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Abstract

Human respiratory pathogens have repeatedly caused lethal outbreaks in wild great

apes across Africa, leading to population declines. Nonetheless, our knowledge of

potential genomic changes associated with pathogen introduction and spread at the

human-great ape interface remains sparse. Here, we made use of target enrichment

coupled with next generation sequencing to non-invasively investigate five outbreaks

of human-introduced respiratory disease in wild chimpanzees living in Taï National

Park, Ivory Coast. By retrieving 34 complete viral genomes and three distinct

constellations of pneumococcal virulence factors, we provide genomic insights into

these spillover events and describe a framework for non-invasive genomic

surveillance in wildlife.
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Spillover of common human respiratory pathogens to wild great apes

habituated to human presence for research or tourism has been

repeatedly documented.1–3 The development of long-term health

monitoring programmes within conservation initiatives,4 bringing

together behavioural observations and non-invasive sampling

(e.g. faeces, urine and performing necropsies on dead wildlife), has

led to the establishment of a framework for studying disease epidemi-

ology in these endangered populations. Viruses of different families

have been identified as primary causative agents, with members of

the family Pneumoviridae being frequently reported. Bacterial co-

infections, most often caused by Streptococcus pneumoniae,5,6 have

contributed to disease severity, ultimately leading to mortality.

Emergence of a pathogen in a new host population raises many

questions, such as whether the pathogen will spread efficiently,
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whether mutations will arise and be fixed whilst spreading and

whether it will remain endemic in the population or not. With the

exception of a few recent reports,2,3,7 earlier molecular

characterisations of the human pathogens causing disease in wild

great apes have been limited to a few, partial genes. These investiga-

tions were conducted using PCR-based screening approaches aimed

at detecting and genotyping common respiratory agents infecting

humans.6,8 To better understand pathogen introduction, more com-

prehensive genomic analyses, ideally performed on samples collected

at different stages of an outbreak and from different individuals, are

required. Unbiased metagenomic/metatranscriptomic analyses may

allow to assemble complete genomes,2,3 but these are likely to require

relatively deep sequencing when applied to samples with a low ratio

of target (respiratory pathogen) versus background (host and other

microorganisms) RNA/DNA, such as faeces. Implementing a target

enrichment step prior to high throughput sequencing (HTS) can help

overcome this limitation by focusing sequencing efforts on the

RNA/DNA of interest,7 thus drastically reducing the sequencing depth

required. Here, we made use of hybridisation capture coupled to HTS

to re-analyse a set of necropsy and faecal samples collected from wild

chimpanzees, aiming at generating complete genomes from human

pneumoviruses and characterising virulence proteins of pneumococci

that caused outbreaks in the early 2000s.

Between 2004 and 2009 we monitored six outbreaks of respira-

tory disease in two communities (South and East) of wild, human

habituated chimpanzees9 in Taï National Park, Ivory Coast6,8,10

(Table 1). Faeces were collected from as many individuals as possible

and full necropsies were performed on the chimpanzees that

succumbed to the infection. Initial PCR diagnostics performed on lung

tissue of deceased chimpanzees,1 and at a later time on faeces of

chimpanzees with clinical signs,6,8 targeting partial glycoprotein

(G) and phosphoprotein (P) viral genes allowed for the identification

and genotyping of the causative agents. To start exploring

potential genome-wide diversity, we designed an RNA bait set

encompassing complete human metapneumovirus (HMPV) and human

orthopneumovirus (HRSV) type A and B genomes (synthesised by a

service provider, MYBaits®, supporting information methods). We first

validated the technique by performing two rounds of 24-h hybrid

capture on libraries built from 12 lung RNA extracts previously identi-

fied as positive for either pneumovirus via PCR (supporting informa-

tion Table S1). On-target reads represented from 0.1% to 99.08% of

all reads and six complete viral genomes (three HMPV, two HRSVB

and one HRSVA) could be reconstructed. To investigate whether we

could broaden our dataset, we applied the method to

32 pneumovirus-positive faecal samples collected during the different

outbreaks and tested in previous studies.6,8 Our sample selection

aimed at maximising the number of individuals and the time frame

tested. On-target reads represented from 69.3% to 99.74% of all

reads, and 21 complete viral genomes were reconstructed (28 at 2X

coverage), highlighting a good performance also on non-invasive sam-

ples (Table 1 and supporting information Table S1). As opposed to

necropsy samples, which are collected (at the earliest) at the time of

death several days after symptoms’ onset, faeces can be collected

continuously throughout the different phases of the infection,

allowing to retrieve information from animals who survive (here,

n = 27). This shows how despite not being the gold standard for

respiratory viral infection diagnostics, faecal samples are well suited

for and extend the reach of genomic studies of such pathogens in

wildlife.

In all samples analysed from each outbreak, viral genomes identi-

fied in different chimpanzees and over time were identical. By relaxing

the consensus calling criteria (from at least 20 reads and 95% agree-

ment to at least two reads and 65% agreement), one or two single

nucleotide polymorphisms (SNPs) emerged in all outbreaks studied

(supporting information Tables S2 and S3), which is in line with what

is generally observed in within-household and nosocomial transmis-

sion of pneumoviruses in humans.11 Further to suggesting that these

spillovers likely represent single introduction events, these data point

towards an efficient replication and spread without the insurgence of

adaptive mutations.

Previous analyses based on a partial fragment of the G gene of

the HRSVB had suggested that the virus causing the 2005 and 2006

outbreaks in the South group was identical.8 Our genome-wide ana-

lyses revealed the existence of nine SNPs distributed over five genes

that distinguish the two viruses (supporting information Table S2).

This highlights the finer resolution allowed for by genome-wide

T AB L E 1 Non-invasive samples analysed via in-solution hybridisation capture for viral enrichment

Outbreak
period

Chimpanzee
group

Virus
identified

Lung samples
tested

Faecal samples
tested Period covered

Complete genomes
20X (lungs, faeces)

Complete genomes
2X (lungs, faeces)

March 2004 South HMPVa 3 12 08.03.2004 to

02.04.2004

7 (2, 5) 8 (1, 7)

October 2004 South HMPV n.a. 1 29.10.2004 0 0

August 2005 South HRSVB n.a. 14 16–24.08.2005 14 -

February 2006 South HRSVBa 1 0 10.02.2006 1 -

February 2006 East HRSVBa 2 0 07–09.02.2006 1 1

November 2009 South HRSVAa 6 5 27.11.2009 to

17.12.2009

5 (1, 4) 1 (0, 1)

Note: Shown is a summary of the necropsy and faecal samples selected for viral enrichment and the respective results of genome coverage depth.

Abbreviations: HMPV, human metapneumovirus; HRSVB, human orthopneumovirus.
aCo-infection with Streptococcus pneumoniae.
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analyses and confirms that, as observed in humans, an infection with

HRSV does not provide protection from re-infection with a highly

similar, homologous subtype, even when occurring just 6 months

apart. To investigate whether the same was true for HMPV, we com-

pared positive faecal samples from the only individual in which HMPV

infection was confirmed in both March and October 2004. Despite

retrieving only 37.5% of the viral genome from the October sample,

we could assess that this portion was identical to the strain that

circulated 7 months earlier. The evidence of re-infection with seasonal

human strains stresses even more the threat that these viruses pose

to remaining great ape populations and the importance of

implementing strict hygiene rules at tourism and research sites.4

Whole-genome maximum-likelihood phylogenetic analyses con-

firmed previous genotyping, with the 2004 HMPV strain falling within

the diversity of the B2 lineage (supporting information Figure S1), the

HRSVB from 2005 and 2006 within the GB3 genotype (supporting

information Figure S2) and the HRSVA from 2009 within the GA2

(supporting information Figure S3). We acknowledge that given the

paucity of genomic information available for viral strains circulating in

humans in these remote areas, we could not fit these data to seasonal

local patterns.

In four out of six outbreaks, several deaths occurred among the

chimpanzees and were attributed to co-infections with S. pneumoniae

(pneumococcus). The availability of necropsy samples allowed for an

initial characterisation of pneumococcal strains via Multi Locus

Sequence Typing (MLST) and serotyping. These analyses identified

three distinct serotypes5,6 (ST 2309 in South 2004/2006, ST 2308 in

East 2006, ST 8485 in South 2009), one of which was of unequivocal

human origin (ST 8485). Bacterial isolation was successful only for the

latter,6 highlighting the need of alternative tools to characterise more

in depth pneumococci threatening wild populations.

To broaden the efficacy of the available polyvalent conjugate vac-

cines directed against pneumococcal capsular polysaccharides, recent

vaccine development has been focused on targeting one or more viru-

lence proteins12 such as choline binding proteins (e.g. CbpA, PspA,

PcpA), serine-rich repeat proteins (Psrp), pneumococcal pili (RrgA, B

and C) favouring adherence and surface enzymes like the hyaluronate

lyase (HysA), which favours tissue invasion. Presence and genetic

variability of these proteins are known to vary substantially across

serotypes identified in humans.13 To which extent the same occurs in

pneumococcal strains circulating in wildlife remains largely unknown.

To investigate the diversity of virulence factors identified in the pneu-

mococci infecting the Taï chimpanzee population and to simulta-

neously design a tool that would allow for the differentiation of

S. pneumoniae from other commensal streptococci (e.g. Streptococcus.

mitis and Streptococcus oralis), we designed a bait set targeting nine

(entire or partial) virulence genes thus far only reported in pneumo-

cocci (supporting information Table S4). We generated DNA baits by

using sheared long-range PCR products to which biotinylated

adapters were subsequently attached.

Following hybrid capture on libraries generated from lung sam-

ples, 1.01% to 50.19% of the total reads were on target (supporting

information Table S5), allowing for the characterisation of the

virulence factors tested in the different strains. In the 2004 and 2006

outbreak samples from the South community, only five (CbpG, CbpA,

PspA, HysA and PcpA) of the nine virulence genes tested were

detected (supporting information Figure S4). When compared, con-

sensus sequences for these genes were identical, suggesting the same

strain was involved in both outbreaks. The same five virulence genes,

plus a sixth one (Psrp), were detected in the 2006 East outbreak sam-

ples. Sequences, however, differed from those of the 2004/2006

South strain for all genes but HysA, which was identical in its full

length (approximately 3 kb). The pneumococcal strain found in South

in 2009 had yet another constellation, carrying all nine virulence

genes tested. Sequences of the genes shared with the 2004/2006

South and the 2006 East strains differed from each other, in line with

the previous (serotype) identification of three distinct strains. The

greatest diversity was recorded in the choline binding (CbpA and

PspA) and serine-rich repetitive (Psrp) proteins (up to 33%, supporting

information Figure S4), which are known to be highly polymorphic.14

From a functional perspective, the hyaluronidase gene of the 2004

and 2006 strains displayed an early truncation due to a one base pair

deletion, suggesting potential functional loss. Inactivity of this enzyme

due to indels or mutations in the coding gene has been reported for

other virulent streptococci,15 implying that this gene is not an essen-

tial virulence factor.

To test the suitability of the method to faeces, we performed

hybridisation capture on three libraries built from faecal extracts of

the 2009 outbreak. On-target reads represented 6.27% to 12.38% of

all reads, falling within the range of what was observed for the lungs

(supporting information Table S5). Similarly, the profile of virulence

factors was comparable, with all nine genes being detected and identi-

cal sequences. Overall, gene profiling via hybridisation capture added

layers of information on pneumococci responsible for mortality in wild

chimpanzees, providing a framework for better understanding

pathogenesis and tailoring potential emergency interventions

(e.g. vaccinations). The power of this tool ultimately lies in the flexibil-

ity of simultaneously being able to study multiple aspects that may be

relevant to species conservation, for example, adding baits to charac-

terise genes associated with antibiotic resistance.

The results herein reported provide yet another example of the

quality and quantity of information that can be obtained from non-

invasively monitoring outbreaks of disease in great apes. This should

encourage the implementation of similar continuous surveillance

programmes at other research sites or at least sampling faeces in the

presence of clinical signs. To better understand the links between

human and animal health, these should be coupled with similar studies

in the local human population. Such comparative data could provide

baseline evidence to guide improvements of wildlife conservation

measures and local public health at once, for example, targeted vacci-

nation campaigns for staff or local communities living around great

ape habitats, following a truly One Health approach.
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