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Abstract: To develop novel medical technologies, pig disease models are invaluable especially in
the final stages of translational research. Recently, we established a genetically engineered ornithine
transcarbamylase-deficient (OTCD) pig strain. Here, we report its characterization and treatment
responsiveness. OTCD pigs were obtained by mating an OTCD carrier female (OTC-Xc.186_190delXWT)
with a wild-type male. Due to the X-linked recessive mode of inheritance, the disease phenotype
emerged only in males. Medication with nitrogen-scavenging agents was based on a clinical protocol.
OTCD pigs were born smaller than their wild-type and carrier littermates, showing anemia and
faltering. Biochemically, high levels of urinary orotic acid and loss of OTC activity were observed.
The natural life course of OTCD pigs was characterized by a decrease in arterial percentage saturation
of oxygen and body temperature, as well as an increase in blood ammonia levels; the pigs died
in 24.0 ± 5.0 h (mean ± SD, n = 6). The established standard medication composed with nitrogen-
scavenging agents and transfusion nearly doubled the survival time to 42.4 ± 13.7 h (n = 6). Our
OTCD pig model appropriately mimicked the human pathology. Along with established protocols
in handling and medication, this is a first step in developing a large animal disease model that is
useful for translational research into novel medical technologies, such as cell transplantation and
gene therapy, as well as in relation to urea cycle disorder.

Keywords: urea cycle disorder; ornithine transcarbamylase; pig; disease model

1. Introduction

Most congenital metabolic disorders are rare orphan diseases, and the available thera-
pies remain limited. Urea cycle disorder is a metabolic disorder caused by genetic mutation
of the constitutive enzymes and it is characterized by hyperammonemia [1]. Recently, we
developed a genetically engineered pig strain that lacks functional ornithine transcarbamy-
lase (OTC), a constitutive enzyme in the urea cycle, with the aim of establishing a human
disease model [2].

The urea cycle is composed of six enzymes and two transporters located in the mi-
tochondria and cytoplasm of hepatic parenchymal cells and it is responsible for the en-
dogenous production of arginine, ornithine, and citrulline, as well as the clearance of
nitrogen end products that result from protein and other nitrogenous metabolic compound
turnovers [3]. Genetic deficiencies in any of the enzymes or transporters cause urea cycle
disorders and sometimes result in life-threatening symptoms including encephalopathy.
Among the various patterns of urea cycle disorders, carbamoylphosphate synthetase I
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deficiency and OTC deficiency (OTCD) often develop severe clinical states characterized
by hyperammonemia [3]. These enzymes are localized in the mitochondria, but the nature
of the disease is completely different from mitochondrial liver diseases, whose etiology
is characterized by the lack of a functional electron transport chain. Unlike mitochon-
drial liver diseases, urea cycle disorder’s fatal outcome, i.e., hyperammonemia, as well as
other metabolic discrepancies are restrained during the gestation period by uteroplacental
circulation; the diseases are often recognized after birth, unless fetal genetic diagnosis is
performed, as is often for the case with at-risk babies. Thus, early appropriate treatments
are of great importance for repressing the progress of encephalopathy and its resulting
mental retardation. The mainstays of treatment are dietary protein restriction and adminis-
tration of nitrogen-scavenging agents [3]. Although hemodialysis is the fastest method for
lowering ammonia levels, neonatal patients should be paid the greatest attention when
it comes to treatment, because the load on the cardiovascular system and the risks of
infection by cannula insertion are much higher in these patients than in adults. Similarly,
liver transplantation is not an indication for infantile patients, and it is usually performed
after the stabilization of metabolic disorders at around 5 to 6 months of age [4].

The OTC gene is located on the X chromosome in humans and the infantile fulminant
OTCD phenotype usually appears in males; however, the slow-onset, mildly progressive
condition occurs in both females and males. The gene is also located on the X chromosome
in pigs, and we succeeded in the establishment of fulminant OTCD model in male piglets,
together with two other X-linked genetic disorders, namely severe combined immunod-
eficiency and Duchenne musculardystrophy [2]. In this study, we report the phenotypic
characterization of OTCD pigs and discuss the foresight of pigs as large-scale experimental
animal models.

Although nitrogen-scavenging agents are effective at decreasing blood ammonia, a
complete cure can only currently be attained by liver transplantation. However, liver
transplantation is invasive, especially in babies, and is limited due to donor shortages.
Thus, less invasive, long-lasting treatments, such as cell transplantation or gene therapy,
are desired, but so too is the development of novel drugs. Animal models of human
disease are invaluable for developing novel medical technologies; here, we illustrate
the characterization and treatment responsiveness of OTCD pigs as a core protocol for
translational research in the future.

2. Materials and Methods
2.1. Animals

All animals used in this study were handled in accordance with the Japanese Guide-
lines for Animal Experiments of the Ministry of Health Labor and Welfare and the study was
approved by the Institutional Animal Ethics Committee of the National Center for Child
Health and Development (IRB number: A2000-001-C13) and Meiji University (IACUC11-
0016, 12-0008, 14-0010, 15-0002, 15-0003). Genetically engineered OTCD pigs were estab-
lished in a domestic Landrace–Large white–Durac strain by two-step breeding, as described
previously [2]. Briefly, we established female pigs carrying heterozygous mutations in
exon 2 of the OTC gene (c.186_190delTCTGA) using artificial reproductive technologies,
including somatic cell cloning and blastocyst complementation. To obtain OTCD males, we
performed planned mating of the carrier female and intact male at the estrous period. Most
piglets were delivered naturally; however, some were treated with oxytocic or hysterotomy
when the birth took too long after coming after amniorrhexis (Supplementary Materials,
Table S1). OTCD piglets were kept in an incubator chamber for neonates (Caleo, Dräger,
Lübeck, Germany) at a temperature of 38 ◦C and supplied up to 3 L/min of O2 in response
to oxygen saturation monitored by an oxygen saturation monitor.

2.2. Genotyping

Genotyping was performed using restriction fragment length polymorphism anal-
ysis, as described previously [2]. Briefly, genomic DNA was extracted from tail biop-
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sies of the offspring using a DNA extraction kit (DNeasy Blood and Tissue Kit, Qiagen,
Hilden, Germany). The primers used were 5′- TCCAATCAGGCCTGTAGCTGC and 5′-
GATTCCTTAGGTTCTGATTCAG. Nested PCR was then performed using PrimeSTAR
HS DNA polymerase (Takara Bio) and the primers 5′- ACTGAGCAAGGTCCAGGATCG
and 5′- TGCTATGCTCTTACACTCAGTC. The sequences of the amplicons containing
the TALEN target region were determined using the sequencing primer 5′- TCACATC-
CTGAGTCTCCTCAAG. The PCR products were digested with the Hpy188I restriction
enzyme (New England Biolabs, MA, USA), and the digested DNA fragments were analyzed
by gel electrophoresis.

2.3. Medicines

The medicines used for OTCD pigs were as follows: sodium benzoate (Maruishi
Pharmaceutical, Co., Ltd. Osaka, Japan), sodium phenylbutyrate (Buphenyl®, granules
94%, Horizon Therapeutics, Deerfield, IL, USA), L-arginine (Argi-U® Injection, EA Pharma
Co., Ltd., Tokyo, Japan), L-citrulline (KYOWA HAKKO BIO CO.,LTD., Tokyo, Japan),
glucose (50%, Otsuka Pharmaceutical Co., Ltd., Tokyo, Japan), and lactate Ringer solution
(SOLULACT®, Terumo Corporation, Tokyo, Japan).

2.4. Anesthesia, Analgesia, Surgical Procedures, and Blood Sampling

Anesthesia and analgesia for hysterotomy and catheter insertion were performed
according to standard veterinary medicine protocols [5]. Briefly, pigs were sedated by intra-
muscular injection of 0.5 mg/kg mafoprazine mesylate (Mafropane®; DS Pharma Animal
Health Co., Ltd., Osaka, Japan) followed by an intravenous injection of 1.5 mg/kg sodium
thiopental (Ravonal®; NIPRO ES Pharma). Anesthesia was maintained by inhalation of
2.5% to 3.0% isoflurane (FUJIFILM Wako Pure Chemical Corporation, Osaka, Japan). As an
analgesic, 0.3 mg/kg of butorphanol tartrate (Vetorphale®; Meiji Seika Pharma Co., Ltd.,
Japan) was administered intramuscularly before and after the operation. A single lumen
20-G catheter (1720-12-G, Covidien, Dublin, Ireland) was inserted into the jugular vein for
drug infusion and blood sample correction. After the operation, the pigs were returned to
the incubator chamber and left free. Infusion and blood sampling before cannulation were
performed with the umbilical vein and tail vein, respectively, and in order to monitor the
percentage saturation of oxygen from the tail or femoral artery.

2.5. Medication and Feeding

Standard care of OTCD piglets (Figure 1) was defined based on the protocol described
in a professional review [1], with advice from medical staff in the Division of Endocrinology
and Metabolism, National Center for Child Health and Development. OTCD piglets were
infused intravenously with 13.5 mL/kg lactate Ringer solution containing 500 mg/kg
sodium benzoate, 500 mg/kg L-arginine, and 0.56 g/kg glucose for 1 h, immediately after
birth from the umbilical vein (indicated as “Loading” in Figure 1). After loading, the
piglets were continuously infused with 120 mL/kg/day lactate Ringer solution containing
500 mg/kg/day sodium benzoate, 250 mg/kg/day L-arginine, and 13.4 g/kg glucose. The
piglets were also orally administered 200 mg/kg sodium phenylbutyrate and 83 mg/kg
L-citrulline in aqueous suspension (10 mL/kg) every 8 h. From 24 h after birth, piglets were
fed artificial milk (10 mL/kg of 20% solution containing 0.5 g/kg protein and 0.04 g/kg
lipid, Weanny Milk®, Nosan Corporation, Kanagawa, Japan) via a feeding tube (all the
procedures are summarized in Figure 1). In the control group, the OTCD piglets received
60 mL/kg/day of 10% glucose intravenously. Pigs at the end stage were injected with
80 µg/kg of midazolam (Dormicum Injection, Maruishi Pharmaceutical, Co., Ltd. Osaka,
Japan) intravenously or intramuscularly every 1 or 2 h for sedation, and survival times
were determined by the cessation of a heartbeat as monitored by a cardiac electrogram.
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plying by 1.25, which is the ratio of molecular weights of nitrogen and ammonia. Arterial 
oxygen saturation was measured using a portable blood analyzer, iStat, and its cartridge, 
CG4+ (Abbott, Abbott Park, IL, USA). Urinary orotic acid levels and hepatic OTC activities 
were determined using a colorimetric assay [6]. Urinary orotic acid levels were standard-
ized with urinary creatinine levels measured using a laboratory assay kit (LabAssay™ 
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activities were assayed with homogenates prepared from the liver of piglets of OTCD (n 
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Figure 1. Treatment protocol of OTCD piglets. Control OTCD pigs received 60 mL/kg/day of 10%
glucose intravenously. iv: intravenously, po: perorally.

2.6. Biochemical Analysis

Blood ammonia levels were determined using the bromocresol green method (Pocket-
ChemTM, PA-4140, Arkray, Inc., Kyoto, Japan, measurement range: 10 to 400 nitrogen-µg/dL)
or, if the values exceed the detection range of the method, the indophenol method (Ammonia-
Test-Wako kit [277-14401], FUJIFILM Wako Pure Chemical Corporation, Osaka, Japan). The
values by the bromocresol green method were compensated by multiplying by 1.25, which
is the ratio of molecular weights of nitrogen and ammonia. Arterial oxygen saturation was
measured using a portable blood analyzer, iStat, and its cartridge, CG4+ (Abbott, Abbott
Park, IL, USA). Urinary orotic acid levels and hepatic OTC activities were determined
using a colorimetric assay [6]. Urinary orotic acid levels were standardized with urinary
creatinine levels measured using a laboratory assay kit (LabAssay™ Creatinine [290-65901],
FUJIFILM Wako Pure Chemical Corporation, Osaka, Japan). OTC activities were assayed
with homogenates prepared from the liver of piglets of OTCD (n = 6) and wild-type male
piglets (n = 5) just after birth (not autopsied liver), and they were expressed as ng citrulline
production/min/mg protein. Protein content was determined using the Bradford method
(Bio-Rad Protein Assay [5000001JA], Bio-Rad Laboratories, Inc. Hercules, CA, USA).

2.7. Statistical Analysis

Statistically significant results were determined using one-way ANOVA to elimi-
nate the risk of type 1 error. Fisher’s protected least significant difference (PLSD) test
(Figures 2–4) or the Wilcoxon rank-sum test (Figure 5) by JMP11 (SAS Institute) were also
used. Statistical significance was set at p value < 0.05.J. Clin. Med. 2021, 10, x FOR PEER REVIEW 5 of 10 

 

 

 

 

(a) (b) 

Figure 2. Comparison of the body size of piglets of each genotype: (a) body weight, kg (mean ± SD) of live piglets: male 
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and the asterisks denote statistical significances by Fisher’s PLSD test. (b) Typical appearance of OTCD (arrowhead, pig 
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S1); also see Supplementary Video S1. 
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Figure 2. Comparison of the body size of piglets of each genotype: (a) body weight, kg (mean ± SD)
of live piglets: male OTCD (n = 19), male wild-type (WT) (n = 23), female OTCD carrier (Carrier)
(n = 12), and female WT (n = 10). Details of pregnancy and delivery outcomes are shown in
Supplementary Table S1. The p value of the one-way ANOVA is <0.0001 and the asterisks denote
statistical significances by Fisher’s PLSD test. (b) Typical appearance of OTCD (arrowhead, pig ID:
K80-10) and WT (arrow, pig ID: K80-09) piglets 4 h after birth (littermates of mother pig K80 in
Supplementary Table S1); also see Supplementary Video S1.
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Figure 3. Characterization of OTCD piglets: (a) time course of arterial oxygen saturation, % (mean ± SD, n = 3–5 (points
at 37 h without SD bar: n = 1)). Male OTCD, closed square; male WT, open square; female WT, open circle. (b) Time
course of body temperature, ◦C (mean ± SD, n = 3–5). Male OTCD, closed square; male WT, open square; female WT, open
circle. The p value of the one-way ANOVA was 0.0001 and the asterisk denotes statistical significance by Fisher’s PLSD
test. (c) Comparison of orotic acid contents, µg/mg in urine taken within 2 h after birth (mean ± SD, n = 5, 4, 5, and 4,
respectively). The values were expressed as µmol orotic acid/mg creatinine to counterbalance urinary density. The p value
of the one-way ANOVA was 0.0045 and the asterisks denote statistical significance by Fisher’s PLSD test. (d) Comparison
of hepatic OTC activities, nmol/min/mg (mean ± SD, n = 6 and 5, respectively). The values were expressed as nmol
citrulline production/min/mg protein. The p value of the one-way ANOVA was 0.0004 and the asterisk denotes statistical
significance by Fisher’s PLSD test and the p value 0.0004.
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Figure 4. Comparison of blood ammonia levels, µg/dL of various condition: (a) blood ammonia levels in male OTCD
(n = 10), male WT (n = 13), female OTCD carrier (n = 9), and female WT (n = 9) within 2 h after birth (values in the area
highlighted with yellow in Figure 4b,c.). Red horizontal bars indicate average ± SD of each group. The p value of the
one-way ANOVA was <0.0001 and the asterisks denote statistical significance by Fisher’s PLSD test. (b) Time course
change in blood ammonia in individual male OTCD piglets with (solid line) or without (dashed line) medication. In the
medication group (solid lines), corresponding pig IDs were indicated (see also Supplementary Table S1). K97-02 missed the
last sampling before death due to technical difficulties. (c) Time course of blood ammonia levels in piglets with normal
phenotypes (mean ± SD, n = 3–9). Male WT, open square; female carrier, gray circle; female WT, open circle. Dashed line,
without medication; solid line, with medication. The p value of the one-way ANOVA was <0.0001 and the asterisk denotes
statistical significance by Fisher’s PLSD test.
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The asterisk denotes statistical significance by Wilcoxon rank-sum test.
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3. Results
3.1. Feature of OTCD Piglets and Delivery Data

Body weight measurements (mean± SD: number in parentheses denotes sample number)
of male OTCD (OTC-Xc.186_190delY), male wild-type, female carrier (OTC-Xc.186_190delXwt), and
female wild-type piglets were 0.617 ± 0.148 kg (19), 1.147 ± 0.294 kg (23), 1.279± 0.310 (12),
and 1.146 ± 0.256 (10), respectively (Figure 2a). OTCD piglets appeared small, anemic,
and faltering (Figure 2b and Supplementary Video S1). The number of live OTCD males
ranged from 0 to 2 (average ± SD: 1.2 ± 0.7, n = 18) at each delivery (Table 1 and details
in Supplementary Table S1). The average number of total OTCD males, including dead
pigs, was 2.6, which was 27% of the total number of piglets, nearly equal to the genetical
theoretical value of 1/4. Notably, the gestation lengths for female carriers in normal delivery
cases (111 ± 2.1, n = 11) were shorter than the standard period of 114 days [7]. A reduction
in gestation period was seen irrespective of the artificial interventions, hysterotomy after
the sign of delivery, or oxytocic treatment.

Table 1. Summary of pregnancy and delivery outcomes for ornithine transcarbamylase-deficient
(OTCD) carrier female pigs 1.

Average SD

Gestation length, day 111.0 2.2
Divergence 2 −3.1 2.2

Mode of delivery 3 N: 11, H: 5, O: 2, Total n = 18
Total No. of piglets 9.6 2.7
No. of live piglets 8.5 2.1

Live, male, OTCD 4 1.2 0.7
Live, male, WT 5 2.2 1.4

Live, female, carrier 2.6 1.5
Live, female, WT 2.3 1.6

No. of dead piglets 1.1 1.5
Dead, male, OTCD 1.1 1.5

Dead, male, WT 0.1 0.2
Dead, female, carrier 0.0 0.0

Dead, female, WT 0.0 0.0
1 Results were obtained from a total of 18 deliveries. Details of individual deliveries are shown in Supplementary
Table S1. 2 Divergence from standard gestation period (114 days [7]). 3 N: normal delivery, H: hysterotomy after
the sign of delivery, O: with oxytocic treatment. 4 OTCD: ornithine transcarbamylase deficient. 5 WT: wild-type.

3.2. Characterization of OTCD Piglets

OTCD piglets born anemic with coldish skin were kept in an incubator chamber
for neonates and recovery. However, arterial oxygen saturation and body temperature
gradually decreased (Figure 3a,b) and the piglets died. As evidence of the disease, elevation
of urinary orotic acid and loss of OTC were observed (Figure 3c,d). The activity of male
OTCD piglets was not detectable in all six cases by the colorimetric assay.

3.3. Effect of Medication on Blood Ammonia Level and Survival

Changes in blood ammonia levels at birth and throughout the time course, with or
without medication, were summarized in Figure 4. Male OTCD piglets showed high
ammonia levels (318 ± 182 µg/dL, n = 10) at birth, while other genotypes, including
male wild-type, female OTCD carrier, and female wild-type piglets, did not exceed the
physiological range (83 ± 31 (n = 13), 78 ± 17 (n = 9), 97 ± 17 (n = 9) µg/dL, respectively).
The levels in male OTCD piglets without medication increased rapidly with time (Figure 4b,
dashed lines). In contrast, the piglets receiving medication showed a delay in ammonia
increase (Figure 4b, solid lines), suggesting beneficial effects of the administration of
nitrogen-scavenging agents. However, the ammonia level increased after a transient steady
period. Conversely, piglets of other genotypes showed a decrease in blood ammonia after
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birth (Figure 4c), similar to that in human babies. Interestingly, the medication accelerated
the decrease in wild-type males (Figure 4c, open square with solid line).

In response to the depression of increases in ammonia (Figure 4b), the OTCD piglets
that received medication showed significant prolongation of survival times compared
to the controls (Figure 5, with medication: 42.4 ± 13.7 h (mean ± SD, n = 6), without
medication; 24.0 ± 5.0, n = 6).

4. Discussion

The urea cycle is a life-supporting biochemical pathway in the liver. Its role is the
endogenous production of arginine, ornithine, and citrulline, as well as the clearance of
nitrogen end products that result from protein and other nitrogenous metabolic com-pound
turnovers. Urea cycle disorder poses a risk of hyperammonemia attack, which can likely
lead to irreversible central nervous system damage. However, the direct relationship
between hyperammonemia and encephalopathy is controversial [3]. The most common
disorder of the cycle is caused by mutations in OTC [1]. As the OTC gene is linked to the
X-chromosome, a severe fulminant OTCD syndrome emerges in males. To date, infantile
patients are treated with protein-free diet, nitrogen-scavenging agents, and hemodialysis,
depending on the severity of individual cases. Most patients are treated with these symp-
tomatic therapies until liver transplantation becomes available [4]. However, although liver
transplantation is an effective treatment, patients have to take immunosuppressive drugs
on a lifelong basis, and risk of rejection and need for dietary restrictions exist long after
transplantation. While cell transplantation and gene therapy are being examined as novel
treatments [5,8–10], their safety and therapeutic efficacies have not yet been determined.
From this point of view, human disease models in which clinical equivalent treatments are
executable are preferable for the development of novel medical technologies.

We established a genetically engineered OTCD pig strain that aims to model human
disease [2]. The location of the OTC gene is on the X chromosome in both pigs and humans.
Due to the X-linked inheritance pattern, the pathogenic variant that our OTCD pig model
harbored through the breeding scheme utilized in this study was only observed in male
pigs. As shown in Table 1, the OTCD trait was found in 27% of the piglets born from an
OTCD carrier mother. Unlike human fetuses, in which the metabolic abnormalities are
compensated by uteroplacental circulation, the OTCD trait is likely to influence fetuses
in pigs.

In humans, individuals with OTCD only develop the pathological condition after birth
and the symptoms are sometimes overlooked for one to two days, resulting in delayed
therapeutic care. More complicatedly, the intronic variant, which often goes unnoticed, can
be a cause of late-onset OTCD [11]. Therefore, the OTCD trait should be diagnosed not
only by conventional methodologies, but also by fetal genetic testing during pregnancy.
On the other hand, fetal pigs likely suffer from OTCD-induced damages due to following
factors observed in our study: (1) OTCD piglets were smaller than wild-type and carrier
littermates; (2) OTCD piglets already showed hyperammonemia and high orotic acid urine
at birth; (3) there were stillborn male OTCD fetuses that died shortly before delivery; (4) the
gestation period was shorter than the average gestation period of normal pigs, suggesting
that the mother delivered the diseased fetuses early and deliberately. The above nature of
OTCD pigs may have complicated our experiment, and specific attention is necessary in
the nursing protocol.

To promote the survival of OTCD piglets, we established a standardized protocol
using nitrogen-scavenging agents, sodium benzoate, and sodium phenylbutyrate (Figure 1).
The medication successfully decreased the blood ammonia levels of OTCD piglets and
prolonged their survival (Figures 4b and 5). Dietary protein restriction and nitrogen-
scavenging agent treatment are therapeutic mainstays. OTCD piglets were fed a protein-
free glucose solution on the first day and started milk feeding 24 h after birth. The protocol
was set based on clinical management guidelines [1] and the advice of clinical staff. Clinical
treatment changes flexibly in response to a patient’s condition. There are various options
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when it comes to drugs, doses, and medical procedures. However, in animal experiments,
standardization is the most important aspect in order to achieve scientific reproducibility.
As such, best clinical practice and experimental requirements were compromised. Based on
the present protocol, we are able to evaluate the effectiveness of novel medical technologies.

To improve the usability of the present OTCD pig model, early therapeutic interven-
tion is practical and effective. Although there were no systemic data, the OTCD piglets
delivered before term by hysterotomy or oxytocic treatment showed less severe symptoms
and better responsiveness to treatment. Another strategy is the establishment of geneti-
cally engineered pigs with truncated OTC proteins of low OTC activity. That being said,
it might have been possible to retain a small amount of OTC activity by adjusting the
position and degree of recombination. As we did not know how to regulate the position
and degree of OTC activity, we performed a complete loss of activity in this case. Thus,
the severe fulminant OTCD model was established. The well-known OTCD model an-
imals, sparse-fur (spf/1) mice (ID156, Balb/c background spontaneous mutation mice)
show 1/6 the level of OTC activity (wild-type mice: 317.8 ± 51.5 nmol/min/mg, OTCD
mice: 53.7 ± 33.5 nmol/min/mg, [mean ± SD, n = 3], unpublished data) and survive for
approximately two months (median, 47 days; range: 20–52) [5,10]. In our previous study,
hepatocyte transplantation two days after birth significantly prolonged the survival time in
OTCD mice [10]. A mild OTCD model will be more sensitive to detecting the effectiveness
of treatments in pigs.

We also followed up the blood ammonia levels of the carrier female pigs to investigate
the possibility of a late-onset decrease in OTC activity as shown in chimeric mice with
humanized livers with OTCD patients [12]. A small number of carrier females showed
a gradual increase in blood ammonia levels until about 1 month of age. However, the
levels were normalized and no change was observed thereafter. Some carrier females
subsequently calved successfully. Domestic pigs, which we used in this experiment, grow
too quickly to conduct long-term observations. If the OTCD trait could be transferred to
miniature pigs [13], it would allow for longer-term observation with many more pigs and
may allow for the study of the delayed-onset model of OTCD.

Large animal experiments have contributed greatly to medical innovation. The experi-
mental system is established by animal resources and standardized protocols. The present
system contributes to the development of innovative treatments for OTCD.

5. Conclusions

Our OTCD pig model appropriately mimicked the human pathology of the disease.
Together with established protocols in handling and medication, it is a first step in devel-
oping a large animal disease model that is useful for novel medical technologies, such as
cell transplantation and gene therapy, in relation to urea cycle disorder, especially in the
late phase of translational research.
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