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Steroid hormones, such as sex hormones and glucocorticoids, have been demon-
strated to play a role in different cellular processes in the central nervous system, 
ranging from neurodevelopment to neurodegeneration. Environmental factors, such as 
calorie intake or fasting frequency, may also impact on such processes, indicating the 
importance of external factors in the development and preservation of a healthy brain. 
The hypothalamic–pituitary–adrenal axis and glucocorticoid activity play a role in neuro-
degenerative processes, including in disorders such as in Alzheimer’s and Parkinson’s 
diseases. Sex hormones have also been shown to modulate cognitive functioning. 
Inflammation is a common feature in neurodegenerative disorders, and sex hormones/
glucocorticoids can act to regulate inflammatory processes. Intermittent fasting can 
protect the brain against cognitive decline that is induced by an inflammatory stimulus. 
On the other hand, obesity increases susceptibility to inflammation, while metabolic 
syndromes, such as diabetes, are associated with neurodegeneration. Consequently, 
given that gonadal and/or adrenal steroids may significantly impact the pathophysiology 
of neurodegeneration, via their effect on inflammatory processes, this review focuses 
on how environmental factors, such as calorie intake and intermittent fasting, acting 
through their modulation of steroid hormones, impact on inflammation that contributes 
to cognitive and neurodegenerative processes.
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iNTRODUCTiON

Obesity is now considered a worldwide epidemic, with up to 35% 
of adults being considered overweight or obese. Women are more 
likely to develop such a phenotype (1), with female rates of obe-
sity in the United States rising from 31.5% of women aged 60 or 
older in 2003–2004 to 38.1% in 2011–2012 (2). Obesity is highly 
correlated with inflammation in many tissues, including the 
central nervous system (CNS) (3). Obesity and nutrient overload 
can trigger proinflammatory cytokines, such as tumor necrosis 
factor-alpha (TNF-α) and interleukin (IL)-1β, to build up in a 
number of affected tissues. Cells, including adipocytes and brain 
cells, respond to this metabolic stimulus through activation of 
different signaling pathways, including c-jun N-terminal kinase 
(JNK), inhibitor of nuclear factor kappa-B kinase (IKK), and the 
nuclear factor kappa-B (NF-κB) itself (3).

Diet plays a central role in obesity development, and a consen-
sus on its exact influence is far from being defined. One way of 
seeing the effects of diet-related factors on obesity is evaluating 
leptin levels in the blood. Leptin resistance is a very common 
characteristic of obesity (4), and its serum levels are higher in 
obese humans when compared to healthy subjects (5). Regarding 
dietary intake, different factors affect leptin concentration and 
sensitivity differently, although several contradictory results can 
be found in the literature.

Regarding carbohydrate consumption, data are somewhat 
conflicting. While high glycemic index carbohydrate consump-
tion or drastic high-carbohydrate diet (80% carbohydrate) may 
lead to leptin resistance (6, 7), different high-carbohydrate diets 
have no or the opposite effects on leptin sensitivity and blood 
concentrations (8, 9). On the other hand, fat intake has consist-
ently been proven to be associated with a leptin resistance state 
(10, 11). There is, however, a divergence regarding the type of fat 
[saturated, mono, or polyunsaturated fatty acids (PUFA)] that is 
important for the effects on leptin levels (12, 13).

Accumulating data clearly show that a high-fat diet (HFD) 
negatively impacts on health, including increasing the incidence 
of cardiovascular diseases, diabetes, and overall mortality (14–16). 
HFD-exposed animals and humans also have an increased sus-
ceptibility to the development of a range of psychiatric disorders, 
which significantly correlates with body mass index (BMI) and 
obesity (17). Although BMI is widely used as an easy assessment 
of overall adiposity, studies show that abdominal fat deposition 
and visceral adiposity correlate more highly with metabolic 
(18) and psychiatric disorders (19). In that sense, another type 
of assessment, such as waist circumference and/or waist-to-hip 
ratio, is being used as a more relatable measurement that associ-
ates body fat and health disorders (18). Such correlation is greater 
in women than in men, which may indicate a difference between 
male and female responses to nutritional status in relation to 
mental health (20, 21).

On the other hand, dietary energy restriction (DER), achieved 
through a variety of protocols in which food intake is chronically 
or intermittently limited, can induce many beneficial outcomes, 
including via anti-inflammatory and antioxidant effects, that 
potentially increase lifespan [reviewed in Ref. (22)]. A wide body 
of data show food availability to affect both the activation and 

the rhythmicity of the hypothalamic–pituitary–adrenocortical 
(HPA) axis (23, 24). Furthermore, glucocorticoids, a group of 
steroid hormones, can modulate a plethora of processes in the 
organism, including immune function and energy metabolism 
(25–27). Therefore, the involvement of the HPA axis, especially of 
the glucocorticoid, rodent corticosterone (human cortisol), in the 
beneficial effects of DER has been extensively studied. Not only 
may DER modulate the HPA axis but it may also influence the 
hypothalamic–pituitary–gonadal (HPG) axis (28–32), thereby 
potentially interfering with the levels of sex hormones, such as 
androgens and estrogens.

The levels of both glucocorticoids and sex hormones seem to 
be strongly associated with inflammatory processes (26, 33–37). 
Therefore, this review focuses on assessing the role of these ster-
oid hormones in neuroinflammation and the modulation exerted 
by dietary interventions such as HFD and DER on this process.

NeUROiNFLAMMATiON AND STeROiDAL 
HORMONeS

Glucocorticoids
Many studies have shown that glucocorticoids exert anti- 
inflammatory effects in the organism (38). Glucocorticoids secreted 
by the adrenal glands after a physiological or psychogenic stressful 
stimulus promote anti-inflammatory and immunosuppressant 
actions through several genomic and non-genomic mechanisms, 
including the increase of anti-inflammatory gene expression (e.g., 
inhibitor of NF-κB, IκB-α, and IL-1 receptor antagonist) and the 
inhibition of NF-κB and of proinflammatory cytokines (e.g., TNF-
α and IL-1β) (37, 39–41). These mitigating effects on inflammation 
are frequently exploited in clinical settings to treat a plethora of 
inflammatory and immune conditions (42, 43).

The synthesis of glucocorticoids and proinflammatory 
cytokines are interconnected via autoregulatory feedback loops, 
with corticosterone inhibiting the synthesis of proinflammatory 
cytokines and these cytokines stimulating the release of gluco-
corticoids through the upregulation of adrenocorticotropic hor-
mone release from the pituitary gland (38, 44). Glucocorticoids 
levels are elevated after an inflammatory stimulus, including 
when induced by lipopolysaccharide (LPS) (45). Interestingly, 
disrupting the glucocorticoid signaling, by adrenalectomy or 
using glucocorticoid receptor (GR) antagonists, results in a 
much higher sensitivity of mice to the lethal effects of LPS (33, 
46–51). As such, glucocorticoids are important for the resolution 
of inflammatory processes.

However, unlike the acute anti-inflammatory properties of, 
and protection afforded by, glucocorticoids, chronically elevated 
glucocorticoid levels are harmful, including in the CNS (52). 
Glucocorticoids can actually potentiate, rather than blunt, neu-
roinflammation (52–56). Over evolution, it is clear that stressful 
events may be accompanied by an immunological challenge, such 
as from tissue damage, with glucocorticoid-induced immune 
suppression, in such circumstances, being maladaptive (35).

Munhoz et al. (53) showed that elevated acute corticosterone 
levels are proinflammatory in the CNS, enhancing LPS-induced 
NF-κB activation and proinflammatory gene expression, which 
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FiGURe 1 | Dual effects of stressful stimuli on glucocorticoid-
mediated regulation of inflammation. Glucocorticoids released after a 
mild stressor results in anti-inflammatory actions, reducing the 
proinflammatory cytokines production and increasing the expression of 
anti-inflammatory proteins, such as IL-1ra and IκB-α. On the other hand, 
pathological stressful stimuli lead to chronically elevated glucocorticoids 
promoting proinflammatory actions, including microglia activation and the 
consequent upregulation of the NF-κB proinflammatory cascade.
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is prevented by GR antagonist treatment. In another study, high 
corticosterone levels induced by chronic stress increase the 
TNF-α release and microglia activation induced by intracortical 
LPS injection, in a GR-dependent manner (52). Importantly, in 
this study, this reactivation-enhancing effect of glucocorticoids 
occurred even when the chronic stress occurred after the inflam-
matory stimulus. Furthermore, various studies have demon-
strated that glucocorticoids increase the vulnerability of neurons 
to numerous insults, such as excitotoxins and global ischemia, 
rising neuronal death and worsening neurological outcomes 
(54–56).

It is important to note that glucocorticoids can have differ-
ential impacts on brain immunity in different brain regions. For 
instance, the glucocorticoid-mediated potentiation of the inflam-
matory markers induced by LPS occurs in the frontal cortex and 
hippocampus but with the opposite effect being evident in the 
hypothalamus (57). Thus, glucocorticoids increase or decrease 
CNS inflammation depending on the dose, timing, duration of 
glucocorticoid exposure, and the type of glucocorticoid com-
pound (35). The precise mechanism that contributes to these 
paradoxical responses, although of the utmost importance, is still 
unknown. What is currently known is that whether glucocorti-
coids exert anti- or proinflammatory effects is context-dependent, 
with variable response dependent upon concentration, time of 
exposure, the compound type, and the nature of the stimulus 
[reviewed in Ref. (35)]. The glucocorticoid-mediated effects on 
inflammation under physiological and chronic stress are sum-
marized in Figure 1.

Sex Hormones
The association of sex hormones and inflammation markers has 
been widely discussed in the literature. For instance, levels of 
testosterone and sex hormone-binding globulin (SHBG) were 
inversely correlated to markers of metabolic syndrome (58) and 
inflammation [e.g., C-reactive protein (59), γ-glutamyl trans-
ferase (60), and white blood cell and granulocyte count (36)]. 
Interestingly, male-derived cortical astrocytes show increased 
IL-6, TNF-α, and IL-1β mRNA levels in comparison to female-
derived cells (61), indicating the importance of androgens as a 
modulator of central inflammation.

This correlation has also been supported by pharmacological 
approaches. Jayaraman et al. (62) observed that treatment with 
testosterone in vitro suppressed the increase in TNF-α expres-
sion in glial cultures from the cortices of animals submitted 
to a HFD. In addition, they observed a similar effect in vivo in 
gonadectomized mice, with a testosterone-mediated rescue of 
TNF-α and IL-1β mRNA levels in the cortex. Similarly, Khosla 
et al. (63) found an increase in serum TNF-α levels induced by 
acute, chemically induced hypogonadism in men. This effect 
was partially rescued by treatment with estrogen or testosterone, 
with a complete rescue being achieved by a combined therapy 
of both hormones (63). Accordingly, orchidectomized animals 
challenged with LPS show increased sickness behavior and 
increased levels of circulating IL-6 (64). This augmented reac-
tion to LPS might be mediated by increased toll-like receptor 
(TLR)-4 signaling, as treatment with testosterone in  vitro and 

in  vivo decreases TLR-4 expression and sensitivity in mac-
rophages (64). Testosterone also has a similar protective effect, 
in comparison with estradiol, in primary cultured neurons, 
where it prevents serum deprivation-induced apoptosis in an 
aromatase- independent manner,  eliminating a possible indirect 
effect mediated by its conversion into estrogen (65).

In addition, testosterone is a potential neuroprotective factor 
against the inflammation associated with neurodegenerative 
disorders, such as Alzheimer’s disease (66) and multiple sclerosis 
(67). However, this literature is confounded by mixed results, 
with studies showing either no (60) or a positive correlation of 
testosterone levels and inflammation markers (68). As well as 
testosterone, estrogens have also been depicted as neuroprotec-
tive and/or anti-inflammatory agents. In microglia, estradiol has 
a very prominent inhibitory effect. Six hours after a subcutaneous 
injection of estradiol in ovariectomized (OVX) rats, LPS-induced 
macrophage activation is reduced by 60–90% in the cerebral 
cortex and hippocampus, as measured by reduced expression of 
ED-1/CD68. Similarly, in a mouse model of Alzheimer’s disease 
with plaque deposition, activated microglia surrounding amyloid 
plaques are greatly increased in OVX mice, which is reversed by 
an estradiol replacement therapy, although no effects over Aβ 
deposit levels were observed (69). Accordingly, an in vitro study 
showed similar estrogen effects, impairing microglial activation. 
The estrogens, estriol, and estradiol, as well as progesterone, 
suppress LPS-induced increase in inducible nitric oxide synthase 
(iNOS) expression and nitrite production in N9 microglial cells 
and in rat primary cultured microglia (70, 71). Estradiol was able 
to suppress nitric oxide (NO) and TNF-α increase, as well as cell 
death, in rat primary cultured glial cells challenged with LPS (72). 
Additionally, by stimulating BV-2 murine microglial cells with 
LPS, Baker et al. (73) showed estrogen pretreatment to decrease 
NO production, as well as iNOS and cyclooxygenase (COX)-2 
expression, through interaction with the estrogen receptor  
(ER)-β (73). Albeit acute microglial activation could be essential 
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to beneficial inflammatory processes, supporting the tissue in 
coping with stressors (74), the maintenance of a chronic inflam-
matory status is associated with the development of many pathol-
ogies, including neurodegenerative disorders such as Alzheimer’s 
disease. These studies point out to the importance of estrogens as 
regulators of microglial activity, thus highlighting the potential of 
this mechanism as a way to modulate dysregulated inflammation.

Estradiol also has anti-inflammatory effects in astrocytes. 
Treatment with either estradiol or ER modulators inhibits astro-
cyte proliferation to a plethora of insults, such as stab wound 
injury (75, 76), kainic acid ablation (77), and in a MPTP model of 
Parkinson’s disease (78). Additionally, estradiol also inhibits amy-
loid β (Aβ)-induced elevation in IL-1β and TNF-α levels, as well 
as COX-2 and iNOS expression, in primary cultured astrocytes 
(79). Estradiol treatment also attenuates the increased hippocam-
pal expression of IL-1β and TNF-α, as well as astrocyte activation, 
in OVX rats, which is mediated via decreased NF-κB signaling 
(80). Moreover, a reduction in proinflammatory cytokine and 
chemokine mRNA content is observed in cultured astrocytes that 
have been prior-treated with estradiol and ER modulators before 
LPS stimulation (81).

Indeed, ER modulators seem to have anti-inflammatory effects, 
as proven in several in  vivo and in  vitro experimental models. 
Such data indicate that ER-α deletion, specifically in astrocytes 
(but not neurons), lowers the beneficial effects of an ER-α ligand 
treatment, in an experimental autoimmune encephalomyelitis 
(EAE) animal model, as seen by clinical function, central 
inflammation, and axonal loss on female mice (82). Additionally, 
astroglial cell death and mitochondrial function are rescued by an 
estradiol pretreatment in an in vitro oxygen/glucose deprivation 
model (83).

Likewise, in vitro astrocyte cultures have a diminished inflam-
matory response following ER manipulations, as seen by an 
ER-β-dependent reduction in NF-κB signaling (84), reduction 
in COX and iNOS expression (79), and overall reduction in 
proinflammatory cytokine release (84). In addition, estrogen has 
a positive effect on astrocytic glutamate re-uptake, by increasing 
glutamate transporters GLT-1 and GLAST (85), contributing to 
the functioning of glutamatergic synapses, as well as affording 
neuroprotection against the excitotoxic effects of raised levels of 
extracellular glutamate.

Many other in  vivo models of inflammation also indicate 
estrogen to be neuroprotective. Estradiol reduces brain levels of 
TNF-α, IL-1β, and IL-6 in male rats in model of severe peripheral 
burning injury (34). Additionally, low doses of progesterone or 
high doses of estrogen attenuate the raised levels of IL-1β that are 
evident 24 h after a traumatic brain injury in female rats, although 
the sex hormones increased the cytokine levels in the early inflam-
matory phase (86). Interestingly, Zhang et al. (87) suggested that 
not only circulating but also brain-derived estrogen might act as 
anti-inflammatory modulator. They showed, in a model of global 
cerebral ischemia in female rats, that hippocampal astrocyte acti-
vation was associated with an increase in aromatase expression, 
with consequent elevations of estradiol levels in the CA1 region, 
while suppression of its expression through antisense oligonu-
cleotides enhanced cell death as well as astrocyte and microglial 
activation (87).

Nonetheless, not all studies indicate beneficial effects of 
estrogens. Chronic estrogen treatment of OVX rats impairs their 
performance in a water maze test in a way that is similar to that 
of LPS. When both estrogen treatment and LPS were combined, 
performance was further decreased (88). Interestingly, although 
exerting an anti-inflammatory effect in young females, estradiol 
increases brain IL-1β levels in reproductively senescent rats (89), 
thus highlighting that aging might impair the protective response 
to estrogens. Accordingly, in a model of systemic lupus erythe-
matosus in female mice, genetic deficiency of ER-α decreased 
Iba1+-activated microglia and rescued the cognitive deficit as 
assessed by the radial arm water maze test (90).

Overall, most studies suggest a protective effect of both 
testosterone and estrogens, although many factors may act to 
complicate such general conclusions, on occasion inverting these 
beneficial effects, which highlights the importance of further 
assessing the biological underpinnings that drive such complica-
tions. It is possible that the further assessment of testosterone/
estrogen ratio – instead of single hormone level analyses – could 
help to further elucidate the reason for such paradoxical results, 
since it seems to have a greater physiological relevance (30). In 
addition, the complex effects of estrogens in inflammation might 
also be dependent on distinct activation of specific ER subtypes, 
ER-α and ER-β (84, 91, 92), and may also vary between different 
models.

iNvOLveMeNT OF STeROiD HORMONeS 
iN DieTARY iNTeRveNTiONS

HFD and Glucocorticoids
Behavioral impacts of chronic exposure to a HFD can last for 
months, and their progression develops differently depending on 
which stage of the lifespan HFD exposure occurs. For example, 
rats chronically exposed to a lipid overload in their pre- and 
postnatal period exhibit anxiety-like behavior when adults, as 
measured by open field and elevated plus maze tasks (93, 94). 
HFD consumption during pregnancy impairs maternal behavior 
in mice, increasing circulating levels of corticosterone. Although 
the fetus is usually protected against maternal glucocorticoids 
due to placenta expression of 11beta-hydroxysteroid dehydro-
genase type 2 (11β-HSD2), mice fed with a HFD have a lower 
expression of placental 11β-HSD2, rendering the fetus vulnerable 
to the effects of maternal circulating levels of glucocorticoids 
(95). Alterations in the gene expression of GRs in the amygdala 
as well as pro- and anti-inflammatory gene expression profiles in 
the amygdala and hippocampus of the offspring as adults could 
explain the increased anxiety-like behavior of animals exposed 
to HFD in pre- and perinatal periods of their early development 
(94, 96).

High-fat diet consumption by adult rats also alters their 
HPA axis response to stress, resulting in elevated glucocorticoid 
levels (97). Such altered response may be due to an increased 
noradrenergic input in the paraventricular nucleus (PVN) of the 
hypothalamus, an area responsible for controlling corticotrophin-
releasing hormone (CRH) delivery to the pituitary. Indeed, HFD 
induces tyrosine hydroxylase expression in the PVN area and 
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increases CRH levels in the median eminence, part of the hypo-
physeal portal system (98). Besides HPA axis regulation, HFD in 
adults has a clear impact on systemic and central inflammation, 
dysregulating inflammatory gene expression, which, among 
other disorders, plays a central role in the development of insulin 
resistance (99, 100).

Disruption of some components of corticosteroid signaling has 
also been reported in several rat brain regions following chronic 
HFD consumption. Regulation of mineralocorticoid receptors 
and GRs, respectively, seems to be region-specific, increasing in 
some brain areas and diminishing in others. After chronic expo-
sure to HFD, hippocampi of female rats exhibit a lower expres-
sion of both corticosteroid receptors (101), while an increase in 
amygdala levels of MR and GR was observed (94). However, both 
of these alterations can have similar stress-regulatory effects, with 
amygdala GR activation enhancing the stress response, while a 
loss of the HPA axis suppressive effects of the hippocampal GR by 
HFD, leading to a loss of its inhibition of the stress response (102). 
As well as such hippocampal changes arising from chronic stress, 
they are also evident in wider neurodegenerative-associated 
processes, including aging (103, 104). In all these cases, reduced 
expression of hippocampal corticosteroid receptors is associated 
with an exaggerated response to stress, confirming the inhibitory 
effect of hippocampal projections on the HPA axis.

It is well known that NF-κB activity is affected by GR expres-
sion and signaling (35). Corticosterone, through GR activation, 
can induce apoptosis in lymphocytes (105), which explains the 
first observed data linking stress to immunosuppressant effects. 
Chronic supraphysiological levels of glucocorticoids are able 
to hinder immunity responses, reducing leukocyte count and 
impairing expression of several proinflammatory cytokines 
(106). Acting as an immunosuppressant, glucocorticoids have 
direct antagonizing effects upon NF-κB signaling, enhancing 
the expression of IκB and promoting the interaction between 
the GR and NF-κB in the nucleus, which, among many other 
effects, can decrease immune activation (106). On the other hand, 
increased immune response is also reported in initial phases of 
a stressful stimulus, an effect that is dependent upon basal levels 
of corticosterone (107). Given such a collection of data, it is not 
surprising that HFD can alter NF-κB activity and the expression 
of different inflammatory cytokines. In mouse peripheral tissues, 
the expression of NF-κB is increased in response to a chronic 
HFD. Enhanced NF-κB expression and activity was also reported 
in the amygdala of rats exposed to a HFD in their perinatal 
period (94), while diminished NF-κB expression is found in their 
hippocampus (101). Corroborating the central protective role 
of NF-κB, especially in the hippocampus, recent data show that 
a HFD can impair hippocampal neurogenesis, while elevating 
plasma corticosterone levels (108). Several other studies indicate 
different deleterious effects caused by a HFD upon hippocampal 
neuron functioning, including diminished BDNF production, 
impaired neuronal plasticity (109, 110), and working memory 
deficits (111). Interestingly, impaired hippocampal neurogenesis 
in HFD rodents does not correlate with fat accumulation but 
rather to serum corticosterone levels (108). In fact, high serum 
corticosterone levels affect proliferation, differentiation, and 
apoptosis in the dentate gyrus of rodents in different experimental 

settings (112, 113), indicating the significant role that alterations 
in the HPA axis play in HFD models.

The correlation between obesity and cognitive impairment has 
been extensively described in the past decade and several potential 
mechanisms were proposed trying to explain this link. Of these 
hypotheses, a few stand out. Impaired insulin and leptin signal-
ing (114, 115) in the hippocampus and other memory-related 
brain regions is emerging as an interesting theory that forces 
us to further investigate the role of these two hormones in the 
physiology of the brain and specifically their purpose regarding 
synaptic function. However, considering the inflammatory pat-
tern associated with obesity, it is not surprising that a large body 
of evidence supports the idea of a neuroinflammatory trigger to 
the cognitive deterioration associated with a HFD and obesity.

In this context, local proinflammatory cytokine production 
has been reported to occur in some brain regions after different 
HFD protocols (116–118). In all these cases, anti-inflammatory 
and/or antioxidant treatment (both pharmacological and non-
pharmacological interventions) were able to revert HFD-induced 
cognitive impairment. This cognitive improvement seems to 
be accompanied not only by a reduction in inflammatory and 
oxidative stress markers but also with a reduced neuronal insulin 
resistance, driving a strong correlation between these factors.

Reinforcing the important role of neuroinflammation, several 
studies have also described an increase in blood–brain barrier 
(BBB) permeability caused by a HFD, in turn leaving the CNS 
more vulnerable to the inflammatory signals produced in periph-
eral tissues. Such increases in BBB permeability are associated 
with cognitive decrements (119–121). Interestingly, a few reports 
suggest that this HFD-induced BBB defect may lead not only to 
cognitive impairment but could also be the connection between 
Western diet consumption and Alzheimer’s disease (122, 123).

HFD and Sex Hormones
The effects of dietary lipids upon sex hormones have been the 
focus of many studies since the early 1990s, particularly with 
regard to female sex hormones. Such interest in female hormones 
was triggered by data showing blood and urine estrogen levels 
to correlate positively with breast cancer risk in postmenopausal 
women (124). Coupled to the role of estrogens in the regulation 
of Alzheimer’s disease, manipulating estrogen levels has been 
extensively investigated, including how this can be achieved via 
dietary manipulations.

There is now a general consensus that a low-fat diet signifi-
cantly reduces estrogen levels in healthy postmenopausal women 
(125, 126). Dietary effects on serum estradiol levels were assessed 
in a study comparing estradiol levels from Caucasian and Asian 
women (127). Postmenopausal Asian women consumed a total of 
19% of their calories from lipids, whereas in Caucasian women, 
this percentage was 38%. Serum estradiol levels were significantly 
lower in Asian women, being 30–70% lower than postmenopau-
sal Caucasian women. Dietary intervention studies in women 
to assess dietary lipid impact on estradiol levels usually apply a 
low-lipid diet, with only 10–25% of calories being lipid derived. 
Results from such studies show significant changes occurring as 
early as 3 months after the intervention, with the general serum 
estradiol reduction being around 13% (126, 128–130).
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The consumption of omega-3 fatty acids is another possible 
dietary intervention that can modulate estradiol levels. Dietary 
omega-3 and omega-6 PUFA are both required in order to opti-
mize health but can have differential effects on the inflammatory 
response. Omega-6 PUFA consumption increases the levels of a 
number of proinflammatory mediators, including prostaglandin 
E2 (PGE2) and leukotriene B4 (LB4), while omega-3 raises the 
levels of mediators with relatively lower inflammatory activity, 
such as prostaglandin E3 (PGE3) and leukotriene B5 (LB5). Both 
PGE2 and PGE3 and LB4 and LB5 are produced by the same 
enzymes, cyclooxygenase and 5-lipoxygenase, respectively. By 
enhancing substrate competition, omega-3 supplementation 
can reduce PGE2 and LB4 production, thereby attenuating the 
inflammatory response (131, 132). Furthermore, PGE2 can 
induce aromatase expression, thereby increasing the conversion 
of androgens to estrogens (133). This is an important mechanism 
that allows omega-3 PUFA consumption to inhibit estrogen 
production. Just as a low-lipid diet can decrease estradiol levels, a 
HFD can have the opposite effect. Young et al. (134) have shown 
a 36.6% increase in the plasma estradiol levels of postmenopau-
sal women after 8 weeks of HFD, compared to that at baseline. 
However, this study was not able to show the influence of a low-
fat, high omega-3 PUFA diet on estradiol levels.

While estradiol can have detrimental effects on peripheral 
tissues in postmenopausal women, including increasing breast 
cancer risk, studies in the CNS have shown some opposite effects. 
The protective role that sex hormones perform in the brain is 
well established, including from the use of several different 
experimental models, ranging from stroke to neurodegenerative 
disorders (135). Although the neuroprotective role of estrogen 
hormones is widely acknowledged, arising in part from data 
showing estrogens to increase anti-inflammatory mediators and 
protect against excitotoxicity, its use as a therapeutic agent is 
limited due to its activity in peripheral tissues, where it can lead to 
feminization and altered gonadal function as well as correlating 
positively with increased cancer risk, predominantly breast and 
endometrial cancers. Consequently, research has focused on the 
utility of using selective ER modulators. Tissue- and cell-specific 
ER modulators are a promising alternative, should they combine 
the desired pharmacological effect with little to no side effects.

Although not within the scope of this review, a HFD has oppo-
site effects with regard to male sex hormone levels. Mice submit-
ted to a HFD regimen of a duration of 10 weeks showed higher 
serum estradiol levels, as expected, but lower concentrations 
of both luteinizing, and consequently, testosterone hormones 
(136). Interestingly enough, metformin treatment of obese mice 
induced by HFD is capable of partially reverse obesity-induced 
elevated estradiol serum levels and decreased serum testosterone, 
while rescuing several fertility parameters (137).

DeR and Glucocorticoids
Dietary energy restriction can be psychologically stressful. Being 
characterized by food deprivation and starvation, it can be 
coupled to negative emotions, such as anxiety, depression, and 
irritability (138). As a stressful stimulus, DER can increase HPA 
axis activity in a variety of species, thereby increasing an impor-
tant stress indicator, namely, circulating glucocorticoid hormone 

levels. Furthermore, the glucocorticoid increase during DER 
would be expected to modulate metabolic functions, including 
by enabling nutrient mobilization that may be further catabolized 
for energy, such as the stimulation of gluconeogenesis, protein 
catabolism, which increases the release of constituent amino 
acids, and lipolysis, which sensitizes adipose tissue stored as 
triglyceride to the action of lipolytic substances (growth hormone 
and catecholamines), resulting in glycerol and fatty acids (139).

The theory of hormesis, whereby mild stressors can be benefi-
cial, may help to explain the DER mechanisms (140). Unlike other 
chronic stressful stimuli, DER can have many favorable effects for 
the organism, including counteracting inflammation, extending 
life span, and reducing the prevalence of age-related diseases. It is 
theorized that the DER potentiation of glucocorticoids release may 
contribute to increased stress resistance, protecting the organism 
not only against the stressor itself but also by upregulating adap-
tive pathways that protect the organism against the exacerbation 
of inflammation, infection, and metabolic disorders that can 
disturb homeostasis (141–144). Noteworthy, Dhurandhar et  al. 
(145) recently proposed that the DER protective mechanisms may 
involve stress-related interceptive cues, as hunger in the absence 
of dietary restriction, as induced by a ghrelin agonist, promotes 
the same beneficial effects as DER, counteracting inflammation, 
aging, and neurodegeneration.

Among the mechanisms by which DER effects occur, neu-
roendocrinological alterations may play an important role (146). 
As previously noted, increased glucocorticoid concentrations 
following DER occur in various species. For instance, gluco-
corticoids are moderately increased by DER in rodents, where 
it is suggested to play a role in the DER effect (146–150). Free 
corticosterone levels are increased in rats after DER at any point 
in lifespan, when compared to age-matched ad  libitum (151). 
This has led to the proposal that a lifetime DER-induced daily 
hyperadrenocorticism may retard aging (152). Levay et al. (24) 
tested different DER doses of calorie restriction (CR) in rats rang-
ing from 12.5 to 50% and showed that all the doses caused an 
increase in corticosterone levels following a dose–response trend, 
with increasing restriction associated with higher glucocorticoid 
levels (24). Interestingly, a study that evaluated whether DER 
would similarly affect cortisol concentrations in wild mice not 
subjected to many generations of laboratory selection similarly 
showed that DER elevates corticosterone levels throughout life, 
suggesting that this DER effect is not altered by genetic breeding 
effects (153).

In humans, DER has been shown to increase perceived stress 
and circulating cortisol concentrations (154). Moreover, athletes 
have higher cortisol secretion following DER (155), as do individ-
uals with anorexia nervosa (156). The study of eight participants 
who were subjected to DER for 2 years in a closed ecological space 
(Biosphere 2) also showed increased morning total cortisol (157). 
Interestingly, Grayson et al. (158) reported that rodent weight loss 
induced by DER increased basal HPA axis activity, unlike the 
same level of weight loss induced by bariatric surgery. Cortisol 
is usually released in a circadian rhythm, being an important 
aspect of the circadian system. Higher circulating cortisol levels 
are observed during the early morning, with lower levels evident 
around midnight. Remarkably, the elevated glucocorticoid levels 
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after DER, which is accompanied by an oscillation in the levels of 
GRs, follow an altered circadian profile (147, 159). Another study, 
using 40% CR mice, in comparison to ad  libitum fed controls, 
showed a 10-fold increase of plasma corticosteroid levels at 7:00 
a.m., a 2-fold increase at 4:00 p.m., and no difference at 11:00 p.m. 
in the circadian cycle (160).

During Ramadan, adult Muslims refrain from eating dur-
ing daytime. Ramadan can be considered a DER, in which the 
frequency of food consumption is restricted [intermittent fasting 
(IF)] but not the levels of calories consumed. Literature data 
suggest that Ramadan decreases the amplitude of the cortisol cir-
cadian rhythm by increasing its nocturnal levels while decreasing 
its diurnal circulating levels (161–163). A serum cortisol increase 
at 3:00 p.m. can occur in Ramadan (164). During Ramadan, 
although still within the normal reference ranges, immune 
cells can also significantly decrease, as well as proinflammatory 
cytokines and chemokines levels, with consequences, e.g., cancer-
associated processes (165, 166).

However, although it has commonly been shown that DER 
increases cortisol levels in primates and rodents, there is also 
evidence to suggest otherwise. It seems that cortisol modulation 
by DER varies depending on the species, protocol, and other 
circumstances studied. For instance, it has recently been shown 
that a mild 25% CR diet does not alter the salivary cortisol levels 
of overweight men and women (167). In another study with obese 
individuals submitted to mild CR for 3 weeks, although reduced 
cortisol production and the metabolism of cortisol and corti-
sone were observed, there was no alteration on plasma cortisol 
levels. Conversely, in the same study, obese individuals starved 
for 6 days showed increased plasma cortisol levels (168). Also, 
Sticker et al. (169) showed that 50% CR in horses led to decreased 
plasma cortisol levels, compared to controls. Accordingly, Glade 
et al. (170) showed that during prolonged DER, young horses on 
an 80% CR also showed decreased cortisol levels, when compared 
with horses fed with meals containing 160% of their energy 
requirements.

Importantly, not in all glucocorticoid-sensitive cell types 
may derive stress inoculation benefits from DER-induced 
cortisol release. For instance, previous studies suggest that 
glucocorticoids can render hippocampal and cortical neurons 
more vulnerable to metabolic, excitotoxic, and oxidative dam-
age (171). Although it was previously demonstrated that DER 
upregulates brain heat shock proteins (172, 173), GR activation 
can downregulate the expression of several genes, including 
heat shock protein 70, known to be important to counteract 
stress-induced cell damage (174). DER in rodents leads to 
glucocorticoid release that can reduce neuronal sensitivity to 
glucocorticoids by promoting a feedback suppression on the 
levels of the potentially damaging GR, thereby increasing the 
resistance to injury (175).

A large body of evidence strengthens the proposed link 
between glucocorticoids and the anti-inflammatory effects of 
DER in rodents. Besides its metabolic actions, glucocorticoids 
are also known for their anti-inflammatory activities due to the 
inhibition of key inflammatory transcriptional regulators, such 
as the activator protein-1 (AP-1) and NF-κB, known to activate 
the transcription of proinflammatory cytokines (39).

Dietary energy restriction has also been linked to protection 
against inflammation. Vasconcelos et al. (176) showed that the 
IF protocol prevents or mitigates cognitive deficits, inflammatory 
genes transcription, and the diverse array of systemic LPS-induced 
cytokines in the brain and the periphery. Furthermore, 50% CR 
also reduces sickness behavior, fever, and peripheral immune 
markers following LPS injection, which was also modulated by 
DER duration (177, 178). In this DER protocol, elevated circulat-
ing corticosterone levels were evident, which the authors suggest 
contributes to the diminished proinflammatory signals in these 
animals (178). In another study, 40% CR in mice also prevented 
the LPS-induced proinflammatory cytokines upregulation, which 
was again accompanied by increased glucocorticoid production 
(179). Supporting this theory, previous data reported that adre-
nalectomized mice are much more sensitive to the lethal effect of 
LPS, which is prevented by the pretreatment with dexamethasone 
(33, 49). Such data highlight the immune-regulatory effects of 
glucocorticoids, including in CR paradigms.

Inflammation has long been associated with the develop-
ment of cancer, which partly explains the association of obesity 
and tumorigenesis. By contrast, DER powerfully inhibits the 
development of cancer in many studies (180), including in 
wild mice as well as laboratory-reared rodents, indicating that 
laboratory selection does not interfere in this effect (153). Both 
topical and oral glucocorticoid treatments decrease tumor 
development in rodents (181–185). Adrenalectomy reverses 
the inhibition of tumorigenesis by DER in mice and gluco-
corticoids supplementation restores it, suggesting that adrenal 
hormones play an important role in mediating this DER effect 
(186–188).

An extensive literature shows inflammation to be a risk factor 
for cognitive impairment and dementia, with neuroinflamma-
tory processes contributing to neurodegeneration (189, 190). 
Most neurodegenerative conditions are associated with chronic 
inflammation, which is widely accepted as contributing to the 
pathophysiology of neurodegenerative conditions (191–193). 
DER can prevent or attenuate inflammation associated with 
neurodegeneration (194–196). Studies also suggest that gluco-
corticoids play an important role, with some differential effects 
that are dependent on whether they are applied acutely or chroni-
cally, in neurodegeneration, such as in Alzheimer’s disease, being 
associated with chronic glucocorticoids (197–199), while acute 
conditions, such as ischemic stroke, benefiting from the acute 
effects of glucocorticoids (171). Such effects are relevant both 
clinically and in animal models.

Despite the DER-induced increase in glucocorticoids clas-
sically known for their anti-inflammatory action, studies have 
shown mixed results when evaluating the immune response to 
infection and pathogen clearance efficiency in animals submitted 
to DER protocols. In primates and rodent studies, while DER 
can improve clearance and survival after bacterial infection and 
enhance interferon gamma (IFN-γ) production, it can promote a 
deficient innate immune response with reduced ability to control 
infections by monocytes and macrophages (200–204). Patel and 
Finch (205) suggest that DER-induced glucocorticoid release may 
promote a differential effect on immunity in different parts of the 
organism, for instance, activating pathways close to the infectious 
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focus that are not suppressed by glucocorticoids and attenuating 
inflammation at other locations.

A brief summary of DER and HFD modulatory effects on 
neuroinflammation through glucocorticoid signaling is outlined 
in Figure 2.

DeR and Sex Hormones
Numerous studies have demonstrated that DER protocols affect sex 
hormone levels. In rhesus monkeys, for instance, 30% CR deferred 
the age-related dehydroepiandrosterone decline in males (28). 
Accordingly, Levay et al. (24) observed a dose–response decrease 
in testosterone levels in male rats with increasing CR severity. 
This effect was also observed for the IF protocol (32). A severe CR 
protocol in men also decreased levels of testosterone and estradiol 
while increasing levels of SHBG (31). In women, IF also increases 
SHBG levels, although CR more significantly reduces dehydroepi-
androsterone levels (206). In the Biosphere 2 study, Walford et al. 
(157) observed an increase in levels of androstenedione and SHBG 
in humans (both in male and female participants), while the levels 
of estradiol, but not testosterone, decreased in men.

In contrast to these results, Martin et al. (29) observed that 
male rats submitted to IF or females under 40% CR had increased 
levels of testosterone. In a subsequent study, they observed that 
either a 40% CR or an IF protocol increased the testosterone/
estrogen ratio, consistent with a hyper-masculinization state. A 
similar effect was also observed in females under the 40% CR 
protocol (30). Furthermore, Kumar and Kaur (32) showed that IF 
induced a significant decrease in luteinizing hormone, associated 

with diminished levels of estradiol in female rats, which com-
pletely suppressed the estrous cycle. Other studies also showed 
DER to inhibit estradiol levels (29, 30).

In conclusion, the effects of both DER interventions on sex 
hormones levels – including the testosterone/estrogen ratio – as 
well as the relevance of this modulation on DER anti- inflammatory 
properties are still obscure and have yet to be clarified. The inter-
relationship between sex hormones and neuroinflammation, as 
discussed above, is summarized in Figure 3.

CONCLUDiNG ReMARKS

In conclusion, glucocorticoids have been historically character-
ized as mediators of many anti-inflammatory effects observed 
within DER protocols, closely implicating glucocorticoid 
pathways in DER, including in the development of future 
pharmacological interventions that could mimic DER benefits. 
In contrast, extensive data support the hypothesis that the det-
rimental effects of a HFD upon cognitive function and behavior 
are caused by enhanced glucocorticoid signaling accompanied 
by neuroinflammation. As such, it is clear that there is more to 
glucocorticoid effects than simply its serum levels. Although 
both DER and HFD contribute to enhanced glucocorticoid 
blood concentration, its effects are quite opposite regarding 
health and, specifically, inflammation. Also, DER may induce its 
positive effects through other different mechanisms not related 
to glucocorticoid signaling, as may be the case for the detrimental 
effects of a HFD.

FiGURe 2 | Glucocorticoid-mediated effects of dietary interventions. 
Both HFD and DER results in increased blood concentrations of 
glucocorticoids. However, opposing effects are observed. HFD, via 
glucocorticoids release, cause detrimental effects to the brain and organism, 
while DER-induced glucocorticoids release leads to protective effects.

FiGURe 3 | effects of sex hormones on the inflammatory process. 
Presence of systemic inflammatory markers correlates inversely with blood 
concentrations of sex hormones, while hormonal reposition reduces both 
central and peripheral cytokine production. In the CNS, testosterone has 
protective roles both in neurons and glial cells, where it shows an anti-
inflammatory action. Estradiol also has anti-inflammatory properties in glial 
cells (astrocytes and microglia). On the other hand, estradiol levels in 
postmenopausal women positively correlate with breast cancer incidence. A 
HFD raises estradiol blood levels in postmenopausal women, increasing 
breast cancer risk. The effects of different DER protocols on sex hormone 
levels are more controversial. In black, effects of and on both testosterone 
and estradiol; in light gray, effects related to estradiol; in dark gray, effects 
related to testosterone.
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