in both normal weight 
or underweight subjects (<24) and overweight or obese 
subjects. For individual gene-specific methylation, the 
methylation of DAPK1, IGF2, NEUROG1 and WIF1 was 
associated with CRC risk in both of the normal weight 
or underweight group (<24) and the overweight or obese 
group (≥24) (Supplementary Table 4), whereas the 
associations between the methylation of CDH1, MGMT 
and MINT31 and CRC risk were significant only in the 
overweight or obesity participants.

Interactions between EF and DNA methylation

The significant interaction between increased 
intake of fruit and the methylation of IGF2 displayed an 
antagonistic effect on the risk of CRC. Alternatively, the 
significant interaction between increased consumption 
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of fish stewed with brown sauce and the methylation 
of CDH1 displayed a synergistic effect on the risk of 
CRC. Furthermore, the interactions between increased 
consumption of coarse grains and the methylation of 
IGF2 and between increased consumption of pork 
and the methylation of NEUROG1 demonstrated a 
marginally significant antagonistic effect on the risk of 
CRC (Table 3).

Pyrosequencing verification

For DAPK1 and MLH1, the methylation status 
obtained via MS-HRM was compared with the mean 
methylation level based on quantitative pyrosequencing 
and the results indicated that the MS-HRM results 
were well confirmed by the pyrosequencing results 
(Supplementary Figure 1). The Spearman correlation 
coefficients between these two methylation assessment 
techniques were high (r=0.7147, 95% CI, 0.6145 to 

0.8077, P<0.0001 for DAPK1; r=0.6089, 95% CI, 0.3972 
to 0.7392, P<0.0001 for MLH1), and the AUC was 0.8699 
(95% CI, 0.7919 to 0.9479, P<0.0001) for DAPK1 and 
0.9113 (95% CI, 0.8445 to 0.9782, P<0.0001) for MLH1. 
Additional results about the Bland-Altman plots are 
provided in the Supplementary Materials.

Performance of the MRS_10 model

We developed two basic models (including the 
MRS_10 model and the EF-only model) and a combined 
model (the combined EF and MRS_10 model). The AUC 
for the MRS_10 model was 69.04% (95% CI, 65.57 to 
72.66%, P<0.0001), which represented significantly 
higher discrimination accuracy than any individual gene 
methylation (Figure 1). The AUC for the EF-only model 
was 72.94% (95% CI, 69.60 to 76.26%, P<0.0001). 
Notably, the combined EF and MRS_10 model yielded an 
AUC of 79.12% (95% CI, 76.22 to 82.15%, P<0.0001), 

Table 1: Main characteristics of colorectal cancer cases and controls

Characteristics Number of cases (%) Number of controls (%) P

Total number 428 428

Age Mean (SD) 59.37 (10.30) 59.36 (10.35) 0.99

Gender Male 266 (62.15) 266 (62.15) 1.00

Female 162 (37.85) 162 (37.85)

BMI <18.50 28 (6.54) 26 (6.07) <0.0001

18.5-24.00 219 (51.17) 146 (34.11)

24.0-28.00 150 (35.05) 139 (32.48)

≥28.00 31 (7.24) 117(27.34)

Tumour site Colon 177 (41.35) - -

Rectum 251 (58.65) - -

Pathological morphology Protruding type 237 (55.37) - -

Ulcerative type 135 (31.54) - -

Other types 56 (13.09) - -

Degree of differentiation Low 43 (10.05) - -

Medium 350 (81.78) - -

High 34 (7.94) - -

Unknown 1 (0.23) - -

Histological classification Adenocarcinoma 395 (92.29) - -

Other types 33 (7.71) - -

Dukes stage A-B 231 (53.97) - -

C-D 157 (36.68) - -

Unknown 40 (9.35) - -

BMI: body mass index; SD: standard deviation.
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Table 2: Associations between methylation at individual genes, MRS_10 and the risk of CRC

DNA 
methylation 
statusa

Cases (%)b Controls 
(%)b

Crude 
OR

95% 
CI P ORadjusted

c 95% 
CI P ORadjusted

d 95% 
CI P

APC Negative 412 (96.26) 419 (97.90) 1.00 1.00 1.00

Positive 16 (3.74) 9 (2.10) 1.81 0.79-
4.14 0.16 1.77 0.76-

4.11 0.19 1.82 0.74-
4.49 0.19

CDH1 Negative 405 (94.63) 392 (91.59) 1.00 1.00 1.00

Positive 23 (5.37) 36 (8.41) 0.62 0.36-
1.06 0.08 0.59 0.34-

1.02 0.06 0.65 0.36-
1.19 0.16

CDKN2A Negative 419 (97.90) 424 (99.07) 1.00 1.00 1.00

Positive 9 (2.10) 4 (0.93) 2.28 0.70-
7.45 0.17 2.26 0.68-

7.51 0.18 1.99 0.56-
7.04 0.29

DAPK1 Negative 322 (75.23) 385 (89.95) 1.00 1.00 1.00

Positive 106 (24.77) 43 (10.05) 2.95 2.01-
4.33 <0.0001 2.93 1.98-

4.33 <0.0001 2.95 1.94-
4.49 <0.0001

IGF2 Negative 334 (78.04) 389 (90.89) 1.00 1.00 1.00

Positive 94 (21.96) 39 (9.11) 2.81 1.88-
4.19 <0.0001 2.63 1.75-

3.96 <0.0001 2.54 1.65-
3.92 <0.0001

MGMT Negative 365 (85.28) 389 (90.89) 1.00 1.00 1.00

Positive 63 (14.72) 39 (9.11) 1.72 1.13-
2.63 0.01 1.48 0.96-

2.27 0.08 1.82 1.00-
2.60 0.05

MINT31 Negative 409 (95.56) 423 (98.83) 1.00 1.00 1.00

Positive 19 (4.44) 5 (1.17) 3.93 1.45-
10.62 0.01 4.02 1.47-

10.99 0.01 4.27 1.52-
12.05 0.01

MLH1 Negative 412 (96.26) 420 (98.13) 1.00 1.00 1.00

Positive 16 (3.74) 8 (1.87) 2.04 0.86-
4.82 0.11 1.94 0.81-

4.65 0.14 1.72 0.68-
4.34 0.25

NEUROG1 Negative 363 (84.81) 401 (93.69) 1.00 1.00 1.00

Positive 65 (15.19) 27 (6.31) 2.66 1.66-
4.26 <0.0001 2.61 1.62-

4.21 <0.0001 2.57 1.55-
4.25 <0.0001

WIF1 Negative 354 (82.71) 392 (91.59) 1.00 1.00 1.00

Positive 74 (17.29) 36 (8.41) 2.28 1.49-
3.48 <0.0001 2.26 1.47-

3.48 <0.0001 2.44 1.53-
3.87 <0.0001

MRS_10 Low 172 (40.18) 319 (74.53) 1.00 1.00 1.00

Medium 177 (41.36) 87 (20.33) 3.77 2.75-
5.18 <0.0001 3.66 2.66-

5.05 <0.0001 3.85 2.72-
5.45 <0.0001

High 79 (18.46) 22 (5.14) 6.67 4.01-
11.06 <0.0001 6.41 3.84-

10.71 <0.0001 6.51 3.77-
11.27 <0.0001

Ptrend <0.0001

Medium or 
High 256 (59.81) 109 (25.47) 4.36 3.26-

5.83 <0.0001 4.22 3.14-
5.66 <0.0001 4.39 3.19-

6.05 <0.0001

CI: confidence interval; CRC: colorectal cancer; MRS: methylation risk score; OR: odds ratio.
a According to the Youden index, a 1% level of methylation was used as the cut-off value for APC, CDH1 and IGF2, and 
a 0% level of methylation was used as the cut-off value for CDKN2A, DAPK1, MGMT, MINT31, MLH1, NEUROG1 and 
WIF1. The positive indicates methylated status and the negative indicates unmethylated status. b The rates represent the 
percentages of all cases and controls, respectively. c ORs adjusted for age, gender and BMI. d ORs adjusted for age, gender, 
BMI, occupational physical activity, smoking, and consumption of coarse grains, fish stewed with brown sauce, fried food, 
leftovers and pork.
P values < 0.05 are in bold.
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representing an increase of 6.18% (95% CI, 3.99 to 8.54%, 
P<0.0001) compared to the EF-only model. Based on the 
NRI, the IDI and the AUC difference, the improvement 
of adding MRS_10 to the EF-only model was statistically 
significant (Supplementary Table 5). The NRI and the IDI 
for addition of the MRS_10 to the EF-only model was 
14.72% (95% CI, 8.92 to 20.52%, P<0.0001) and 9.30% 
(95% CI, 7.36 to 11.23%, P<0.0001), respectively.

Relationships between EF and DNA methylation

Based on comparisons of the higher MRS group 
(combining the MRS-Medium and MRS-High group) 
with the MRS-Low group, smoking increased the risk 
of MRS_10 in all the subjects and cases but not in the 
controls (Supplementary Table 6). Considering the 
methylation of individual genes, we found that smoking 
and high consumption of leftover were significantly 
associated with DAPK1 hypermethylation in all the 
subjects; the associations remained marginally significant 
in the cases but not in the controls. High consumption 
of pork was significantly associated with NEUROG1 
hypermethylation in all the subjects and controls but not 
in the CRC cases. High consumption of fish stewed with 
brown sauce was significantly associated with CDH1 
hypermethylation only in the CRC cases.

DISCUSSION

This study found that MRS_10 were strongly 
associated with the risk of CRC, indicating a positive 
relationship between leukocyte-derived DNA methylation 
of the panel of 10 genes and CRC risk. By using of 
MRS_10, compared with the MRS-Low group, subjects 
with MRS-High and MRS-Medium showed 6.51-fold and 
3.85-fold increased risk of CRC, respectively. Stratified 
analyses demonstrated that these significant associations 
retained in both men and women, younger and older, and 
normal weight or underweight and overweight or obese 
subjects.

The findings demonstrated that the DNA 
methylation pattern in peripheral blood leukocytes is 
a detectable biomarker for CRC risk assessment. This 
observation is similar to those results for other cancers 
reported in previous studies [31–34] suggesting that DNA 
methylation alterations in peripheral blood are potential 
biomarkers for risk prediction.

The gene involved in the study illustrated a wide 
range of cancer related cellular events, for example, 
CDH1 encoded a member of the family of cell adhesion, 
and abrogation in its expression have been involved in 
unregulated growth and invasion of adjacent tissues in 

Table 3: Effects of interactions between environmental factors and gene methylation on the risk of colorectal cancer

Gene 
methylation

Environmental factor
Gene 

methylation

Environmental factor

Consumption of fruits (times/week) Consumption of coarse grains (g/week)

<2 ≥2 Interaction <200 ≥200 Interaction

IGF2 OReg (95% CI) ORi
a (95% CI) P IGF2 OReg (95% CI) ORi

a (95% 
CI) P

Negative 1 0.91(0.74-
1.11) Negative 1 0.69(0.57-

0.84)

Positive 3.72(2.08-6.66) 1.64(1.00-
2.71) 0.35(0.14-0.88) 0.0248 Positive 5.44(2.67-

11.08)
1.50(0.95-

2.38)
0.44(0.18-

1.10) 0.0787

Consumption of stewed fish with brown sauce (times/week) Consumption of pork (g/week)

<1 ≥1 Interaction <250 ≥250 Interaction

CDH1 OReg (95% CI) ORi
a (95% CI) P NEUROG1 OReg (95% CI) ORi

a (95% 
CI) P

Negative 1 1.50(1.15-
1.95) Negative 1 1.13(0.91-

1.41)

Positive 0.31(0.15-0.66) 2.00(0.81-
4.96) 3.82(1.11-13.15) 0.0333 Positive 3.33(1.62-6.86) 1.90(1.06-

3.39)
0.39(0.14-

1.07) 0.0671

CI: confidence interval; OReg: odds ratio for the combined effect of the gene methylation pattern and the environmental 
factor; ORi: odds ratio for the interaction between the gene methylation pattern and the environmental factor.
a The ORi was adjusted for age, gender and BMI.
P values < 0.05 are in bold.
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Figure 1: Receiver operating characteristic (ROC) curves and the corresponding area under the curves (AUC) 
analyses of prediction models of CRC risk. (A) The MRS_10 model versus any single gene methylation pattern. (B) Comparisons 
of the prediction accuracy by the EF-only model, the MRS_10 model and the combined EF and MRS_10 model. The straight dotted line 
(reference line), corresponding to an AUC of 0.5, indicates that the model is no more accurate than random classification in predicting CRC 
risk. (Continued )



Oncotarget61245www.impactjournals.com/oncotarget

carcinogenesis [35]. Likewise, as a tumor suppressor 
gene, CDKN2A played an important control role in cell 
cycle regulating during the G1 phase [36]. DAPK1 was 
a positive mediator of apoptosis which executed juncture 
of cell death signaling, and its loss or inactivation has 
been linked to human tumor [37]. WIF1 was a secreted 
inhibitory factor of Wnt pathway, which played a pivotal 
role in blockade of Wnt signaling and induced apoptosis in 
colorectal cancer cells [10]. A growing body of evidence 
suggested that aberrant hypermethylation of the promoter 
can lead to reduced expression of these genes including 
APC [9], CDH1 [38], CDKN2A [39], DAPK1 [40], 
IGF2 [41], MGMT [42], MLH1 [43], NEUROG1 [44] 
and WIF1 [45]. In contrast to the methylation status of 
a single gene, the MRS, which summarized the data for 
the methylation of multiple genes, might demonstrate 
systematically altered gene methylation profiles in 
subjects and might more comprehensively represent 
the susceptibility of an individual to CRC. In addition, 
sensitivity analyses by omitting each individual locus 
showed a robust association between the MRS and the risk 
of CRC (Supplementary Table 7).

The exact mechanism underlying the alterations in 
the methylation of peripheral blood-derived DNA among 
individuals who are susceptible to CRC remains unclear. 
Alterations in leukocyte-derived DNA methylation 
may reflect a response of the hematopoietic system to 

tumorigenesis and may be partially explained by systemic 
differences in the methylation signatures of leukocyte 
subpopulations during tumorigenesis [46]. The leukocyte-
derived DNA methylation profiles represented the overall 
methylation status; nevertheless, isolation of specific 
cell subpopulations is difficult in epidemiologic studies 
[47]. Additionally, in the present case-control study, it is 
not possible to determine the etiologically relevant time 
windows of DNA methylation or confirm the temporal 
sequence of DNA methylation and CRC occurrence. 
Although we cannot definitely determine whether these 
methylation alterations in peripheral blood-derived DNA 
represent an early response of the hematologic system 
to the presence of tumor cells or appear before tumor 
development [31], the observed significant association 
between gene-specific DNA methylation in leukocytes 
and CRC risk is likely to be useful in identifying the 
population at high risk of CRC.

Importantly, circulating tumor cell DNA is unlikely 
to interfere with the results of leukocyte-derived DNA 
methylation because the number of circulating tumor cells 
is negligible and the effects of their aberrant methylation 
can be excluded [32, 48]. Another potential source of 
support of our findings is that accumulating studies have 
shown no significant correlation between tissue and 
blood DNA methylation [49, 50]. We also compared the 
DNA methylation levels of six genes in peripheral-blood 

Figure 1 (Continued ):(C) The combined EF and MRS_10 model versus the EF-only model. ROC curves and AUC analyses 
were computed for a reference prediction model (blue) and for an extended model (red) including additional risk predictors. Indicated are 
the increases in AUC (delta-AUC) obtained by adding the additional predictors.
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leukocytes and colorectal tumor tissues from 217 CRC 
patients; no statistically significant correlations were 
observed (Supplementary Table 8).

The potential biological mechanism for EF 
interfering with DNA methylation processes in 
carcinogenesis is complex and variable. Several 
researchers have suggested the plausible mechanisms, 
including that DNA methylation requires methyl group 
donors such as S-adenosylmethionine (SAM), while 
environmental factors may affect SAM synthesis and 
alter DNA methyltransferase (DNMT) activity [51]. In 
this study, we found that smoking was associated with 
DNA hypermethylation, which was consistent with 
several previous studies [52, 53]. Smoking can induce 
DNMT1 overexpression and subsequently result in 
hypermethylation of the promoter of tumor suppressor 
genes, which could lead to tumorigenesis [54]. The 
molecular mechanism underlying the link between 
consumption of pork or stewed fish with brown sauce and 
DNA methylation remains unclear. Saturated fatty acids 
and heterocyclic amines, which form during the high-
temperature cooking of pork and fish, may partly account 
for the aberrant hypermethylation [55, 56]. Alteration of 
DNA methylation is a gradual and reversible process, thus, 
there is a critical window of opportunity through which we 
might inhibit or reverse the process and counteract cancer 
by making changes in diet and lifestyle [57].

We initially used MS-HRM to assess DNA 
methylation status. MS-HRM technology has been 
shown to reliably and accurately evaluate low-level 
methylation [58]. By comparing the estimates of 
methylation of DAPK1 and MLH1 based on MS-HRM and 
pyrosequencing, we found that the MS-HRM results were 
highly consistent with the pyrosequencing results. This 
consistency was also supported by a previous study that 
analyzed APC and CDKN2A methylation and found a high 
correlation between the results from these two techniques 
[59]. Only a small subset of genes and participants were 
analyzed via pyrosequencing because of its high cost. 
From a cost perspective, the assessment of peripheral 
blood-derived DNA methylation via MS-HRM might be 
an efficient strategy for the early detection of individuals 
who are at high risk for CRC.

In this study, we developed the weighted MRS_10 
that combined these 10 genes in a leukocyte-derived DNA 
methylation marker panel and found that the AUCs for 
the MRS_10 model and the combined EF and MRS_10 
model reached 0.6904 and 0.7912, respectively. Compared 
to the EF-only model with a similar AUC to those reported 
in previous studies (AUCs ranging from 0.61 to 0.76) 
[60–69], adding the MRS_10 significantly improved 
the discriminatory performance, as demonstrated by 
a 0.0618 units of AUC gain. However, the combined 
EF and MRS model is needed to be further validated in 
future prospective studies. To evaluate whether adding 
the MRS_10 to the EF-only model improved risk 

prediction performance, we assessed the accuracy of the 
combined model in classifying individuals as cases or 
controls based on the NRI and the IDI, which are useful 
statistics that have gained increasing acceptance for the 
evaluation of new biomarkers and risk models [70, 71]. 
Adding MRS_10 to the EF-only model resulted in the 
reclassification of 14.72% of the subjects into more 
accurate risk categories. This advancement might improve 
the selection of those who require more frequent screening 
and shorter follow-up intervals. However, NRI is sensitive 
to arbitrary cut-off values [72]. Therefore, we reset the 
cut-off points to 0.3, 0.4, 0.6 or 0.7 and found similar 
NRIs (Supplementary Table 9), which implied that the 
discriminatory improvement was robust across the cut-off 
values used in our study.

Our study has several additional limitations. First, 
the current panel of gene methylation sites incorporated 
into the calculation of MRS_10 might not be ideal 
because we have identified the genes from published 
studies rather than next-generation sequencing, which 
would likely reveal additional methylation biomarkers. 
Therefore, the present MRS_10 models in this study must 
be updated. Another potential limitation of this study is 
the restriction of EFs included in the combined EF and 
MRS_10 model. The age and gender matching design 
inherent to our present study removes two CRC-associated 
variables. Additionally, the discriminatory performance 
of the combined model might be improved by including 
additional factors such as colonoscopy or sigmoidoscopy 
findings.

In summary, the MRS_10 combining a panel of 10 
gene-specific DNA methylation in leukocytes seemed to 
be a promising and robust risk prediction tool and might 
be a useful marker of susceptibility for CRC. The MRS_10 
may be useful for the identification of individuals who 
are at high risk of developing CRC. However, our results 
should be further validated in future studies.

MATERIALS AND METHODS

Study population

We included primary sporadic CRC cases diagnosed 
at the Third Affiliated Hospital (from June 2004 to May 
2005 and May 2007 to January 2008) and the Second 
Affiliated Hospital of Harbin Medical University (from 
October 2010 to December 2011) in Harbin, China. 
Cancer-free controls were selected contemporaneously 
from the Second Affiliated Hospital of Harbin Medical 
University by individual matching each case according to 
gender and age (±2 years). All participants were Chinese. 
All CRC cases were newly diagnosed, histologically 
confirmed, and alive at the time of initial contact; and 
the exclusion criteria included subjects with metastatic 
colorectal carcinoma, adenomatous polyposis coli, or a 
family history of CRC in first-degree relatives according 
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to the Amsterdam criteria [73]. The participants were 
interviewed face-to-face to complete a structured standard 
questionnaire, which was partially adopted from the 
report by Shu et al [74]. The questionnaire queried 
information on demographic characteristics and potential 
risk factors for CRC, including family history, smoking, 
alcohol drinking, occupational physical activity, and diet 
consumption. Dietary consumption over the past year was 
assessed using a validated food frequency questionnaire 
(FFQ) [74]. The FFQ included 9 major food groups, which 
represent most of the common foods in Northeast China. 
The food items included coarse grains, dairy products, fish 
stewed with brown sauce, fried food, fresh fruits, green 
vegetables, leftover, pork, and soybean products.

Through professional training, the investigators 
made efforts to reduce recall and investigation bias. All 
study subjects gave informed consent, and appropriate 
ethical approval for sample collection was obtained from 
the Ethics Committee of Harbin Medical University prior 
to the study. Peripheral blood (5 milliliters) was donated 
before chemotherapy or adjuvant radiotherapy and 
was stored in a freezer. The sample size estimation was 
presented in the Supplementary Materials. In total, 553 
eligible patients were recruited; 32 did not complete the 
questionnaire, and another 19 did not provide sufficient 
blood samples. Therefore, 502 extracted DNA samples 
were available for the CRC cases, with a response rate 
of 90.78%. Similarly, 1,210 subjects were eligible as 
controls, and 1,083 provided complete questionnaire 
data and blood samples with a response rate of 89.50%. 
Because eligible matched controls could not be found for 
45 cases, 457 controls were ultimately enrolled.

Genomic DNA extraction and bisulfite 
modification

DNA was extracted from buffy coats using 
the QIAamp DNA Blood Mini Kit (Qiagen, Hilden, 
Germany) and was then bisulfite-modified using the 
EpiTect Plus DNA Bisulfite Kit (Qiagen) according to the 
manufacturer’s protocols. Detailed methods are provided 
in the Supplementary Materials.

Methylation-sensitive high-resolution melting 
(MS-HRM) assays

Fourteen CRC-related genes, including tumor 
suppressor genes such as APC, CDH1, CDKN2A (also 
known as p16), CDKN2B (also known as p15), DAPK1, 
GSTP1, MGMT, MLH1, PTEN and WIF1 and CpG island 
methylator phenotype-related markers such as IGF2, 
APBA1 (also known as MINT1), MINT31 and NEUROG1, 
were selected according to review of literatures. Eight 
primer pairs were selected from previously published 
studies [75–81]; the remaining primers were designed 
using Methprimer software [82]. The primer sequences 

used are listed in Supplementary Table 10. The PCR 
mixture consisted of a total volume of 10 μl containing 
2× LightCycler 480 High Resolution Melting Master Mix 
(Roche Applied Science, Mannheim, Germany), 3 mM 
MgCl2, 0.2-0.4 μM of each primer and approximately 10 
ng of bisulfite-modified template DNA. PCR amplification 
and MS-HRM analyses were performed using the 
LightCycler 480 platform (Roche), and the resulting data 
were analyzed using software module of Gene Scanning 
(Roche). A set of methylation standards (100, 25, 10, 5, 
2, 1, and 0% methylated DNA) were prepared by mixing 
commercially available methylated and unmethylated 
DNA (Zymo Research); these standards were used to 
semi-quantitatively measure the DNA methylation level 
in the samples. Normalized melting curves of MS-HRM 
assays for each gene were shown in Supplementary Figure 
2. In addition, a blank control (non-template control) 
sample was included in each batch, and all reactions were 
performed in duplicate. A third trial was conducted for the 
samples that presented inconsistent results between the 
two trials.

Two investigators (Y.L. and Y.W.) blinded to 
outcome and other predictive variables assessed the 
MS-HRM results, and discrepancies were resolved by 
discussion and consensus with another investigator (Y.Z.). 
The DNA methylation pattern was first tested in 167 
cases and their matched controls. Four genes displaying 
no abnormal methylation (PTEN, GSTP1, APBA1 and 
CDKN2B) were tested no further and were excluded from 
the analysis. Finally, the other 10 genes were assessed in 
all 457 cases and their matched controls.

Pyrosequencing verification

To verify the results of MS-HRM, we performed 
pyrosequencing in a subset of the samples (further details 
are provided in the Supplementary Materials and the 
primer sets are listed in Supplementary Table 11).

Methylation risk score (MRS) computation

First, we coded each gene methylation status as 0 
or 1 for non-methylation or methylation, respectively, 
according to the optimal cut-off value as determined by 
the Youden index (J = max {sensitivity + specificity – 1}) 
using the receiver operating characteristic (ROC) curve 
analysis. Then, we computed the weighted MRS for each 
individual by multiplying the methylation status by the β-
coefficients for each gene included in the model and then 
dividing by the number of genes included in the model. 
Simply, the weighted MRS was computed using the 
following equation:

MRS 1x1 2x2 ... i xi k xk
k

=
+ + + +β β β β

Where βi is the β-coefficient for gene i, xi is the 
methylation status of the same gene i (0 or 1), and k is the 
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total number of genes included in the model. According 
to the formulation listed above, we generated MRS_10 
comprehensively considering the methylation status of all 
the 10 genes. Using the MRS_10 model, the subjects were 
classified as follows: MRS-Low, predicted probability 
≤0.5; MRS-Medium, 0.5< predicted probability ≤0.7; or 
MRS-High, predicted probability >0.7.

Missing data analysis and imputation

Definitions of questionnaire-derived variables 
are provided in the Supplementary Materials. All 
questionnaire-derived variables were analyzed via missing 
value analysis and were imputed via multiple imputation 
(further details are provided in the Supplementary 
Materials).

Model development and performance

We selected CRC-associated risk factors by using 
of multivariable logistic regression model with backward 
conditional selection method (P values of 0.05 and 0.10 
were specified as the thresholds for entry and removal 
of variables, respectively), and we further included 
gender and age in the final model. Interactions between 
environmental factors (EF) and gene methylation were 
also explored, but we did not included interaction terms 
in the models because interaction terms rarely add to the 
predictive ability of the model [83, 84]. A multivariable 
logistic regression model was used to fit the CRC risk 
prediction models: Model 1 was the MRS_10 model; 
Model 2 was an EF-only model, which exclusively 
contained questionnaire-derived risk factors; and Model 3 
was a combined model incorporating EF and MRS_10. For 
each logistic regression model, the regression coefficient 
estimates were corrected according to the pooled imputed 
datasets. The estimates of regression coefficients for each 
model were listed in Supplementary Table 12.

To assess the discriminatory accuracy of each 
model, we generated ROC curves and calculated the areas 
under ROC curves (AUCs). The 95% CI for the AUC 
were estimated using the bootstrapping method (1000 
replicates). We used the method of DeLong [85] to assess 
the differences in the AUC between the models. We further 
calculated the categorical net reclassification improvement 
(NRI), the integrated discrimination improvement (IDI) to 
evaluate the improvement in the discriminatory accuracy 
of the model (considering 0.5 as the cut-off point).

Statistical analysis

The differences in characteristics between the 
cases and the controls were tested using Student’s t-test 
for continuous variables or the χ2 test for categorical 
variables. We used both univariable and multivariable 
logistic regression models to estimate odds ratios (ORs) 
and 95% confidence interval (CI) for the associations 

between gene-specific DNA methylation or EF and CRC 
risk. The effects of interactions between EF and the 
methylation status at individual genes or MRS_10 on the 
risk of CRC were evaluated on a multiplicative scale with 
a product-term coefficient using multivariable logistic 
regression models. Additionally, to assess the associations 
between EF and DNA methylation among all the subjects, 
we used multivariable logistic regression models that 
included age, gender, BMI and case-control status that 
allowed us to adjust for the potential influence from case-
control status. We also assessed the associations by case 
and control separately. All statistical tests were two-sided 
except for the test of the increase in AUC (one-sided) and 
statistical significance was defined as P values of less than 
0.05. Missing value analysis, multiple imputations and 
multivariable logistic regression analysis were performed 
using SPSS Statistics version 19.0 (IBM, Inc., USA). 
The 95% CIs for the AUC and the NRI and the IDI were 
estimated using the pROC package and the PredictABEL 
package in R software version 2.15.3, respectively. All 
other statistical analyses were performed using SAS 
software version 9.1 (SAS Institute Inc., USA).
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